

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

-	
Details	
Product Status	Active
Core Processor	-
Core Size	8-Bit
Speed	12MHz
Connectivity	SIO, UART/USART
Peripherals	PWM, WDT
Number of I/O	32
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-BQFP
Supplier Device Package	80-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/sanyo-denki-sanups-products/lc87f76c8au-qfp-e

■Minimum Instruction Cycle Time (tCYC)

250ns (12MHz) V_{DD}=3.0 to 5.5V
 375ns (8MHz) V_{DD}=2.5 to 5.5V
 750ns (4MHz) V_{DD}=2.2 to 5.5V

■Ports

• Normal withstand voltage I/O ports

Ports whose I/O direction can be designated in 1-bit units 23 (P1n, P30 to P31, P70 to P73, P8n, XT2)

Ports whose I/O direction can be designated in 4-bit units 8 (P0n)

• Normal withstand voltage input port 1 (XT1)

• LCD ports

Segment output 32 (S00 to S31)
Common output 4 (COM0 to COM3)
Bias terminals for LCD driver 3 (V1 to V3)

Other functions

Input/output ports 32 (PAn, PBn, PCn, PDn,)

Input ports 7 (PLn)

• Dedicated oscillator ports 2 (CF1, CF2)

• Reset pins 1 (RES)

• Power pins 6 (Vss1 to Vss3, Vpp1 to Vpp3)

■LCD Controller

- 1) Seven display modes are available (static, 1/2, 1/3, 1/4 duty \times 1/2, 1/3 bias)
- 2) Segment output and common output can be switched to general-purpose input/output ports
- ■Small Signal Detection (MIC signals etc)
 - 1) Counts pulses with the level which is greater than a preset value
 - 2) 2-bit counter

■Timers

• Timer 0: 16-bit timer/counter with two capture registers.

Mode 0: 8-bit timer with an 8-bit programmable prescaler (with 8-bit capture registers) × 2 channels

Mode 1: 8-bit timer with an 8-bit programmable prescaler (with 8-bit capture registers)

+ 8-bit counter (with two 8-bit capture registers)

Mode 2: 16-bit timer with an 8-bit programmable prescaler (with 16-bit capture registers)

Mode 3: 16-bit counter (with 16-bit capture registers)

• Timer 1: 16-bit timer that supports PWM/toggle outputs

Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs)

+ 8-bit timer with an 8-bit prescaler (with toggle outputs)

Mode 1: 8-bit PWM with an 8-bit prescaler \times 2 channels

Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs)

(toggle outputs also possible from the lower-order 8 bits)

Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs)

(The lower-order 8 bits can be used as PWM.)

- Timer 4: 8-bit timer with a 6-bit prescaler
- Timer 5: 8-bit timer with a 6-bit prescaler
- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle output)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle output)
- Base timer
 - 1) The clock is selectable from the subclock (32.768kHz crystal oscillation), system clock, and timer 0 prescaler output.
- 2) Interrupts programmable in 5 different time schemes
- Day and time counter
 - 1) Used with a base timer, the day and time counter can be used as a 65000 day + minute + second counter.

■High-speed Clock Counter

- 1) Can count clocks with a maximum clock rate of 20MHz (at a main clock of 10MHz).
- 2) Can generate output real-time.

■SIO

- SIO0: 8-bit synchronous serial interface
 - 1) LSB first/MSB first mode selectable
 - 2) Built-in 8-bit baudrate generator (maximum transfer clock cycle = 4/3 tCYC)
 - 3) Automatic continuous data transmission (1 to 256 bits specifiable in 1-bit units, suspension and resumption of data transmission possible in 1-byte units)
- SIO1: 8-bit asynchronous/synchronous serial interface
 - Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)
 - Mode 1: Asynchronous serial I/O (half-duplex, 8-data bits, 1-stop bit, 8 to 2048 tCYC baudrates)
 - Mode 2: Bus mode 1 (start bit, 8-data bits, 2 to 512 tCYC transfer clocks)
 - Mode 3: Bus mode 2 (start detect, 8-data bits, stop detect)

■UART

- Full duplex
- 7/8/9 bit data bits selectable
- 1 stop bit (2-bit in continuous data transmission)
- Built-in baudrate generator
- * When using UART, set POLDDR (PODDR: Bit0) to "0"
- ■AD Converter: 12 bits × 12 channels
- ■PWM: Multi frequency 12-bit PWM × 2 channels
- ■Infrared Remote Control Receiver Circuit
 - 1) Noise reduction function

(Time constant of noise reduction filter: approx. 120µs, when selecting a 32.768kHz crystal oscillator as a reference clock.)

2) X'tal HOLD mode cancellation function

■Watchdog Timer

- External RC watchdog timer
- Interrupt and reset signals selectable

■Clock Output Function

- 1) Can output selected oscillation clock 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, or 1/64 as system clock.
- 2) Can output the source oscillation clock for the sub clock.

■Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation. (Some parts of the serial transfer function stops operation.)
 - 1) Oscillation is not stopped automatically.
 - 2) Canceled by a system reset or occurrence of an interrupt
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) The CF, RC, X'tal, and multifrequency RC oscillators automatically stop operation.
 - 2) There are three ways of resetting the HOLD mode.
 - (1) Setting the reset pin to the low level
 - (2) Setting at least one of the INTO, INT1, and INT2, pins to the specified level
 - (3) Having an interrupt source established at port 0
- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer and infrared remote controller circuit.
 - 1) The CF, RC, and multifrequency RC oscillators automatically stop operation
 - 2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
 - 3) There are five ways of resetting the X'tal HOLD mode.
 - (1) Setting the reset pin to the low level
 - (2) Setting at least one of the INT0, INT1, and INT2 pins to the specified level
 - (3) Having an interrupt source established at port 0
 - (4) Having an interrupt source established in the base timer circuit
 - (5) Having an interrupt source established in the infrared remote control receiver circuit

■On-chip Debugger

• Supports software debugging with the IC mounted on the target board.

■Package Form

QIP80(14×14): Lead-free type
 TQFP80J(12×12): Lead-free type

■Development Tools

• On-chip debugger: TCB87-TypeB + LC87F76C8A

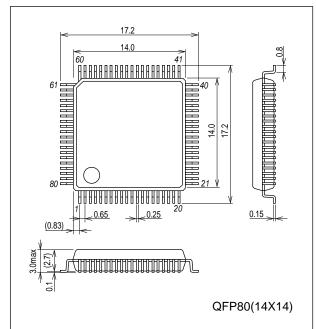
■Flash ROM Programming Board

Package	Programming Boards
QIP80(14×14)	W87F71256QF
TQFP80J(12×12)	W87F71256SQ

■Flash ROM Programmer

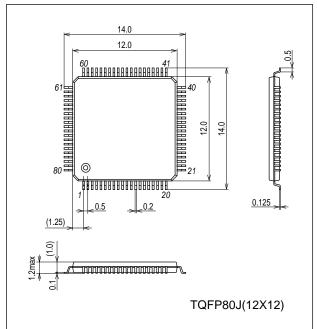
Maker	Model	Supported Version (Note)	Device
Flash Support Group, Inc (Single)	AF9708/AF9709/AF9709B (including models manufactured by Ando Electric Co., Ltd.)		LC87F76C8A
Flash Support Group, Inc	AF9723 (main unit) (including models manufactured by Ando Electric Co., Ltd.)		LC87F76C8A
(Gang)	AF9833 (unit) (including models manufactured by Ando Electric Co., Ltd.)		2007170007
SANYO	SKK(SANYO FWS)	Application Version: After 1.04 Chip Data Version: After 2.09	LC87F76C8A

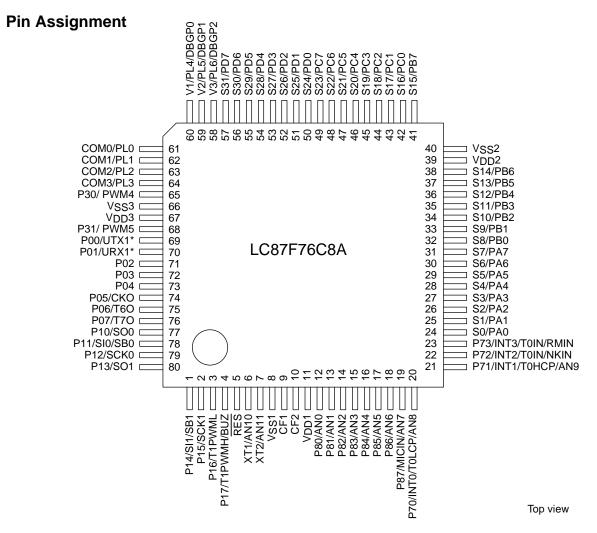
Note: Check for the latest version.


■Same Package and Pin Assignment as Mask ROM Version.

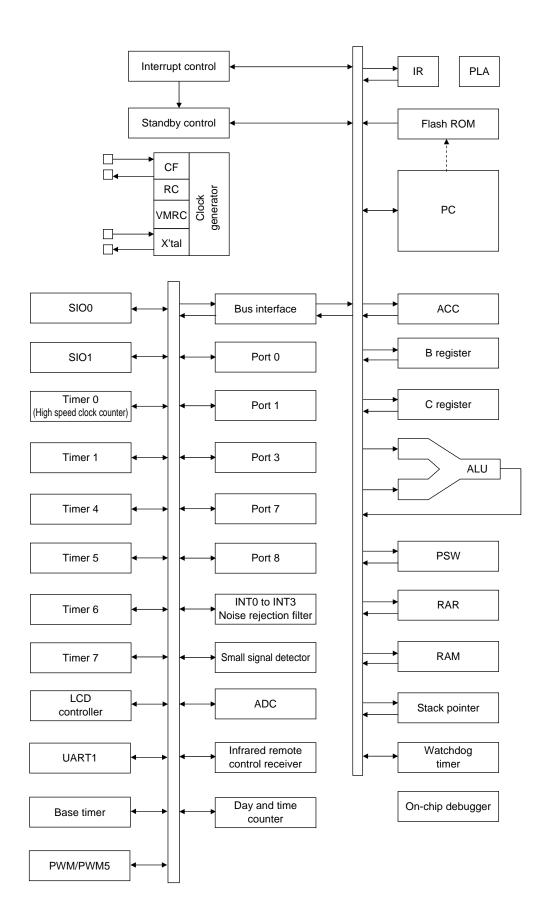
- 1) LC877600 series options can be specified by using flash ROM data. Thus the board used for mass production can be used for debugging and evaluation without modifications.
- 2) If the program for the mask ROM version is used, the size of the available ROM/RAM spaces is the same as that of the mask ROM version.

Package Dimensions


unit: mm (typ)


unit : mm (typ 3255

Package Dimensions


unit : mm (typ) 3290

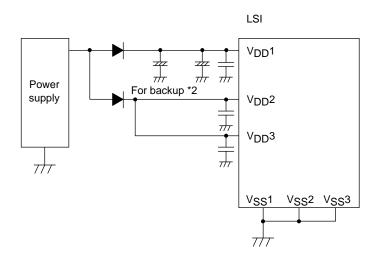
*When using UART, set P0LDDR (PODDR: Bit0) to "0" SANYO: QFP80(14×14) "Lead-free Type" SANYO: TQFP80J(12×12) "Lead-free Type"

System Block Diagram

Continued from preceding page.

Pin Name	I/O	Description	Option
PORT8	I/O	8-bit I/O port	No
P80 to P87		I/O specifiable in 1-bit units	
		Shared pins	
		AD converter input ports: AN0 to AN7	
		Small signal detector input port: MICIN (P87)	
S0/PA0 to	I/O	Segment output for LCD	No
S7/PA7		Can be used as general-purpose I/O port (PA)	
S8/PB0 to	I/O	Segment output for LCD	No
S15/PB7		Can be used as general-purpose I/O port (PB)	
S16/PC0 to	I/O	Segment output for LCD	No
S23/PC7		Can be used as general-purpose I/O port (PC)	
S24/PD0 to	I/O	Segment output for LCD	No
S31/PD7		Can be used as general-purpose I/O port (PD)	
COM0/PL0 to	I/O	Common output for LCD	No
COM3/PL3		Can be used as general-purpose input port (PL)	
V1/PL4 to	I/O	LCD drive bias power supply	No
V3/PL6		Can be used as general-purpose input port (PL)	
		Shared pins	
		On-chip debugger pins: DBGP0 (V1) to DBGP2 (V3)	
RES	Input	Reset pin	No
XT1	Input	32.768kHz crystal oscillator input pin	No
		Shared pins	
		General-purpose input port	
		Must be connected to V _{DD} 1 if not to be used.	
		AD converter input port: AN10	
XT2	I/O	• 32.768kHz crystal oscillator output pin	No
		Shared pins	
		General-purpose I/O port	
		Must be set for oscillation and kept open if not to be used.	
		AD converter input port: AN11	
CF1	Input	Ceramic resonator input pin	No
CF2	Output	Ceramic resonator output pin	No

Port Output Types


The table below lists the types of port outputs and the presence/absence of a pull-up resistor.

Data can be read into any input port even if it is in the output mode.

Port Name	Option Selected in Units of	Option Type	Output Type	Pull-up Resistor
P00 to P07	each bit	1	CMOS	Programmable (Note)
		2	N-channel open drain	No
P10 to P17	each bit	1	CMOS	Programmable
		2	N-channel open drain	Programmable
P30 to P31	each bit	1	CMOS	Programmable
		2	N-channel open drain	Programmable
P70	-	No	N-channel open drain	Programmable
P71 to P73	-	No	CMOS	Programmable
P80 to P87	-	No	N-channel open drain	No
S0/PA0 to S31/PD7	-	No	CMOS	Programmable
COM0/PL0 to COM3/PL3	-	No	Input only	No
V1/PL4 to V3/PL6	-	No	Input only	No
XT1	-	No	Input only	No
XT2	-	No	Output for 32.768kHz crystal oscillator (Nch-open drain when in general-purpose output mode)	No

Note: Programmable pull-up resistors for port 0 are controlled in 4 bit units (P00 to 03, P04 to 07).

*1 Connect the IC as shown below to minimize the noise input to the $V_{DD}1$ pin. Be sure to electrically short the $V_{SS}1$, $V_{SS}2$, and $V_{SS}3$ pins.

*2 The internal memory is sustained by V_{DD}1. If none of V_{DD}2 and V_{DD}3 are backed up, the high level output at the ports are unstable in the HOLD backup mode, allowing through current to flow into the input buffer and thus shortening the backup time.

Make sure that the port outputs are held at the low level in the HOLD backup mode.

Absolute Maximum Ratings at Ta = 25°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

	Doromotor	Cumbal	Din/Damarka	Conditions			Specif	ication	
	Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
	ximum supply tage	V _{DD} max	$V_{DD}1, V_{DD}2, V_{DD}3$	V _{DD} 1=V _{DD} 2=V _{DD} 3		-0.3		+6.5	
Su LC	pply voltage for D	VLCD	V1/PL4, V2/PL5, V3/PL6	$V_{DD}1=V_{DD}2=V_{DD}3$		-0.3		V _{DD}	
Inp	out voltage	V _I (1)	• Port L • XT1, CF1, RES			-0.3		V _{DD} +0.3	V
	out/output tage	V _{IO} (1)	• Ports 0, 1, 3, 7, 8 • Ports A, B, C, D • XT2			-0.3		V _{DD} +0.3	
	Peak output current	IOPH(1)	Ports 0, 1	CMOS output selected Per applicable pin		-10			
		IOPH(2)	Port 3	CMOS output selected Per applicable pin		-20			
		IOPH(3)	Ports 71 to 73	Per applicable pin		-5			
		IOPH(4)	Ports A, B, C, D	Per applicable pin		-5			
	Average output current	IOMH(1)	Ports 0, 1	CMOS output selected Per applicable pin		-7.5			
	(Note 1-1)	IOMH(2)	Port 3	CMOS output selected Per applicable pin		-15			
rrent		IOMH(3)	Ports 71 to 73	Per applicable pin		-3			
t cui		IOMH(4)	Ports A, B, C, D	Per applicable pin		-3			
el outpu	Total output current	ΣIOAH(1)	Ports 0, 1, 31	Total of currents at all applicable pins		-25			
High level output current		ΣΙΟΑΗ(2)	Port 30	Total of currents at all		-15			
I		ΣΙΟΑΗ(3)	Ports 0, 1, 3	applicable pins Total of currents at all		-40			
		ΣΙΟΑΗ(4)	Ports 71 to 73	applicable pins Total of currents at all		-5			mA
		ΣΙΟΑΗ(5)	Ports A, B	applicable pins Total of currents at all		-25			
		ΣΙΟΑΗ(6)	Ports C, D	applicable pins Total of currents at all		-25			
		ΣΙΟΑΗ(7)	Ports A, B, C, D	applicable pins Total of currents at all		-45			
	Peak output	IOPL(1)	Ports 0, 1	applicable pins Per applicable pin				20	
	current	IOPL(2)	Port 3	Per applicable pin				30	
Low level output current		IOPL(3)	• Ports 7, 8 • XT2	Per applicable pin				10	
put c		IOPL(4)	Ports A, B, C, D	Per applicable pin				10	
out	Average	IOML(1)	Ports 0, 1	Per applicable pin				15	
eve	output current	IOML(1)	Port 3	Per applicable pin				20	1
Low	(Note 1-1)	IOML(3)	• Ports 7, 8 • XT2	Per applicable pin				7.5	
		IOML(4)	Ports A, B, C, D	Per applicable pin				7.5	

Note 1-1: Average output current refers to the average of output currents measured for a period of 100ms.

Continued on next page.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Continued from preceding page.

	D	Courselle and	Dia /D a sa a silva	O a madistica a c			Specifi	cation	
	Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
	Total output current	ΣIOAL(1)	Ports 0, 1, 31	Total of currents at all applicable pins				45	
Low level output current		ΣIOAL(2)	Port 30	Total of currents at all applicable pins				45	
		ΣIOAL(3)	Ports 0, 1, 3	Total of currents at all applicable pins				80	
		ΣIOAL(4)	• Ports 7, 8 • XT2	Total of currents at all applicable pins				20	mA
		ΣIOAL(5)	Ports A, B	Total of currents at all applicable pins				45	
		ΣIOAL(6)	Ports C, D	Total of currents at all applicable pins				45	
		ΣΙΟΑL(7) Ports A, B	Ports A, B, C, D	Total of currents at all applicable pins				80	
Ma	aximum power	Pd max	QFP80(14×14)	Ta=-20 to+70°C				290	
dis	ssipation		TQFP80J(12×12)						mW
	perating ambient mperature	Topr				-20		+85	°C
	orage ambient mperature	Tstg				-55		+125	, _{(C}

Note 1-1: Average output current refers to the average of output currents measured for a period of 100 ms.

Allowable Operating Range at $Ta = -20^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

D	O. make at	Dia/Damada	O a madistica ma			Specific	cation	tion	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Operating	V _{DD} (1)	V _{DD} 1=V _{DD} 2=V _{DD} 3	0-237μs≤tCYC≤200μs		3.0		5.5		
supply voltage	V _{DD} (2)		0-356μs≤tCYC≤200μs		2.5		5.5		
(Note 2-1)	V _{DD} (3)		0-712μs≤tCYC≤200μs		2.2		5.5		
Memory sustaining supply voltage	VHD	V _{DD} 1	RAM and register contents sustained in HOLD mode		2.0		5.5		
High level input voltage	V _{IH} (1)	• Ports 0, 3, 8 • Ports A, B, C, D • Port L	Output disabled	2.2 to 5.5	0.3V _{DD} +0.7		V _{DD}		
	V _{IH} (2)	Port 1Ports 71 to 73Port 70 port input/ interrupt side	Output disabled When INT1VTSL=0 (P71only)	2.2 to 5.5	0.3V _{DD} +0.7		V _{DD}	V	
	V _{IH} (3)	Port 71 interrupt side	Output disabled When INT1VTSL=1	2.2 to 5.5	0.85V _{DD}		V_{DD}		
	V _{IH} (4)	Port 87 small signal input side	Output disabled	2.2 to 5.5	0.75V _{DD}		V_{DD}		
	V _{IH} (5)	Port 70 watchdog timer side	Output disabled	2.2 to 5.5	0.9V _{DD}		V_{DD}		
	V _{IH} (6)	XT1, XT2, CF1, RES		2.2 to 5.5	0.75V _{DD}		V_{DD}		

Note 2-1: V_{DD} must be held greater than or equal to 3.0V in the flash ROM onboard programming mode.

Continued on next page.

Electrical Characteristics at $Ta = -20^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

			20 C to +63 C, V 551 =	· 55-	1000	Specifica	ation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High level input current	l _{IH} (1)	• Ports 0, 1, 3, 7, 8 • Ports A, B, C, D • Port L	Output disabled Pull-up resistor off VIN=VDD (including output Tr's off leakage current)	2.2 to 5.5			1	
	I _{IH} (2)	RES	V _{IN} =V _{DD}	2.2 to 5.5			1	
	I _{IH} (3)	XT1, XT2	When configured as input ports V _{IN} =V _{DD}	2.2 to 5.5			1	
	I _{IH} (4)	CF1	V _{IN} =V _{DD}	2.2 to 5.5			15	
	I _{IH} (5)	Port 87 small signal	V _{IN} =VBIS+0.5V	4.5 to 5.5	4.2	8.5	15	
		input side	(VBIS denotes bias voltage)	2.2 to 4.5	1.5	5.5	10	
Low level input current	l _{IL} (1)	• Ports 0, 1, 3, 7, 8 • Ports A, B, C, D • Port L	Output disabled Pull-up resistor off VIN=VSS (including output Tr's off leakage current)	2.2 to 5.5	-1			μА
	I _{IL} (2)	RES	V _{IN} =V _{SS}	2.2 to 5.5	-1			
	I _{IL} (3)	XT1, XT2	When configured as input ports VIN=VSS	2.2 to 5.5	-1			
	IIL(4)	CF1	V _{IN} =V _{SS}	2.2 to 5.5	-15			
	I _{IL} (5)	Port 87 small signal	V _{IN} =VBIS-0.5V	4.5 to 5.5	-15	-8.5	-4.2	
		input side	(VBIS denotes bias voltage)	2.2 to 4.5	-10	-5.5	-1.5	
High level output	V _{OH} (1)	CMOS output ports	I _{OH} =-1mA	4.5 to 5.5	V _{DD} -1			
voltage	V _{OH} (2)	0, 1	I _{OH} =-0.4mA	3.0 to 5.5	V _{DD} -0.4			
	V _{OH} (3)		I _{OH} =-0.2mA	2.2 to 5.5	V _{DD} -0.4			
	V _{OH} (4)	CMOS output ports	I _{OH} =-10mA	4.5 to 5.5	V _{DD} -1.5			
	V _{OH} (5)	30, 31	I _{OH} =-1.6mA	3.0 to 5.5	V _{DD} -0.4			
	V _{OH} (6)		I _{OH} =-1mA	2.2 to 5-5	V _{DD} -0.4			
	V _{OH} (7)	Ports 71 to 73	I _{OH} =-0.4mA	3.0 to 5.5	V _{DD} -0.4			
	V _{OH} (8)		I _{OH} =-0.2mA	2.2 to 5.5	V _{DD} -0.4			
	V _{OH} (9)	Ports A, B, C, D	I _{OH} =-1mA	4.5 to 5.5	V _{DD} -1			
	V _{OH} (10)		I _{OH} =-0.4mA	3.0 to 5.5	V _{DD} -0.4			
	V _{OH} (11)		I _{OH} =-0.2mA	2.2 to 5.5	V _{DD} -0.4			
Low level output	V _{OL} (1)	Ports 0, 1	I _{OL} =10mA	4.5 to 5.5			1.5	ļ
voltage	V _{OL} (2)	Port 3 (PWM4, 5 function output	I _{OL} =1.6mA	3.0 to 5.5			0.4	
	V _{OL} (3)	mode)	I _{OL} =1mA	2.2 to 5.5			0.4	V
	V _{OL} (4)	Port 3	I _{OL} =30mA	4.5 to 5.5			1.5	
	V _{OL} (5)	(Port function output	I _{OL} =5mA	3.0 to 5.5			0.4	
	V _{OL} (6)	mode)	I _{OL} =2.5mA	2.2 to 5.5			0.4	
	V _{OL} (7)	• Ports 7, 8	I _{OL} =1.6mA	3.0 to 5.5			0.4	
	V _{OL} (8)	• XT2	I _{OL} =1mA	2.2 to 5.5			0.4	
	V _{OL} (9)	Ports A, B, C, D	I _{OH} =1.6mA	3.0 to 5.5			0.4	
	V _{OL} (10)		I _{OL} =1mA	2.2 to 5.5			0.4	
LCD output voltage deviation	VODLS	S0 to S31	I _O =0mA VLCD, 2/3VLCD 1/3VLCD level output See Fig. 8.	2.2 to 5.5	0		±0.2	
	VODLC	COM0 to COM3	I _O =0mA VLCD, 2/3VLCD 1/2VLCD, 1/3VLCD level output See Fig. 8.	2.2 to 5.5	0		±0.2	
LCD bias resistor	RLCD(1)	Resistance per one bias resister	See Fig. 8.	2.2 to 5.5		60		
	RLCD(2)	Resistance per one bias resister 1/2 resistance mode	See Fig. 8.	2.2 to 5.5		30		kΩ

Continued on next page.

Continued from preceding page.

	0 1 1	D: /D	Q at Prince		Specification			
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Pull-up MOS Tr.	Rpu(1)	• Ports 0, 1, 3, 7	V _{OH} =0-9V _{DD}	4.5 to 5.5	15	35	80	
resistance	Rpu(2)	• Ports A, B, C, D		2.2 to 4.5	18	50	150	kΩ
Hysteresis voltage	VHYS(1)	• Ports 1, 7 • RES		2.2 to 5.5		0.1V _{DD}		.,
	VHYS(2)	Port 87 small signal input side		2.2 to 5.5		0.1V _{DD}		V
Pin capacitance	CP	All pins	V _{IN} =V _{SS} for pins other than that under test f=1MHz Ta=25°C	2.2 to 5.5		10		pF
Input sensitivity	Vsen	Port 87 small signal input side		2.2 to 5.5	0.12V _{DD}			Vp-p

Serial I/O Characteristics at $Ta = -20^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

1. SIO0 Serial I/O Characteristics (Note 4-1-1)

	_	Parameter	Symbol	Pin/Remarks	Conditions			Specifi	cation	
		arameter	Symbol	Fill/IXemarks	Cortaitions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(1)	SCK0(P12)	See Fig. 6.		2			
	×	Low level pulse width	tSCKL(1)				1			
	Input clock	High level pulse width	tSCKH(1)			2.2 to 5.5	1			.0.(0
Serial clock	n		tSCKHA(1)		Continuous data transmission/reception mode See Fig. 6. (Note 4-1-2)		4			tCYC
Serial		Frequency	tSCK(2)	SCK0(P12)	CMOS output selected See Fig. 6.		4/3			
	ock K	Low level pulse width	tSCKL(2)					1/2		tSCK
	Output clock	High level tSCKH(2)	tSCKH(2)			2.2 to 5.5		1/2		ISCK
			tSCKHA(2)		Continuous data transmission/reception mode CMOS output selected See Fig. 6.		tSCKH(2) +2tCYC		tSCKH(2) +(10/3) tCYC	tCYC
Serial input	Data setup time tsDI(1)		tsDI(1)	SB0(P11), SI0(P11)	Must be specified with respect to rising edge of SIOCLK	0.01.55	0.03			
Serial	Da	ta hold time	thDI(1)		• See Fig. 6.	2.2 to 5.5	0.03			
	clock	Output delay time	tdDO(1)	SO0(P10), SB0(P11)	Continuous data transmission/reception mode (Note 4-1-3)				(1/3)tCYC +0.05	μs
Serial output	Input clock		tdDO(2)		Synchronous 8-bit mode (Note 4-1-3)	2.2 to 5.5			1tCYC +0.05	·
Seria	Output clock		tdDO(3)		(Note 4-1-3)	2.2 10 5.5			(1/3)tCYC +0.05	

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-1-2: To use serial-clock-input in continuous transmission/reception mode, a time from SI0RUN being set when serial clock is "H" to the first falling edge of the serial clock must be longer than tSCKHA.

Note 4-1-3: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6.

2. SIO1 Serial I/O Characteristics (Note 4-2-1)

	_		O. wash ad	Pin/Remarks	O a madistic ma			Speci	fication	
	Р	arameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
	ķ	Frequency	tSCK(3)	SCK1(P15)	See Fig.6.		2			
	Input clock	Low level pulse width	tSCKL(3)			2.2 to 5.5	1			
clock	ını	High level pulse width	tSCKH(3)	_			1			tCYC
Serial clock	ž	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected See Fig. 6.		2			
	Output clock	Low level pulse width	tSCKL(4)			2.2 to 5.5		1/2		tSCK
		High level pulse width	tSCKH(4)					1/2		ISCK
Serial input	Data setup time		tsDI(2)	SB1(P14), SI1(P14)	Must be specified with respect to rising edge of SIOCLK. See Fig. 6.		0.03			
Serial	Da	ta hold time	thDI(2)			2.2 to 5.5	0.03			
Serial output	Output delay time		tdDO(4)	SO1(P13), SB1(P14)	Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6.	2.2 to 5.5			(1/3)tCYC +0.05	μs

Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.

Pulse Input Conditions at Ta = -20°C to +85°C, VSS1 = VSS2 = VSS3 = 0V

	Symbol Pin/Remarks		Q at little and			Spe	cification	
Parameter	Symbol Fill/Remarks Condi	Conditions	V _{DD} [V]	min	typ	max	unit	
High/low level pulse width	tPIH(1) tPIL(1)	INT0(P70), INT1(P71), INT2(P72)	Interrupt source flag can be set.Event inputs for timer 0 are enabled.	2.2 to 5.5	1			
	tPIH(2) tPIL(2)	INT3(P73) when noise filter time constant is 1/1	Interrupt source flag can be set.Event inputs for timer 0 are enabled.	2.2 to 5.5	2			
tPIH(3) tPIL(3)		INT3(P73) when noise filter time constant is 1/32	Interrupt source flag can be set.Event inputs for timer 0 are enabled.	2.2 to 5.5	64			tCYC
	tPIH(4) tPIL(4)	INT3(P73) when noise filter time constant is 1/128	Interrupt source flag can be set.Event inputs for timer 0 are enabled.	2.2 to 5.5	256			
	tPIH(5) tPIL(5)	MICIN(P87)	The pulses can be counted by the small signal sensor/counter.	2.2 to 5.5	1			
tPIH(6) RMIN(P7		RMIN(P73)	The pulses can be recognized as signals by the infrared remote control receiver circuit.	2.2 to 5.5	3			RMCK (Note5-1)
	tPIL(7)	RES	Resetting is enabled.	2.2 to 5.5	2000			μs

Note 5-1: RMCK denotes the frequency of the base clock (1tCYC to 128tCYC/subclock source oscillation frequency) for the infrared remote control receiver circuit

AD Converter Characteristics at $V_{SS}1 = V_{SS}2 = 0V$

<12bits AD Converter Mode at Ta =-30 to +70°C>

	0	D: /D	O Pri		Specification				
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Resolution	N	AN0(P80)		3.0 to 5.5		12		bit	
Absolute accuracy	ET	to AN7(P87), AN8(P70),	(Note 6-1)	3.0 to 5.5			±16	LSB	
Conversion	tCAD	AN9(P71),	See conversion time calculation	4.0 to 5.5	32		100		
time		AN10(XT1), AN11(XT2)	formulas. (Note 6-2)	3.0 to 5.5	40		100	μs	
Analog input voltage range	VAIN				V _{SS}		V_{DD}	٧	
Analog port	IAINH		VAIN=V _{DD}				1		
input current	IAINL		VAIN=V _{SS}	5	-1			μΑ	

<8bits AD Converter Mode at Ta =-30 to +70°C>

Dt	0	Pin/Remarks	O and distance			Specific	cation	
Parameter	Symbol	PIn/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(P80)		3.0 to 5.5		8		bit
Absolute accuracy	ET	to AN7(P87), AN8(P70),	(Note 6-1)	3.0 to 5.5			1.5	LSB
Conversion	tCAD	AN9(P71),	See "Conversion time calculation	4.0 to 5.5	20		90	
time		AN10(XT1) AN11(XT2)	method." (Note 6-2)	3.0 to 5.5	40		90	
			See "Conversion time calculation method." (Note 6-2) Ta=-10 to 50°C	3.0 to 5.5	V _{SS}		V_{DD}	μs
Analog input voltage range	VAIN			3.0 to 5.5			1	٧
Analog port	IAINH		VAIN=V _{DD}	3.0 to 5.5	-1			
input current	IAINL		VAIN=V _{SS}	3.0 to 5.5	-1			μΑ

<Conversion time calculation method>

12bits AD Converter Mode: tCAD (conversion time) = $((52/(\text{division ratio})) + 2) \times (1/3) \times \text{tCYC}$ 8bits AD Converter Mode: tCAD (conversion time) = $((32/(\text{division ratio})) + 2) \times (1/3) \times \text{tCYC}$

<Recommended Operating Conditions>

External	Supply Voltage	System Clock	Cycle Time	AD Frequency	Conversion Ti	me (tCAD)[μs]
oscillator FmCF[MHz]	Range V _{DD} [V]	Division (SYSDIV)	tCYC [ns]	Division Ratio (ADDIV)	12-bit AD	8-bit AD
40	4.0 to 5.5	1/1	250	1/8	34.8	21.5
12	3.0 to 5.5	1/1	250	1/16	69.5	42.8

Note 6-1: The quantization error ($\pm 1/2$ LSB) is excluded from the absolute accuracy value. The absolute accuracy refers to the accuracy that is measured while there is no change in the I/O state of the pins adjacent to the analog input channel.

Note 6-2: The conversion time refers to the interval from the time the instruction for starting the converter is issued till the time the complete digital- conversion-value corresponding to the analog input value is loaded in the required register.

$\textbf{Consumption Current Characteristics} \ \ \text{at } \ Ta = -20^{\circ}C \ \ \text{to} \ +85^{\circ}C, \ V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Parameter	Symbol	Pin/Rema	Conditions			Specific	cation	
Farameter	Symbol	rks	Conditions	V _{DD} [V]	min	typ	max	unit
Normal mode consumption current	IDDOP(1)	V _{DD} 1 =V _{DD} 2 =V _{DD} 3	FmCF=12MHz ceramic oscillation mode FmX'tal=32.768kHz crystal oscillation mode System clock set to 12MHz side	4.5 to 5.5		8.2	18.0	
(Note 7-1)	IDDOP(2)		Internal RC oscillation stopped Multifrequency RC oscillation stopped 1/1 frequency division ratio	3.0 to 3.6		4.8	10.6	
	IDDOP(3)		FmCF=8MHz ceramic oscillation mode FmX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		6.4	13.9	
	IDDOP(4)		System clock set to 8MHz side Internal RC oscillation stopped	3.0 to 3.6		3.8	8.8	
	IDDOP(5)		Multifrequency RC oscillation stopped 1/1 frequency division ratio	2.5 to 3.0		3.0	6.7	
	IDDOP(6)		FmCF=4MHz ceramic oscillation mode FmX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		3.9	8.5	
	IDDOP(7)	_	System clock set to 4MHz side Internal RC oscillation stopped	3.0 to 3.6		2.5	5.2	
	IDDOP(8)	_	Multifrequency RC oscillation stopped 1/2 frequency division ratio	2.2 to 3.0		2.1	4.3	mA
	IDDOP(9) • FmCF=0Hz (oscillation stopped) • FmX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		0.7	1.6			
	IDDOP(10)		System clock set to internal RC oscillation	3.0 to 3.6		0.4	0.9	
	IDDOP(11)		Multifrequency RC oscillation stopped 1/2 frequency division ratio	2.2 to 3.0		0.3	0.7	
	IDDOP(12)		FmCF=0Hz (oscillation stopped) FmX'tal=32.768kHz crystal oscillation mode Internal RC oscillation stopped	4.5 to 5.5		7.6	16.7	
	IDDOP(13)		System clock set to 10MHz multifrequency RC oscillation 1/1 frequency division ratio	3.0 to 3.6		4.3	9.5	
	IDDOP(14)		FmCF=0Hz (oscillation stopped) FmX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		4.1	8.9	
	IDDOP(15)		Internal RC oscillation stopped System clock set to 4MHz multifrequency	3.0 to 3.6		2.3	5.0	
	IDDOP(16)	(16) RC oscillation • 1/1 frequency division ratio		2.2 to 3.0		2.0	4.1	
	IDDOP(17)		FmCF=0Hz (oscillation stopped) FmX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		41.8	171.4	
	IDDOP(18)	Internal RC oscillation stopped		3.0 to 3.6		17.7	84.3	μΑ
	IDDOP(19) • Multifrequency RC oscillation stopped • 1/2 frequency division ratio		2.2 to 3.0		13	67.2		

Note 7-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors.

Continued on next page.

Continued from preceding page.

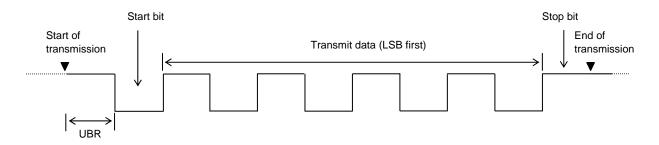
Parameter	Symbol	Pin/	Conditions			Specif	fication	
		Remarks		V _{DD} [V]	min	typ	max	unit
HALT mode consumption current	IDDHALT(1)	V _{DD} 1 =V _{DD} 2 =V _{DD} 3	HALT mode FMCF=12MHz ceramic oscillation FMX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		3.7	8.2	
(Note 7-1)	IDDHALT(2)		System clock set to 12MHz side. Internal RC oscillation stopped Multifrequency RC oscillation stopped 1/1 frequency division ratio	3.0 to 3.6		1.9	4.3	
	IDDHALT(3)		HALT mode • FmCF=8MHz ceramic oscillation mode	4.5 to 5.5		6.4	13.9	
	IDDHALT(4)		FmX'tal=32.768kHz crystal oscillation mode System clock set to 8MHz side Internal RC oscillation stopped	3.0 to 3.6		3.8	8.8	
	IDDHALT(5)		Multifrequency RC oscillation stopped 1/1 frequency division ratio	2.5 to 3.0		3.0	6.7	
	IDDHALT(6)		HALT mode FmCF=4MHz ceramic oscillation mode FmX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		3.9	8.5	
	IDDHALT(7)		System clock set to 4MHz side Internal RC oscillation stopped	3.0 to 3.6		2.5	5.2	
	IDDHALT(8)		Multifrequency RC oscillation stopped 1/2 frequency division ratio	2.2 to 3.0		2.1	4.3	mA
	IDDHALT(9)		HALT mode FmCF=0Hz (oscillation stopped)	4.5 to 5.5		0.4	0.9	
	IDDHALT(10)		FmX'tal=32.768kHz crystal oscillation mode System clock set to internal RC oscillation	3.0 to 3.6		0.18	0.4	
	IDDHALT(11)		Multifrequency RC oscillation stopped 1/2 frequency division ratio	2.2 to 3.0		0.13	0.3	
	IDDHALT(12)		HALT mode • FmCF=0Hz (oscillation stopped) • FmX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		3.4	7.3	
	IDDHALT(13)		Internal RC oscillation stopped System clock set to 10MHz multifrequency RC oscillation 1/1 frequency division ratio	3.0 to 3.6		1.7	3.7	
	IDDHALT(14)		HALT mode • FmCF=0Hz (oscillation stopped)	4.5 to 5.5		1.7	3.9	
	IDDHALT(15)		FmX'tal=32.768kHz crystal oscillation mode Internal RC oscillation stopped System clock set to 4MHz multifrequency RC	3.0 to 3.6		0.8	1.8	
	IDDHALT(16)		oscillation • 1/1 frequency division ratio	2.2 to 3.0		0.6	1.4	
	IDDHALT(17)		HALT mode • FmCF=0Hz (oscillation stopped)	4.5 to 5.5		25.7	141.9	
	IDDHALT(18)		FmX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side Internal RC oscillation stopped	3.0 to 3.6		8.3	66.6	
	IDDHALT(19)		Multifrequency RC oscillation stopped 1/2 frequency division ratio	2.2 to 3.0		5.2	52.3	
HOLD mode	IDDHOLD(1)	V _{DD} 1	HOLD mode	4.5 to 5.5		0.14	28.0	μΑ
consumption	IDDHOLD(2)		• CF1=V _{DD} or open	3.0 to 3.6		0.03	19.0	
current	IDDHOLD(3)		(external clock mode)	2.2 to 3.0		0.03	16.0	
Clock	IDDHOLD(4)	V _{DD} 1	Clock HOLD mode	4.5 to 5.5		21.9	80	
HOLD mode	IDDHOLD(5)	1	CF1=V _{DD} or open (ovternal clock mode)	3.0 to 3.6		6.3	37	
consumption current	IDDHOLD(6)	1	(external clock mode) • FmX'tal=32.768kHz crystal oscillation mode	2.2 to 3.0		3.6	30	

Note 7-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors.

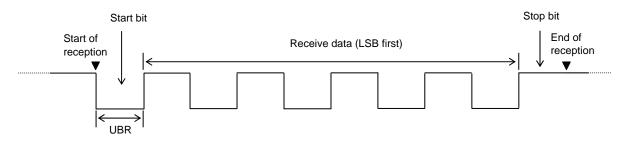
F-ROM Programming Characteristics at $Ta = +10^{\circ}C$ to $+55^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Danamatan	O. seeds ad	Dia/Damanta	O a malikia ma		ation			
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Onboard programming current	IDDFW(1)	V _{DD} 1	128-byte programming Erasing current included	3.0 to 5.5				mA
Programming time	tFW(1)		128-byte programmingErasing current includedTime for setting up 128-byte data is excluded.	3.0 to 5.5				ms

UART (Full Duplex) Operating Conditions at Ta = -20 to +85°C, VSS1 = VSS2 = VSS3 = 0V


Danamatan	Parameter Symbol Pin/Remarks Transfer rate LIBP LITY(P00)	Dia/Damada	O a malikia ma		ation	tion		
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Transfer rate	UBR	UTX(P00), URX(P01)		2.2 to 5.5	16/3		8192/3	tCYC

Data length: 7/8/9 bits (LSB first)


Stop bits: 1 bit (2-bit in continuous data transmission mode)

Parity bits: None

Example of 8-bit Data Transmission Mode Processing (Transmit Data=55H)

Example of 8-bit Data Reception Mode Processing (Receive Data=55H)

*When using UART, set POLDDR (PODDR: Bit0) to "0"

Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a SANYO-designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1	Characteristics	of a Sami	nle Main S	vstem Clock	Oscillator	Circuit with	a Ceramic Oscillator
I abic I	Characteristics	or a Sam	oic main o	ystem Clock	Oscillator	Circuit with	a Ceranne Oscinator

Nominal	Vendor	Oneilleten Neue	Circuit Constant			Operating Voltage	Oscillation Stabilization Time		Damada	
Frequency	Name	Oscillator Name		C2	Rf1	Rd1	Range	typ	max	Remarks
			[pF]	[pF]	$[\Omega]$	[Ω]	[V]	[ms]	[ms]	
12MHz	MURATA	CSTCE12M0G52-R0	(10)	(10)	Open	2.2k	2.8 to 5.5			Built-in C1, C2
OMI I=	MURATA	CSTCE8M00G52-R0	(10)	(10)	Open	1.0k	2.5 to 5.5			Built-in
8MHz	WURATA	CSTLS8M00G52-R0	(15)	(15)	Open	1.0k	2.5 10 5.5			C1, C2
48411-	MUDATA	CSTCR4M00F53-R0	(15)	(15)	Open	2.2k	2.1 to 5.5			Built-in
4MHz MURATA		CSTLS4M0053-B0	(15)	(15)	Open	2.2k	2.1 (0 5.5			C1, C2

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after V_{DD} goes above the operating voltage lower limit (see Figure 4).

Characteristics of a Sample Subsystem Clock Oscillator Circuit

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a SANYO-designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit with a Crystal Oscillator

Nominal	Vandar Nama	Oscillator		Circuit (Constant		Operating	Oscilla Stabilizati		Damada
Frequency	Vendor Name	Name	С3	C4	Rf2	Rd2	Voltage Range [V]	typ	max	Remarks
			[pF]	[pF]	[Ω]	[Ω]	[v]	[s]	[s]	
32.768kHz										

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the instruction for starting the subclock oscillation circuit is executed and to the time interval that is required for the oscillation to get stabilized after the HOLD mode is reset (see Figure 4).

Caution: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

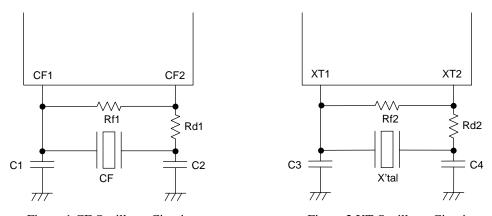


Figure 1 CF Oscillator Circuit

Figure 2 XT Oscillator Circuit

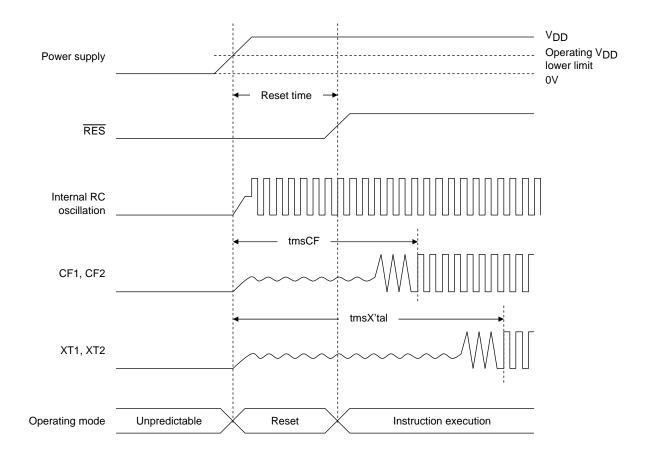
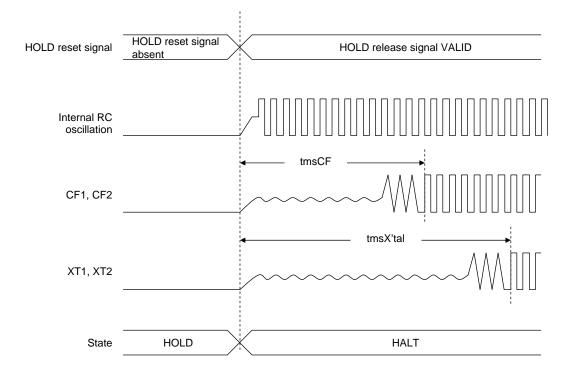
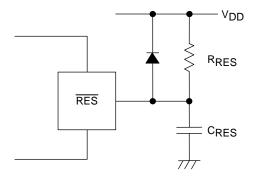




Figure 3 AC Timing Measurement Point



Reset Time and Oscillation Stabilization Time

HOLD Reset Signal and Oscillation Stabilization Time

Figure 4 Oscillation Stabilization Times

Note:

Determine the value of C_{RES} and R_{RES} so that the reset signal is present for a period of 200 μ s after the supply voltage goes beyond the lower limit of the IC's operating voltage.

Figure 5 Reset Circuit

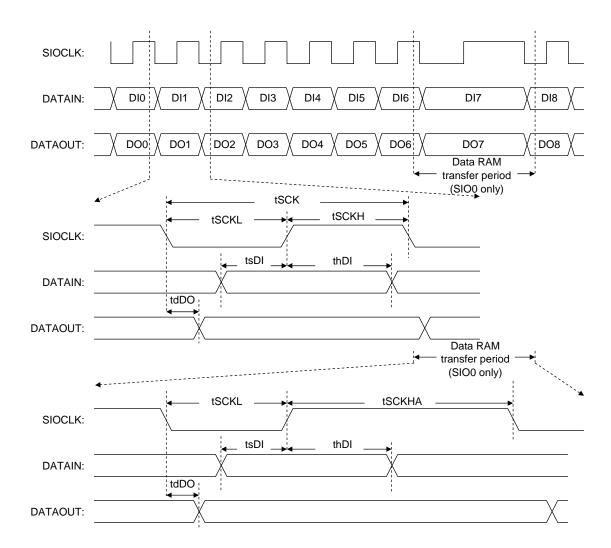


Figure 6 Serial I/O Waveforms

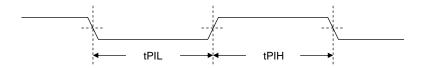


Figure 7 Pulse Input Timing Signal Waveform

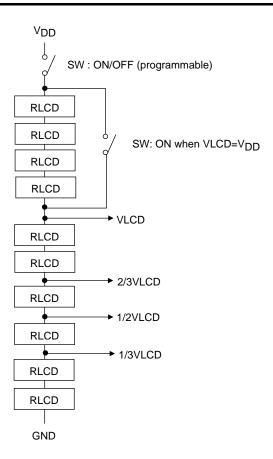


Figure 8 LCD Bias Resistors

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa