

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM9®
Core Size	16/32-Bit
Speed	96MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, Microwire, SPI, SSI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	80
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 2V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LFBGA
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str910faz32h6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 49.	ADC conversion time (silicon Rev H and higher)	91
Table 50.	LQFP80 12 x12 mm low-profile quad flat package	
	mechanical data	96
Table 51.	LQFP128 - 128-pin, 14 x 14 mm low-profile quad flat package	
	mechanical data	99
Table 52.	LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,	
	0.8 mm pitch, package mechanical data 1	02
Table 53.	Thermal characteristics	04
Table 54.	Ordering information scheme	05
Table 55.	Document revision history 1	06

List of figures

Figure 1.	STR91xFA block diagram	14
Figure 2.	Clock control	21
Figure 3.	JTAG chaining inside the STR91xFA	28
Figure 4.	EMI 16-bit multiplexed connection example	40
Figure 5.	EMI 8-bit multiplexed connection example	40
Figure 6.	EMI 8-bit non-multiplexed connection example	41
Figure 7.	STR91xFAM 80-pin package pinout	43
Figure 8.	STR91xFAW 128-pin package pinout	44
Figure 9.	STR91xFA memory map	57
Figure 10.	Pin loading conditions	58
Figure 11.	Pin input voltage	59
Figure 12.	LVD reset delay case 1	63
Figure 13.	LVD reset delay case 2	63
Figure 14.	LVD reset delay case 3	63
Figure 15.	Sleep mode current vs temperature with LVD on	65
Figure 16.	Typical application with an external clock source	68
Figure 17.	Typical application with a 32.768 kHz crystal	69
Figure 18.	Non-mux write timings	76
Figure 19.	Non-mux bus read timings	77
Figure 20.	Mux write diagram	78
Figure 21.	Mux read diagram	79
Figure 22.	Page mode read diagram	80
Figure 23.	Sync burst write diagram	
Figure 24.	Sync burst read diagram.	83
Figure 25.	MIL_RX_CLK and MIL_TX_CLK timing diagram	84
Figure 26.	MDC timing diagram	
Figure 27.	Ethernet MII management timing diagram	85
Figure 28.	Ethernet MII transmit timing diagram	
Figure 29.	Ethernet MII receive timing diagram	
Figure 30.	SPI slave timing diagram with CPHA = 0	88
Figure 31.	SPI slave timing diagram with CPHA = 1	89
Figure 32.	SPI master timing diagram	89
Figure 33.	ADC conversion characteristics	92
Figure 34.	Device marking for revision G LQFP80 and LQFP128 packages.	93
Figure 35.	Device marking for revision G LFBGA144 packages	93
Figure 36.	Device marking for revision H LQFP80 and LQFP128 packages.	93
Figure 37.	Device marking for revision H LFBGA144 packages	93
Figure 38.	Device marking for revision A LQFP80 and LQFP128 packages	
Figure 39.	Device marking for revision A LFBGA144 packages	94
Figure 40.	LQFP80 12 x 12 mm 80 pin low-profile quad flat package outline	95
Figure 41.	LQFP80 - 80 pin, 12 x 12 mm low-profile quad flat package footprint	96
Figure 42.	LQFP80 package top view	
Figure 43.	LQFP128 14 x 14 mm 128 pin low-profile quad flat package outline	98
Figure 44.	LQFP128 package top view	
Figure 45.	LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,	
-	0.8 mm pitch, package outline	101
Figure 46.	LFBGA144 package top view	
Figure 47.	Recommended PCB design rules (0.80/0.75 mm pitch BGA)	103

1 Description

STR91xFA is a series of ARM[®]-powered microcontrollers which combines a 16/32-bit ARM966E-S RISC processor core, dual-bank Flash memory, large SRAM for data or code, and a rich peripheral set to form an ideal embedded controller for a wide variety of applications such as point-of-sale terminals, industrial automation, security and surveillance, vending machines, communication gateways, serial protocol conversion, and medical equipment. The ARM966E-S core can perform single-cycle DSP instructions, good for speech processing, audio algorithms, and low-end imaging.

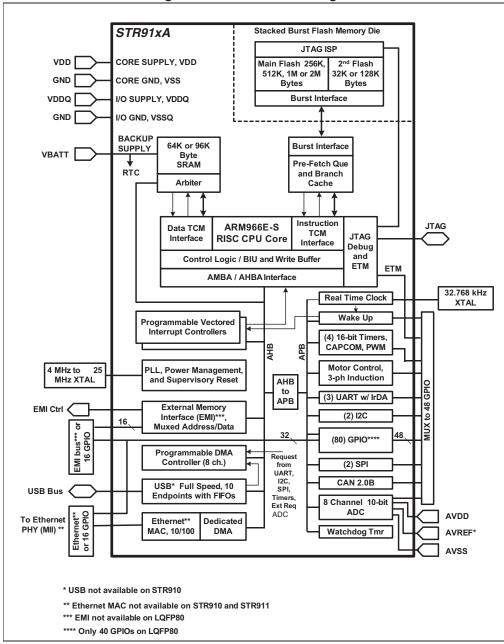


Figure 1. STR91xFA block diagram

3.7 Non-volatile memories

There are two independent 32-bit wide burst Flash memories enabling true read-while-write operation. The Flash memories are single-voltage erase/program with 20 year minimum data retention and 100K minimum erase cycles. The primary Flash memory is much larger than the secondary Flash.

Both Flash memories are blank when devices are shipped from ST. The CPU can boot only from Flash memory (configurable selection of which Flash bank).

Flash memories are programmed half-word (16 bits) at a time, but are erased by sector or by full array.

3.7.1 Primary Flash memory

Using the STR91xFA device configuration software tool and 3rd party Integrated Developer Environments, it is possible to specify that the primary Flash memory is the default memory from which the CPU boots at reset, or otherwise specify that the secondary Flash memory is the default boot memory. This choice of boot memory is non-volatile and stored in a location that can be programmed and changed only by JTAG In-System Programming. See *Section 6: Memory mapping*, for more detail.

The primary Flash memory has equal length 64K byte sectors. See *Table 3* for number of sectors per device type.

	5 1		- ,	
Size of primary Flash	256 Kbytes	512 Kbytes	1 Mbyte	2 Mbytes
Number of sectors	4	8	16	32
Size of each sector	64 K	bytes	64 K	bytes

Table 3. Sectoring of primary Flash memory

3.7.2 Secondary Flash memory

The smaller of the two Flash memories can be used to implement a bootloader, capable of storing code to perform robust In-Application Programming (IAP) of the primary Flash memory. The CPU executes code from the secondary Flash, while updating code in the primary Flash memory. New code for the primary Flash memory can be downloaded over any of the interfaces on the STR91xFA (USB, Ethernet, CAN, UART, etc.)

Additionally, the secondary Flash memory may also be used to store small data sets by emulating EEPROM through firmware, eliminating the need for external EEPROM memories. This raises the data security level because passcodes and other sensitive information can be securely locked inside the STR91xFA device.

The secondary Flash memory is sectored as shown in *Table 4* according to device type.

Both the primary Flash memory and the secondary Flash memory can be programmed with code and/or data using the JTAG In-System Programming (ISP) channel, totally independent of the CPU. This is excellent for iterative code development and for manufacturing.

As an option, there are a number of peripherals that do not have to receive a clock sourced from the CCU. The USB interface can receive an external clock on pin P2.7, TIM timers TIM0/ TIM1 can receive an external clock on pin P2.4, and timers TIM2/TIM3 on pin P2.5.

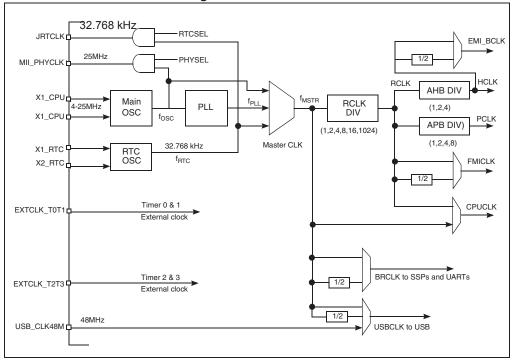


Figure 2. Clock control

3.10.2 Reference clock (RCLK)

The main clock (f_{MSTR}) can be divided to operate at a slower frequency reference clock (RCLK) for the ARM core and all the peripherals. The RCLK provides the divided clock for the ARM core, and feeds the dividers for the AHB, APB, External Memory Interface, and FMI units.

3.10.3 AHB clock (HCLK)

The RCLK can be divided by 1, 2 or 4 to generate the AHB clock. The AHB clock is the bus clock for the AHB bus and all bus transfers are synchronized to this clock. The maximum HCLK frequency is 96 MHz.

3.10.4 APB clock (PCLK)

The RCLK can be divided by 1, 2, 4 or 8 to generate the APB clock. The APB clock is the bus clock for the APB bus and all bus transfers are synchronized to this clock. Many of the peripherals that are connected to the AHB bus also use the PCLK as the source for external bus data transfers. The maximum PCLK frequency is 48 MHz.

3.10.11 Operation example

As an example of CCU operation, a 25 MHz crystal can be connected to the main oscillator input on pins X1_CPU and X2_CPU, a 32.768 kHz crystal connected to pins X1_RTC and X2_RTC, and the clock input of an external Ethernet PHY device is connected to STR91xFA output pin P5.2. In this case, the CCU can run the CPU at 96 MHz from PLL, the USB interface at 48 MHz, and the Ethernet interface at 25 MHz. The RTC is always running in the background at 32.768 kHz, and the CPU can go to very low power mode dynamically by running from 32.768 kHz and shutting off peripheral clocks and the PLL as needed.

3.11 Flexible power management

The STR91xFA offers configurable and flexible power management control that allows the user to choose the best power option to fit the application. Power consumption can be dynamically managed by firmware and hardware to match the system's requirements. Power management is provided via clock control to the CPU and individual peripherals.

Clocks to the CPU and peripherals can be individually divided and gated off as needed. In addition to individual clock divisors, the CCU master clock source going to the CPU, AHB, APB, EMI, and FMI can be divided dynamically by as much as 1024 for low power operation. Additionally, the CCU may switch its input to the 32.768 kHz RTC clock at any time for low power.

The STR91xFA supports the following three global power control modes:

- Run Mode: All clocks are on with option to gate individual clocks off via clock mask registers.
- Idle Mode: CPU and FMI clocks are off until an interrupt, reset, or wake-up occurs. Pre-configured clock mask registers selectively allow individual peripheral clocks to continue run during Idle Mode.
- Sleep Mode: All clocks off except RTC clock. Wake up unit remains powered, PLL is forced off.

A special mode is used when JTAG debug is active which never gates off any clocks even if the CPU enters Idle or Sleep mode.

3.11.1 Run mode

This is the default mode after any reset occurs. Firmware can gate off or scale any individual clock. Also available is a special Interrupt Mode which allows the CPU to automatically run full speed during an interrupt service and return back to the selected CPU clock divisor rate when the interrupt has been serviced. The advantage here is that the CPU can run at a very low frequency to conserve power until a periodic wake-up event or an asynchronous interrupt occurs at which time the CPU runs full speed immediately.

3.12.2 Battery supply

An optional stand-by voltage from a battery or other source may be connected to pin VBATT to retain the contents of SRAM in the event of a loss of the main digital supplies (V_{DD} and V_{DDQ}). The SRAM will automatically switch its supply from the internal V_{DD} source to the VBATT pin when the voltage of V_{DD} drops below the LVD threshold. In order to use the battery supply, the LVD must be enabled.

The VBATT pin also supplies power to the RTC unit, allowing the RTC to function even when the main digital supplies (V_{DD} and V_{DDQ}) are switched off. By configuring the RTC register, it is possible to select whether or not to power from VBATT only the RTC unit, or power the RTC unit and the SRAM when the STR91xFA device is powered off.

3.13 System supervisor

The STR91xFA monitors several system and environmental inputs and will generate a global reset, a system reset, or an interrupt based on the nature of the input and configurable settings. A global reset clears all functions on the STR91xFA, a system reset will clear all but the Clock Control Unit (CCU) settings and the system status register. At any time, firmware may reset individual on-chip peripherals. System supervisor inputs include:

- GR: CPU voltage supply (V_{DD}) drop out or brown out
- GR: I/O voltage supply (V_{DDQ}) drop out or brown out
- GR: Power-Up condition
- SR: Watchdog timer timeout
- SR: External reset pin (RESET_INn)
- SR: JTAG debug reset command

Note: GR: means the input causes Global Reset, SR: means the input causes System Reset

The CPU may read a status register after a reset event to determine if the reset was caused by a watchdog timer timeout or a voltage supply drop out. This status register is cleared only by a power up reset.

3.13.1 Supply voltage brownout

Each operating voltage source (V_{DD} and V_{DDQ}) is monitored separately by the Low Voltage Detect (LVD) circuitry. The LVD will generate an early warning interrupt to the CPU when voltage sags on either V_{DD} or V_{DDQ} voltage inputs. This is an advantage for battery powered applications because the system can perform an orderly shutdown before the batteries become too weak. The voltage trip point to cause a brown out interrupt is typically 0.25V above the LVD dropout thresholds that cause a reset.

CPU firmware may prevent all brown-out interrupts by writing to interrupt mask registers at run-time.

three TAPs are daisy-chained, only one TAP will converse on the JTAG bus at any given time while the other two TAPs are in BYPASS mode. The TAP positioning order within this JTAG chain is the boundary scan TAP first, followed by the ARM debug TAP, followed by the Flash TAP. All three TAP controllers are reset simultaneously by one of two methods:

- A chip-level global reset, caused only by a Power-On-Reset (POR) or a Low Voltage Detect (LVD).
- A reset command issued by the external JTAG test equipment. This can be the assertion of the JTAG JTRSTn input pin on the STR91xFA or a JTAG reset command shifted into the STR91xFA serially.

This means that chip-level system resets from watchdog time-out or the assertion of RESET_INn pin do not affect the operation of any JTAG TAP controller. Only global resets effect the TAPs.

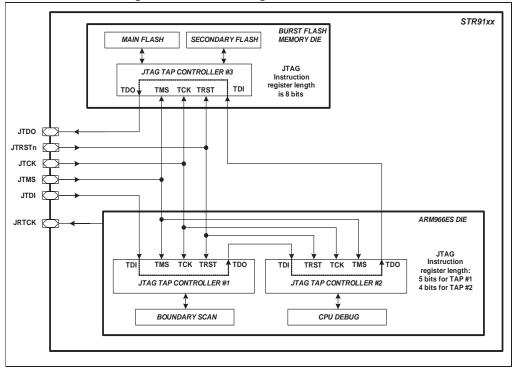


Figure 3. JTAG chaining inside the STR91xFA

3.15.1 In-system-programming

The JTAG interface is used to program or erase all memory areas of the STR91xFA device. The pin RESET_INn must be asserted during ISP to prevent the CPU from fetching invalid instructions while the Flash memories are being programmed.

Note that the 32 bytes of OTP memory locations cannot be erased by any means once programmed by JTAG ISP or the CPU.

3.15.2 Boundary scan

Standard JTAG boundary scan testing compliant with IEEE-1149.1 is available on the majority of pins of the STR91xFA for circuit board test during manufacture of the end product. STR91xFA pins that are not serviced by boundary scan are the following:

- JTAG pins JTCK, JTMS, JTDI, JTDO, JTRSTn, JRTCK
- Oscillator input pins X1_CPU, X2_CPU, X1_RTC, X2_RTC
- Tamper detect input pin TAMPER_IN (128-pin and 144-pin packages only)

3.15.3 CPU debug

The ARM966E-S CPU core has standard ARM EmbeddedICE-RT logic, allowing the STR91xFA to be debugged through the JTAG interface. This provides advanced debugging features making it easier to develop application firmware, operating systems, and the hardware itself. Debugging requires that an external host computer, running debug software, is connected to the STR91xFA target system via hardware which converts the stream of debug data and commands from the host system's protocol (USB, Ethernet, etc.) to the JTAG EmbeddedICE-RT protocol on the STR91xFA. These protocol converters are commercially available and operate with debugging software tools.

The CPU may be forced into a Debug State by a breakpoint (code fetch), a watchpoint (data access), or an external debug request over the JTAG channel, at which time the CPU core and memory system are effectively stopped and isolated from the rest of the system. This is known as Halt Mode and allows the internal state of the CPU core, memory, and peripherals to be examined and manipulated. Typical debug functions are supported such as run, halt, and single-step. The EmbeddedICE-RT logic supports two hardware compare units. Each can be configured to be either a watchpoint or a breakpoint. Breakpoints can also be data-dependent.

Debugging (with some limitations) may also occur through the JTAG interface while the CPU is running full speed, known as Monitor Mode. In this case, a breakpoint or watchpoint will not force a Debug State and halt the CPU, but instead will cause an exception which can be tracked by the external host computer running monitor software. Data can be sent and received over the JTAG channel without affecting normal instruction execution. Time critical code, such as Interrupt Service Routines may be debugged real-time using Monitor Mode.

3.15.4 JTAG security bit

This is a non-volatile bit (Flash memory based), which when set will not allow the JTAG debugger or JTAG programmer to read the Flash memory contents.

Using JTAG ISP, this bit is typically programmed during manufacture of the end product to prevent unwanted future access to firmware intellectual property. The JTAG Security Bit can be cleared only by a JTAG "Full Chip Erase" command, making the STR91xFA device blank (except for programmed OTP bytes), and ready for programming again. The CPU can read the status of the JTAG Security Bit, but it may not change the bit value.

3.18.1 Packet buffer interface (PBI)

The PBI manages a set of buffers inside the 2 Kbyte Packet Buffer, both for transmission and reception. The PBI will choose the proper buffer according to requests coming from the USB Serial Interface Engine (SIE) and locate it in the Packet SRAM according to addresses pointed by endpoint registers. The PBI will also auto-increment the address after each exchanged byte until the end of packet, keeping track of the number of exchanged bytes and preventing buffer overrun. Special support is provided by the PBI for isochronous and bulk transfers, implementing double-buffer usage which ensures there is always an available buffer for a USB packet while the CPU uses a different buffer.

3.18.2 DMA

A programmable DMA channel may be assigned by CPU firmware to service the USB interface for fast and direct transfers between the USB bus and SRAM with little CPU involvement. This DMA channel includes the following features:

- Direct USB Packet Buffer SRAM to system SRAM transfers of receive packets, by descriptor chain for bulk or isochronous endpoints.
- Direct system SRAM to USB Packet Buffer SRAM transfers of transmit packets, by descriptor chain for bulk or isochronous endpoints.
- Linked-list descriptor chain support for multiple USB packets

3.18.3 Suspend mode

CPU firmware may place the USB interface in a low-power suspend mode when required, and the USB interface will automatically wake up asynchronously upon detecting activity on the USB pins.

3.19 CAN 2.0B interface

The STR91xFA provides a CAN interface complying with CAN protocol version 2.0 parts A and B. An external CAN transceiver device connected to pins CAN_RX and CAN_TX is required for connection to the physical CAN bus.

The CAN interface manages up to 32 Message Objects and Identifier Masks using a Message SRAM and a Message Handler. The Message Handler takes care of low-level CAN bus activity such as acceptance filtering, transfer of messages between the CAN bus and the Message SRAM, handling of transmission requests, and interrupt generation. The CPU has access to the Message SRAM via the Message Handler using a set of 38 control registers.

The follow features are supported by the CAN interface:

- Bit rates up to 1 Mbps
- Disable Automatic Retransmission mode for Time Triggered CAN applications
- 32 Message Objects
- Each Message Object has its own Identifier Mask
- Programmable FIFO mode
- Programmable loopback mode for self-test operation

The CAN interface is not supported by DMA.

3.20 UART interfaces with DMA

The STR91xFA supports three independent UART serial interfaces, designated UART0, UART1, and UART2. Each interface is very similar to the industry-standard 16C550 UART device. All three UART channels support IrDA encoding/decoding, requiring only an external LED transceiver to pins UARTx_RX and UARTx_Tx for communication. One UART channel (UART0) supports full modem control signals.

UART interfaces include the following features:

- Maximum baud rate of 1.5 Mbps
- Separate FIFOs for transmit and receive, each 16 deep, each FIFO can be disabled by firmware if desired
- Programmable FIFO trigger levels between 1/8 and 7/8
- Programmable baud rate generator based on CCU master clock, or CCU master clock divided by two
- Programmable serial data lengths of 5, 6, 7, or 8 bits with start bit and 1 or 2 stop bits
- Programmable selection of even, odd, or no-parity bit generation and detection
- False start-bit detection
- Line break generation and detection
- Support of IrDA SIR ENDEC functions for data rates of up to 115.2K bps
- IrDA bit duration selection of 3/16 or low-power (1.14 to 2.23 µsec)
- Channel UART0 supports modem control functions CTS, DCD, DSR, RTS, DTR, and RI

For your reference, only two standard 16550 UART features are not supported, 1.5 stop bits and independent receive clock.

3.20.1 DMA

A programmable DMA channel may be assigned by CPU firmware to service channels UART0 and UART1 for fast and direct transfers between the UART bus and SRAM with little CPU involvement. Both DMA single-transfers and DMA burst-transfers are supported for transmit and receive. Burst transfers require that UART FIFOs are enabled.

3.21 I²C interfaces

The STR91xFA supports two independent I2C serial interfaces, designated I2C0, and I2C1. Each interface allows direct connection to an I2C bus as either a bus master or bus slave device (firmware configurable). I2C is a two-wire communication channel, having a bidirectional data signal and a single-directional clock signal based on open-drain line drivers, requiring external pull-up resistors.

Byte-wide data is transferred between a Master device and a Slave device on two wires. More than one bus Master is allowed, but only one Master may control the bus at any given time. Data is not lost when another Master requests the use of a busy bus because I2C supports collision detection and arbitration. More than one Slave device may be present on the bus, each having a unique address. The bus Master initiates all data movement and generates the clock that permits the transfer. Once a transfer is initiated by the Master, any device that is addressed is considered a Slave. Automatic clock synchronization allows I2C devices with different bit rates to communicate on the same physical bus.

					Та	ble 8. Device	pin descript	ion		
F	Pack	age		e				Alternate	functions	
LQFP80	LQFP128	LFBGA144	Pin name	Signal type	Default pin function	Default input function	Alternate input 1	Alternate output 1	Alternate output 2	Alternate output 3
-	67	L11	P0.0	I/O	GPIO_0.0, GP Input, HiZ	MII_TX_CLK, PHY Xmit clock	I2C0_CLKIN, I2C clock in	GPIO_0.0, GP Output	I2C0_CLKOUT, I2C clock out	ETM_PCK0, ETM Packet
-	69	K10	P0.1	I/O	GPIO_0.1, GP Input, HiZ	-	I2C0_DIN, I2C data in	GPIO_0.1, GP Output	I2C0_DOUT, I2C data out	ETM_PCK1, ETM Packet
-	71	J11	P0.2	I/O	GPIO_0.2, GP Input, HiZ	MII_RXD0, PHY Rx data0	I2C1_CLKIN, I2C clock in	GPIO_0.2, GP Output	I2C1_CLKOUT, I2C clock out	ETM_PCK2, ETM Packet
-	76	H12	P0.3	I/O	GPIO_0.3, GP Input, HiZ	MII_RXD1, PHY Rx data	I2C1_DIN, I2C data in	GPIO_0.3, GP Output	I2C1_DOUT, I2C data out	ETM_PCK3, ETM Packet
-	78	H10	P0.4	I/O	GPIO_0.4, GP Input, HiZ	MII_RXD2, PHY Rx data	TIM0_ICAP1, Input Capture	GPIO_0.4, GP Output	EMI_CS0n, EMI Chip Select	ETM_PSTAT0, ETM pipe status
-	85	F11	P0.5	I/O	GPIO_0.5, GP Input, HiZ	MII_RXD3, PHY Rx data	TIM0_ICAP2, Input Capture	GPIO_0.5, GP Output	EMI_CS1n, EMI Chip Select	ETM_PSTAT1, ETM pipe status
-	88	E11	P0.6	I/O	GPIO_0.6, GP Input, HiZ	MII_RX_CLK, PHY Rx clock	TIM2_ICAP1, Input Capture	GPIO_0.6, GP Output	EMI_CS2n, EMI Chip Select	ETM_PSTAT2, ETM pipe status
-	90	B12	P0.7	I/O	GPIO_0.7, GP Input, HiZ	MII_RX_DV, PHY data valid	TIM2_ICAP2, Input Capture	GPIO_0.7, GP Output	EMI_CS3n, EMI Chip Select	ETM_TRSYNC, ETM trace sync
-	98	B10	P1.0	I/O	GPIO_1.0, GP Input, HiZ	MII_RX_ER, PHY rcv error	ETM_EXTRIG, ETM ext. trigger	GPIO_1.0, GP Output	UART1_TX, UART xmit data	SSP1_SCLK, SSP mstr clk out
-	99	C10	P1.1	I/O	GPIO_1.1, GP Input, HiZ	-	UART1_RX, UART rcv data	GPIO_1.1, GP Output	MII_TXD0, MAC Tx data	SSP1_MOSI, SSP mstr dat out
-	101	B9	P1.2	I/O	GPIO_1.2, GP Input, HiZ	-	SSP1_MISO, SSP mstr data in	GPIO_1.2, GP Output	MII_TXD1, MAC Tx data	UART0_TX, UART xmit data
-	106	C8	P1.3	I/O	GPIO_1.3, GP Input, HiZ	-	UART2_RX, UART rcv data	GPIO_1.3, GP Output	MII_TXD2, MAC Tx data	SSP1_NSS, SSP mstr sel out
-	109	B7	P1.4	I/O	GPIO_1.4, GP Input, HiZ	-	I2C0_CLKIN, I2C clock in	GPIO_1.4, GP Output	MII_TXD3, MAC Tx data	I2C0_CLKOUT, I2C clock out
-	110	A7	P1.5	I/O	GPIO_1.5, GP Input, HiZ	MII_COL, PHY collision	CAN_RX, CAN rcv data	GPIO_1.5, GP Output	UART2_TX, UART xmit data	ETM_TRCLK, ETM trace clock
-	114	F7	P1.6	I/O	GPIO_1.6, GP Input, HiZ	MII_CRS, PHY carrier sns	I2C0_DIN, I2C data in	GPIO_1.6, GP Output	CAN_TX, CAN Tx data	I2C0_DOUT, I2C data out
-	116	D6	P1.7	I/O	GPIO_1.7, GP Input, HiZ	-	ETM_EXTRIG, ETM ext. trigger	GPIO_1.7, GP Output	MII_MDC, MAC mgt dat ck	ETM_TRCLK, ETM trace clock
7	10	E2	P2.0	I/O	GPIO_2.0,	UART0_CTS,	I2C0_CLKIN,	GPIO_2.0,	I2C0_CLKOUT,	ETM_PCK0,
8	10	E3	P2.1	1/0	GP Input, HiZ GPIO_2.1,	Clear To Send UART0_DSR,	I2C clock in I2C0_DIN,	GP Output GPIO_2.1,	I2C clock out I2C0_DOUT,	ETM Packet ETM_PCK1,
21	33	M1	P2.2	1/0	GP Input, HiZ GPIO_2.2,	Data Set Ready UART0_DCD,	I2C data in I2C1_CLKIN,	GP Output GPIO_2.2,	I2C data out	ETM Packet ETM_PCK2,
22	35	K3	P2.3	1/0	GP Input, HiZ GPIO_2.3,	Dat Carrier Det	I2C clock in I2C1_DIN,	GP Output GPIO_2.3,	I2C clock out	ETM Packet ETM_PCK3,
22	37	L4	P2.4	1/0	GP Input, HiZ GPIO_2.4,	Ring Indicator EXTCLK_T0T1E	I2C data in SSP0_SCLK,	GP Output GPIO_2.4,	I2C data out SSP0_SCLK,	ETM Packet ETM_PSTAT0,
20	51	L4	1 2.4	"0	GP Input, HiZ	xt clk timer0/1	SSP slv clk in	GP Output	SSP mstr clk out	ETM pipe status

 Table 8. Device pin description

_	Dect			1		Device pin description (continued)								
	Packa	age		ЭС			Alternate functions							
LQFP80	LQFP128	LFBGA144	Pin name	Signal type	Default pin function	Default input function	Alternate input 1	Alternate output 1	Alternate output 2	Alternate output 3				
27	42	M5	X1_RTC	I	RTC oscillator or crystal input (32.768 kHz)		N/A							
26	41	M4	X2_RTC	0	RTC crystal connection			N/A						
61	97	B11	JRTCK	0	JTAG return clock or RTC clock			N/A						
67	107	D8	JTRSTn	I	JTAG TAP controller reset			N/A						
68	108	E8	JTCK	I	JTAG clock			N/A						
69	111	A6	JTMS	I	JTAG mode select			N/A						
72	115	C6	JTDI	I	JTAG data in			N/A						
73	117	B6	JTDO	0	JTAG data out			N/A						
-	122	A3	AVDD	v	ADC analog voltage source, 2.7 V - 3.6 V			N/A						
-	4	C3	AVSS	G	ADC analog ground			N/A						
5	-	-	AVSS_ VSSQ	G	Common ground point for digital I/O & analog ADC			N/A						
-	123	A2	AVREF	v	ADC reference voltage input			N/A						
76	-	-	AVREF_ AVDD	v	Combined ADC ref voltage and ADC analog voltage source, 2.7 V - 3.6 V			N/A						
24	39	M3	VBATT	v	Standby voltage input for RTC and SRAM backup			N/A						
6	9	E1	VDDQ	V										
15	23	J1	VDDQ	V										
36	57	-	VDDQ	V										
46	73	K12	VDDQ	V	V Source for									
54	86	B5	VDDQ	V	I/O and USB. 2.7 V to 3.6 V		N/A							
28	43	L5	VDDQ	V	2.7 V (0 0.0 V									
63	102	H7	VDDQ	V										
74	120	D9	VDDQ	V										
-	-	F9	VDDQ	V										

Table 8. Device pin description (continued)

	Pack	ane					Alternate functions							
	acro	aye		be				Allemale	Turictions					
LQFP80	LQFP128	LFBGA144	Pin name	Signal type	Default pin function	Default input function	Alternate input 1	Alternate output 1	Alternate output 2	Alternate output 3				
-	8	L2	VSSQ	G										
16	24	K4	VSSQ	G										
35	56	C5	VSSQ	G										
-	-	D4	VSSQ	G	Digital Ground		N/A							
45	72	G5	VSSQ	G	for									
55	87	J7	VSSQ	G	!/O and USB									
25	40	A8	VSSQ	G										
66	105	F8	VSSQ	G										
75	121	L12	VSSQ	G										
11	17	F4	VDD	V										
31	49	D7	VDD	V	V Source for									
50	81	L6	VDD	V	CPU. 1.65 V - 2.0 V			N/A						
70	112	G11	VDD	V										
10	16	F3	VSS	G										
30	48	H5	VSS	G	Digital Ground									
51	82	G10	VSS	G	for CPU			N/A						
71	113	E7	VSS	G										
-	-	C9	PLLV DDQ	v	V Source for PLL 2.7 to 3.6 V	N/A								
-	-	B8	PLLV SSQ	G	Digital Ground for PLL									

Table 8. Device pin description (continued)

7.9.5 Static latch-up

Two complementary static tests are required on 10 parts to assess the latch-up performance.

- A supply overvoltage (applied to each power supply pin) and
- A current injection (applied to each input, output and configurable I/O pin) are performed on each sample.

This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

7.9.6 Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations:

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials:

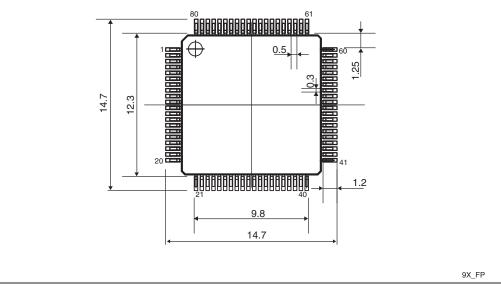
Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

7.9.7 Electrical sensitivity

Table 30. Static latch-up data

Symbol	Parameter	Conditions	Class ⁽¹⁾
LU	Static latch-up class	$T_A = +25 \ ^{\circ}C$ conforming to JESD78A	II class A


 Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B Class strictly covers all the JEDEC criteria (international standard).

mecnanical data									
Dim.		mm			inches ⁽¹⁾				
A	-	-	1.600	-	-	0.0630			
A1	0.050	-	0.150	0.0020	-	0.0059			
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571			
b	0.170	0.220	0.270	0.0067	0.0087	0.0106			
С	0.090	-	0.200	0.0035	-	0.0079			
D	-	14.000	-	-	0.5512	-			
D1	-	12.000	-	-	- 0.4724				
D2	-	9.500	-	-	- 0.3740				
E	-	14.000	-	-	0.5512	-			
E1	-	12.000	-	-	0.4724	-			
E3	-	9.500	-	-	0.3740	-			
е	-	0.500	-	-	0.0197	-			
L	0.450	0.600	0.750 0.0177 0.023		0.0236	0.0295			
L1	-	1.000	-	-	0.0394	-			
CCC		0.080			0.0031				
k	0.0°	-	7.0°	0.0°	-	7.0°			

Table 50. LQFP80 12 x12 mm low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 41. LQFP80 - 80 pin, 12 x 12 mm low-profile quad flat package footprint

1. Dimensions are expressed in millimeters.

9.1 ECOPACK

To meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions, and product status are available at <u>www.st.com</u>.

9.2 Thermal characteristics

The average chip-junction temperature, T_J must never exceed 125 °C.

The average chip-junction temperature, T_J , in degrees Celsius, may be calculated using the following equation:

$$T_{J} = T_{A} + (P_{D} \times \Theta_{JA})$$
(1)

Where:

- T_A is the ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D is the sum of P_{INT} and $P_{I/O} (P_D = P_{INT} + P_{I/O})$,
- P_{INT} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the Chip Internal Power.

P_{I/O} represents the power dissipation on input and output pins;

Most of the time for the applications $P_{I/O} < P_{INT}$ and may be neglected. On the other hand, $P_{I/O}$ may be significant if the device is configured to drive continuously external modules and/or memories. The worst case P_{INT} of the STR91xFA is 500 mW ($I_{DD} \times V_{DD}$, or 250 mA x 2.0 V).

An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is given by:

$$= K / (T_J + 273 °C)$$
 (2)

Therefore (solving equations 1 and 2):

 P_D

$$K = P_{D} x (T_{A} + 273 °C) + \Theta_{JA} x P_{D}^{2}$$
(3)

Where:

 K is a constant for the particular part, which may be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A. Using this value of K, the values of P_D and T_J may be obtained by solving equations (1) and (2) iteratively for any value of T_A.

Symbol	Parameter	Value	Unit
Θ_{JA}	<i>Thermal resistance junction-ambient</i> LQFP 80 - 12 x 12 mm / 0.5 mm pitch	41.5	°C/W
Θ_{JA}	<i>Thermal resistance junction-ambient</i> LQFP128 - 14 x 14 mm / 0.4 mm pitch	38	°C/W
Θ_{JA}	<i>Thermal resistance junction-ambient</i> LFBGA 144 - 10 x 10 x 1.7 mm	36.5	°C/W

Table 53.	Thermal	characteristics
-----------	---------	-----------------

Ordering information 10

Table 5	54. Ordering	g info	orma	tion	sch	eme					
Example: Family	STR9	1	2	F 	A 	W	4	4	×	6	Т
ARM9 microcontroller family											
Series											
1 = STR9 series 1											
Feature set											
0 = CAN, UART, IrDA, I2C, SSP											
1 = USB, CAN, UART, IrDA, I2C, S	SSP										
2 = USB, CAN, UART, IrDA, I2C, S	SSP, ETHERI	NET									
Memory type											
F = Flash											
Revision at product level											
A = Revison A											
No. of pins											
M = 80											
W = 128											
Z = 144											
SRAM size											
3 = 64 Kbytes											
4 = 96 Kbytes											
Primary memory size											
2 = 256 Kbytes 6= 1024 Kbytes											
4 = 512 Kbytes 7= 2048 Kbytes											
Package											
X = plastic LQFP											
H = LFBGA											
Temperature range											
6 = -40 to 85 °C											
Shipping option											
T = Tape and reel packing											

1. For a list of available options (e.g. speed, package) or for further information on any aspect of this device, please contact the ST Sales Office nearest to you.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

