Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM9®
Core Size	16/32-Bit
Speed	96MHz
Connectivity	CANbus, I ² C, IrDA, Microwire, SPI, SSI, SSP, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	40
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 2V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str911fam44x6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	3.10.8	USB interface clock	22
	3.10.9	Ethernet MAC clock	22
	3.10.10	External RTC calibration clock	22
	3.10.11	Operation example	23
3.11	Flexible	e power management	23
	3.11.1	Run mode	23
	3.11.2	Idle mode	24
	3.11.3	Sleep mode	24
3.12	Voltage	e supplies	24
	3.12.1	Independent A/D converter supply and reference voltage	24
	3.12.2	Battery supply	25
3.13	System	n supervisor	25
	3.13.1	Supply voltage brownout	25
	3.13.2	Supply voltage dropout	26
	3.13.3	Watchdog timer	26
	3.13.4	External RESET_INn pin	26
	3.13.5	Power-up	26
	3.13.6	JTAG debug command	26
	3.13.7	Tamper detection	27
3.14	Real-tir	me clock (RTC)	27
3.15	JTAG ir	nterface	27
	3.15.1	In-system-programming	28
	3.15.2	Boundary scan	29
	3.15.3	CPU debug	29
	3.15.4	JTAG security bit	29
3.16	Embed	lded trace module (ARM ETM9, v. r2p2)	30
3.17	Etherne	et MAC interface with DMA	30
3.18	USB 2.	0 slave device interface with DMA	31
	3.18.1	Packet buffer interface (PBI)	32
	3.18.2	DMA	32
	3.18.3	Suspend mode	32
3.19	CAN 2.	.0B interface	32
3.20	UART i	interfaces with DMA	33
	3.20.1	DMA	33
3.21	I2C inte	erfaces	33
3.22	SSP int	terfaces (SPI, SSI, and MICROWIRE) with DMA	34

List of figures

Figure 1.	STR91xFA block diagram	14
Figure 2.	Clock control	21
Figure 3.	JTAG chaining inside the STR91xFA	28
Figure 4.	EMI 16-bit multiplexed connection example	40
Figure 5.	EMI 8-bit multiplexed connection example	40
Figure 6.	EMI 8-bit non-multiplexed connection example	41
Figure 7.	STR91xFAM 80-pin package pinout	43
Figure 8.	STR91xFAW 128-pin package pinout	44
Figure 9.	STR91xFA memory map	57
Figure 10.	Pin loading conditions	58
Figure 11.	Pin input voltage	59
Figure 12.	LVD reset delay case 1	63
Figure 13.	LVD reset delay case 2	63
Figure 14.	LVD reset delay case 3	63
Figure 15.	Sleep mode current vs temperature with LVD on	65
Figure 16.	Typical application with an external clock source	68
Figure 17.	Typical application with a 32.768 kHz crystal	69
Figure 18.	Non-mux write timings	76
Figure 19.	Non-mux bus read timings	77
Figure 20.	Mux write diagram	78
Figure 21.	Mux read diagram	79
Figure 22.	Page mode read diagram	80
Figure 23.	Sync burst write diagram	
Figure 24.	Sync burst read diagram.	83
Figure 25.	MIL_RX_CLK and MIL_TX_CLK timing diagram	84
Figure 26.	MDC timing diagram	
Figure 27.	Ethernet MII management timing diagram	85
Figure 28.	Ethernet MII transmit timing diagram	
Figure 29.	Ethernet MII receive timing diagram	
Figure 30.	SPI slave timing diagram with CPHA = 0	88
Figure 31.	SPI slave timing diagram with CPHA = 1	89
Figure 32.	SPI master timing diagram	89
Figure 33.	ADC conversion characteristics	92
Figure 34.	Device marking for revision G LQFP80 and LQFP128 packages.	93
Figure 35.	Device marking for revision G LFBGA144 packages	93
Figure 36.	Device marking for revision H LQFP80 and LQFP128 packages.	93
Figure 37.	Device marking for revision H LFBGA144 packages	93
Figure 38.	Device marking for revision A LQFP80 and LQFP128 packages	
Figure 39.	Device marking for revision A LFBGA144 packages	94
Figure 40.	LQFP80 12 x 12 mm 80 pin low-profile quad flat package outline	95
Figure 41.	LQFP80 - 80 pin, 12 x 12 mm low-profile quad flat package footprint	96
Figure 42.	LQFP80 package top view	
Figure 43.	LQFP128 14 x 14 mm 128 pin low-profile quad flat package outline	98
Figure 44.	LQFP128 package top view	
Figure 45.	LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,	
-	0.8 mm pitch, package outline	101
Figure 46.	LFBGA144 package top view	
Figure 47.	Recommended PCB design rules (0.80/0.75 mm pitch BGA)	103

3 Functional overview

3.1 System-in-a-package (SiP)

The STR91xFA is a SiP device, comprised of two stacked die. One die is the ARM966E-S CPU with peripheral interfaces and analog functions, and the other die is the burst Flash. The two die are connected to each other by a custom high-speed 32-bit burst memory interface and a serial JTAG test/programming interface.

3.2 Package choice

STR91xFA devices are available in 128-pin (14 x 14 mm) and 80-pin (12 x 12 mm) LQFP and LFBGA144 (10 x 10 mm) packages. Refer to *Table 2: Device summary on page 11* for a list of available peripherals for each of the package choices.

3.3 ARM966E-S CPU core

The ARM966E-S core inherently has separate instruction and data memory interfaces (Harvard architecture), allowing the CPU to simultaneously fetch an instruction, and read or write a data item through two Tightly-Coupled Memory (TCM) interfaces as shown in *Figure 1*. The result is streamlined CPU Load and Store operations and a significant reduction in cycle count per instruction. In addition to this, a 5-stage pipeline is used to increase the amount of operational parallelism, giving the most performance out of each clock cycle.

Ten DSP-enhanced instruction extensions are supported by this core, including single-cycle execution of 32x16 Multiply-Accumulate, saturating addition/subtraction, and count leading-zeros.

The ARM966E-S core is binary compatible with 32-bit ARM7 code and 16-bit Thumb[®] code.

3.4 Burst Flash memory interface

A burst Flash memory interface (*Figure 1*) has been integrated into the Instruction TCM (I-TCM) path of the ARM966E-S core. Also in this path is an 8-instruction Pre-Fetch Queue (PFQ) and a 15-entry Branch Cache (BC), enabling the ARM966E-S core to perform up to 96 MIPS while executing code directly from Flash memory. This architecture provides high performance levels without a costly instruction SRAM, instruction cache, or external SDRAM. Eliminating the instruction cache also means interrupt latency is reduced and code execution becomes more deterministic.

3.4.1 Pre-fetch queue (PFQ)

As the CPU core accesses sequential instructions through the I-TCM, the PFQ always looks ahead and will pre-fetch instructions, taking advantage any idle bus cycles due to variable length instructions. The PFQ will fetch 32-bits at a time from the burst Flash memory at a rate of up to 96 MHz.

3.7 Non-volatile memories

There are two independent 32-bit wide burst Flash memories enabling true read-while-write operation. The Flash memories are single-voltage erase/program with 20 year minimum data retention and 100K minimum erase cycles. The primary Flash memory is much larger than the secondary Flash.

Both Flash memories are blank when devices are shipped from ST. The CPU can boot only from Flash memory (configurable selection of which Flash bank).

Flash memories are programmed half-word (16 bits) at a time, but are erased by sector or by full array.

3.7.1 Primary Flash memory

Using the STR91xFA device configuration software tool and 3rd party Integrated Developer Environments, it is possible to specify that the primary Flash memory is the default memory from which the CPU boots at reset, or otherwise specify that the secondary Flash memory is the default boot memory. This choice of boot memory is non-volatile and stored in a location that can be programmed and changed only by JTAG In-System Programming. See *Section 6: Memory mapping*, for more detail.

The primary Flash memory has equal length 64K byte sectors. See *Table 3* for number of sectors per device type.

Size of primary Flash	256 Kbytes	512 Kbytes	1 Mbyte	2 Mbytes			
Number of sectors	4	8	16	32			
Size of each sector	64 K	bytes	64 K	bytes			

Table 3. Sectoring of primary Flash memory

3.7.2 Secondary Flash memory

The smaller of the two Flash memories can be used to implement a bootloader, capable of storing code to perform robust In-Application Programming (IAP) of the primary Flash memory. The CPU executes code from the secondary Flash, while updating code in the primary Flash memory. New code for the primary Flash memory can be downloaded over any of the interfaces on the STR91xFA (USB, Ethernet, CAN, UART, etc.)

Additionally, the secondary Flash memory may also be used to store small data sets by emulating EEPROM through firmware, eliminating the need for external EEPROM memories. This raises the data security level because passcodes and other sensitive information can be securely locked inside the STR91xFA device.

The secondary Flash memory is sectored as shown in *Table 4* according to device type.

Both the primary Flash memory and the secondary Flash memory can be programmed with code and/or data using the JTAG In-System Programming (ISP) channel, totally independent of the CPU. This is excellent for iterative code development and for manufacturing.

3.10.5 Flash memory interface clock (FMICLK)

The FMICLK clock is an internal clock derived from RCLK, defaulting to RCLK frequency at power up. The clock can be optionally divided by 2. The FMICLK determines the bus bandwidth between the ARM core and the Flash memory. Typically, codes in the Flash memory can be fetched one word per FMICLK clock in burst mode. The maximum FMICLK frequency is 96 MHz.

3.10.6 UART and SSP clock (BRCLK)

BRCLK is an internal clock derived from f_{MSTR} that is used to drive the two SSP peripherals and to generate the Baud rate for the three on-chip UART peripherals. The frequency can be optionally divided by 2.

3.10.7 External memory interface bus clock (BCLK)

The BCLK is an internal clock that controls the EMI bus. All EMI bus signals are synchronized to the BCLK. The BCLK is derived from the HCLK and the frequency can be configured to be the same or half that of the HCLK. Refer to *Table 17 on page 66* for the maximum BCLK frequency (f_{BCLK}). The BCLK clock is available on the LFBGA package as an output pin.

3.10.8 USB interface clock

Special consideration regarding the USB interface: The clock to the USB interface must operate at 48 MHz and comes from one of three sources, selected under firmware control:

- CCU master clock output of 48 MHz.
- CCU master clock output of 96 MHz. An optional divided-by-two circuit is available to produce 48 MHz for the USB while the CPU system runs at 96MHz.
- STR91xFA pin P2.7. An external 48 MHz oscillator connected to pin P2.7 can directly source the USB while the CCU master clock can run at some frequency other than 48 or 96 MHz.

3.10.9 Ethernet MAC clock

Special consideration regarding the Ethernet MAC: The external Ethernet PHY interface device requires it's own 25 MHz clock source. This clock can come from one of two sources:

- A 25 MHz clock signal coming from a dedicated output pin (P5.2) of the STR91xFA. In this case, the STR91xFA must use a 25 MHz signal on its main oscillator input in order to pass this 25 MHz clock back out to the PHY device through pin P5.2. The advantage here is that an inexpensive 25 MHz crystal may be used to source a clock to both the STR91xFA and the external PHY device.
- An external 25 MHz oscillator connected directly to the external PHY interface device. In this case, the STR91xFA can operate independent of 25 MHz.

3.10.10 External RTC calibration clock

The RTC_CLK can be enabled as an output on the JRTCK pin. The RTC_CLK is used for RTC oscillator calibration. The RTC_CLK is active in Sleep mode and can be used as a system wake up control clock.

3.13.2 Supply voltage dropout

LVD circuitry will always cause a global reset if the CPU's V_{DD} source drops below it's fixed threshold of 1.4 V.

However, the LVD trigger threshold to cause a global reset for the I/O ring's V_{DDQ} source is set to one of two different levels, depending if V_{DDQ} will be operated in the range of 2.7 V to 3.3 V, or 3.0V to 3.6 V. If V_{DDQ} operation is at 2.7 V to 3.3 V, the LVD dropout trigger threshold is 2.4 V. If V_{DDQ} operation is 3.0 V and 3.6 V, the LVD threshold is 2.7 V. The choice of trigger level is made by STR91xFA device configuration software from STMicroelectronics or IDE from 3rd parties, and is programmed into the STR91xFA device along with other configurable items through the JTAG interface when the Flash memory is programmed.

CPU firmware may prevent some LVD resets if desired by writing a control register at runtime. Firmware may also disable the LVD completely for lowest-power operation when an external LVD device is being used.

3.13.3 Watchdog timer

The STR91xFA has a 16-bit down-counter (not one of the four TIM timers) that can be used as a watchdog timer or as a general purpose free-running timer/counter. The clock source is the peripheral clock from the APB, and an 8-bit clock pre-scaler is available. When enabled by firmware as a watchdog, this timer will cause a system reset if firmware fails to periodically reload this timer before the terminal count of 0x0000 occurs, ensuring firmware sanity. The watchdog function is off by default after a reset and must be enabled by firmware.

3.13.4 External RESET_INn pin

This input signal is active-low with hystereses (V_{HYS}). Other open-drain, active-low system reset signals on the circuit board (such as closure to ground from a push-button) may be connected directly to the RESET_INn pin, but an external pull-up resistor to V_{DDQ} must be present as there is no internal pullup on the RESET_INn pin.

A valid active-low input signal of t_{RINMIN} duration on the RESET_INn pin will cause a system reset within the STR91xFA. There is also a RESET_OUTn pin on the STR91xFA that can drive other system components on the circuit board. RESET_OUTn is active-low and has the same timing of the Power-On-Reset (POR) shown next, t_{POR} .

3.13.5 Power-up

The LVD circuitry will always generate a global reset when the STR91xFA powers up, meaning internal reset is active until V_{DDQ} and V_{DD} are both above the LVD thresholds. This POR condition has a duration of t_{POR} , after which the CPU will fetch its first instruction from address 0x0000.0000 in Flash memory. It is not possible for the CPU to boot from any other source other than Flash memory.

3.13.6 JTAG debug command

When the STR91xFA is in JTAG debug mode, an external device which controls the JTAG interface can command a system reset to the STR91xFA over the JTAG channel.

3.13.7 Tamper detection

On 128-pin and 144-ball STR91xFA devices only, there is a tamper detect input pin, TAMPER_IN, used to detect and record the time of a tamper event on the end product such as malicious opening of an enclosure, unwanted opening of a panel, etc. The activation mode of the tamper pin detects when a signal on the tamper input pin is driven from low-to-high, or high-to-low depending on firmware configuration. Once a tamper event occurs, the RTC time (millisecond resolution) and the date are recorded in the RTC unit. Simultaneously, the SRAM standby voltage source will be cut off to invalidate all SRAM contents. Tamper detection control and status logic are part of the RTC unit.

3.14 Real-time clock (RTC)

The RTC combines the functions of a complete time-of-day clock (millisecond resolution) with an alarm programmable up to one month, a 9999-year calender with leap-year support, periodic interrupt generation from 1 to 512 Hz, tamper detection (described in *Section 3.13.7*), and an optional clock calibration output on the JRTCK pin. The time is in 24 hour mode, and time/calendar values are stored in binary-coded decimal format.

The RTC also provides a self-isolation mode that is automatically activated during power down. This feature allows the RTC to continue operation when V_{DDQ} and V_{DD} are absent, as long as an alternate power source, such as a battery, is connected to the VBATT input pin. The current drawn by the RTC unit on the VBATT pin is very low in this standby mode, I_{RTC_STBY} .

3.15 JTAG interface

An IEEE-1149.1 JTAG interface on the STR91xFA provides In-System-Programming (ISP) of all memory, boundary scan testing of pins, and the capability to debug the CPU.

STR91xFA devices are shipped from ST with blank Flash memories. The CPU can only boot from Flash memory (selection of which Flash bank is programmable). Firmware must be initially programmed through JTAG into one of these Flash memories before the STR91xFA is used.

Six pins are used on this JTAG serial interface. The five signals JTDI, JTDO, JTMS, JTCK, and JTRSTn are all standard JTAG signals complying with the IEEE-1149.1 specification. The sixth signal, JRTCK (Return TCK), is an output from the STR91xFA and it is used to pace the JTCK clock signal coming in from the external JTAG test equipment for debugging. The frequency of the JTCK clock signal coming from the STR91xFA and is input to the at least 10 times less than the ARM966E-S CPU core operating frequency (f_{CPUCLK}). To ensure this, the signal JRTCK is output from the STR91xFA and is input to the external JTAG test equipment to hold off transitions of JTCK until the CPU core is ready, meaning that the JTAG equipment cannot send the next rising edge of JTCK until the equipment must be able to interpret the signal JRTCK and perform this adaptive clocking function. If it is known that the CPU clock will always be at least ten times faster than the incoming JTCK clock signal, then the JRTCK signal is not needed.

The two die inside the STR91xFA (CPU die and Flash memory die) are internally daisychained on the JTAG bus, see *Figure 3 on page 28*. The CPU die has two JTAG Test Access Ports (TAPs), one for boundary scan functions and one for ARM CPU debug. The Flash memory die has one TAP for program/erase of non-volatile memory. Because these

three TAPs are daisy-chained, only one TAP will converse on the JTAG bus at any given time while the other two TAPs are in BYPASS mode. The TAP positioning order within this JTAG chain is the boundary scan TAP first, followed by the ARM debug TAP, followed by the Flash TAP. All three TAP controllers are reset simultaneously by one of two methods:

- A chip-level global reset, caused only by a Power-On-Reset (POR) or a Low Voltage Detect (LVD).
- A reset command issued by the external JTAG test equipment. This can be the assertion of the JTAG JTRSTn input pin on the STR91xFA or a JTAG reset command shifted into the STR91xFA serially.

This means that chip-level system resets from watchdog time-out or the assertion of RESET_INn pin do not affect the operation of any JTAG TAP controller. Only global resets effect the TAPs.

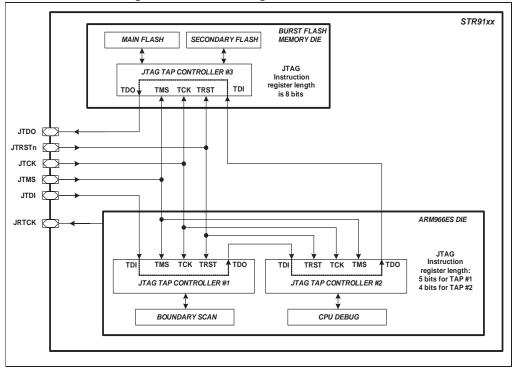


Figure 3. JTAG chaining inside the STR91xFA

3.15.1 In-system-programming

The JTAG interface is used to program or erase all memory areas of the STR91xFA device. The pin RESET_INn must be asserted during ISP to prevent the CPU from fetching invalid instructions while the Flash memories are being programmed.

Note that the 32 bytes of OTP memory locations cannot be erased by any means once programmed by JTAG ISP or the CPU.

3.20 UART interfaces with DMA

The STR91xFA supports three independent UART serial interfaces, designated UART0, UART1, and UART2. Each interface is very similar to the industry-standard 16C550 UART device. All three UART channels support IrDA encoding/decoding, requiring only an external LED transceiver to pins UARTx_RX and UARTx_Tx for communication. One UART channel (UART0) supports full modem control signals.

UART interfaces include the following features:

- Maximum baud rate of 1.5 Mbps
- Separate FIFOs for transmit and receive, each 16 deep, each FIFO can be disabled by firmware if desired
- Programmable FIFO trigger levels between 1/8 and 7/8
- Programmable baud rate generator based on CCU master clock, or CCU master clock divided by two
- Programmable serial data lengths of 5, 6, 7, or 8 bits with start bit and 1 or 2 stop bits
- Programmable selection of even, odd, or no-parity bit generation and detection
- False start-bit detection
- Line break generation and detection
- Support of IrDA SIR ENDEC functions for data rates of up to 115.2K bps
- IrDA bit duration selection of 3/16 or low-power (1.14 to 2.23 µsec)
- Channel UART0 supports modem control functions CTS, DCD, DSR, RTS, DTR, and RI

For your reference, only two standard 16550 UART features are not supported, 1.5 stop bits and independent receive clock.

3.20.1 DMA

A programmable DMA channel may be assigned by CPU firmware to service channels UART0 and UART1 for fast and direct transfers between the UART bus and SRAM with little CPU involvement. Both DMA single-transfers and DMA burst-transfers are supported for transmit and receive. Burst transfers require that UART FIFOs are enabled.

3.21 I²C interfaces

The STR91xFA supports two independent I2C serial interfaces, designated I2C0, and I2C1. Each interface allows direct connection to an I2C bus as either a bus master or bus slave device (firmware configurable). I2C is a two-wire communication channel, having a bidirectional data signal and a single-directional clock signal based on open-drain line drivers, requiring external pull-up resistors.

Byte-wide data is transferred between a Master device and a Slave device on two wires. More than one bus Master is allowed, but only one Master may control the bus at any given time. Data is not lost when another Master requests the use of a busy bus because I2C supports collision detection and arbitration. More than one Slave device may be present on the bus, each having a unique address. The bus Master initiates all data movement and generates the clock that permits the transfer. Once a transfer is initiated by the Master, any device that is addressed is considered a Slave. Automatic clock synchronization allows I2C devices with different bit rates to communicate on the same physical bus.

DocID13495 Rev 7

5.1 LFBGA144 ball connections

- In *Table 7* balls labelled NC are no connect balls. These NC balls are reserved for future devices and should NOT be connected to ground or any other signal. There are total of 9 NC (no connection) balls.
- Balls H1 and G4 are assigned as EMI bus write signals (EMI_BWR_WRLn and EMI_WRHn). These two balls can also be configured by the user as EMI low or high byte select signals (EMI_LBn and EMI_UBn).
- The PLLGND (B8) and PLLVDDQ (C9) balls can be connected to VSSQ and VDDQ.

	Α	В	С	D	Е	F	G	н	J	К	L	М
1	P4.2	P7.2	NC	P7.0	VDDQ	P7.3	P7.4	EMI_WRHn (EMI_UBn)	VDDQ	PHYCLK P5.2 ⁽¹⁾	P8.0	P2.2
2	AVREF	P4.1	P4.0	P7.1	P2.0	NC	P6.2	P5.3	P8.2	P8.3	VSSQ	P8.6
3	AVDD	P4.3	AVSS	NC	P2.1	VSS	P6.3	P8.1	P6.1	P2.3	P8.4	VBATT
4	P4.6	P4.5	P4.4	VSSQ	P5.0	VDD	EMI_BWR_ WRLn (EMI_LBn)	P6.0	P8.5	VSSQ	P2.4	X2_ RTC
5	P7.7	VDDQ	VSSQ	P4.7	P7.5	NC	VSSQ	VSS	P2.5	P8.7	VDDQ	X1_ RTC
6	JTMS	JTDO	JTDI	P1.7	P7.6	P5.1	P2.6	P9.4	P9.3	P9.2	VDD	P9.0
7	P1.5	P1.4	NC	VDD	VSS	P1.6	P6.5	VDDQ	VSSQ	P3.0	USBCLK _P2.7 ⁽²⁾	P9.1
8	VSSQ	PLLVSSQ	P1.3	JRSTn	JTCK	VSSQ	P6.4	EMI_BAAn	P3.3	EMI_ WAITn	P9.5	EMI_ BCLK
9	RESET_ OUTn	P1.2	PLLVDDQ	VDDQ	P6.6	VDDQ	NC	P5.6	EMI_ RDn	P9.7	P3.4	P9.6
10	X1_CPU	P1.0	P1.1	USBDN ⁽³⁾	TAMPER_ IN	NC	VSS	P0.4	EMI_ ALE	P0.1	P3.5	P3.1
11	X2_CPU	JRTCK	USBDP ⁽²⁾	MII_ MDIO ⁽³⁾	P0.6	P0.5	VDD	P5.5	P0.2	P3.7	P0.0	P3.2
12	EMI_ WEn	P0.7	RESET_ INn	P6.7	NC	NC	P5.7	P0.3	P5.4	VDDQ	VSSQ	P3.6

Table 7. STR	891x LFBGA144 ball	connections
--------------	--------------------	-------------

1. No PHYCLK function on STR910FAW devices.

2. No USBCLK function on STR910FAW devices.

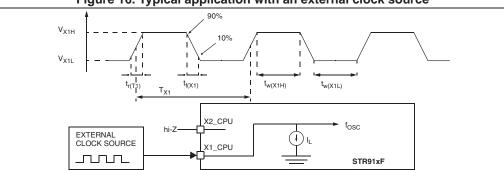
3. NU (Not Used) on STR910FAW devices. D10 is not connected, C11 must be pulled up by a 1.5 kOhm resistor to VDDQ.

	Package Alternate functions									
	acro	aye		be				Allemale	Turictions	
LQFP80	LQFP128	LFBGA144	Pin name	Signal type	Default pin function	Default input function	Alternate input 1	Alternate output 1	Alternate output 2	Alternate output 3
-	8	L2	VSSQ	G						
16	24	K4	VSSQ	G						
35	56	C5	VSSQ	G						
-	-	D4	VSSQ	G	Digital Ground					
45	72	G5	VSSQ	G	for			N/A		
55	87	J7	VSSQ	G	!/O and USB					
25	40	A8	VSSQ	G						
66	105	F8	VSSQ	G						
75	121	L12	VSSQ	G						
11	17	F4	VDD	V						
31	49	D7	VDD	V	V Source for					
50	81	L6	VDD	V	CPU. 1.65 V - 2.0 V			N/A		
70	112	G11	VDD	V						
10	16	F3	VSS	G						
30	48	H5	VSS	G	Digital Ground					
51	82	G10	VSS	G	for CPU			N/A		
71	113	E7	VSS	G						
-	-	C9	PLLV DDQ	v	V Source for PLL 2.7 to 3.6 V			N/A		
-	-	B8	PLLV SSQ	G	Digital Ground for PLL					

Table 8. Device pin description (continued)

Symbol	Ratings	Maximum value	Unit
I _{VDD_IO} ⁽¹⁾	Total current into $V_{DD_{IO}}$ power lines (source) ⁽²⁾	200	
I _{VSS_IO} ⁽¹⁾	Total current out of V_{SS} ground lines (sink) $^{(2)}$	200	mA
I _{IO}	Output current sunk by any I/O and control pin	25	ШA
	Output current source by any I/Os and control pin	- 25	
I _{INJ(PIN)} ⁽³⁾	Injected current on any pin during overload condition ⁽⁴⁾	± 5	
ΣΙ _{INJ(PIN)} ⁽³⁾	Absolute sum of all input currents during overload condition (4)	± 25	mA

Table	10.	Current	characteristics
TUDIC		Guillent	onaraotoristios


1. The user can use GPIOs to source or sink current. In this case, the user must ensure that these absolute max. values are not exceeded (taking into account the RUN power consumption).

2. All 3.3 V or 5.0 V power (V_{DD IO}, V_{DDA ADC}, V_{DDA PLL}) and ground (V_{SS-IO}, V_{SSA_ADC}, V_{DDA ADC}) pins must always be connected to the external 3.3 V or 5.0V supply.

I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}.

4. When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with ΣI_{INJ(PIN)} maximum current injection on four I/O port pins of the device.

Figure 16. Typical application with an external clock source

7.7.3 RTC clock generated from a crystal/ceramic resonator

The RTC (Real-Time Clock) can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results obtained with typical external components specified in *Table 20 & Table 21*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Note: For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5 pF to 16 pF range, selected to match the requirements of the crystal or resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2.

Load capacitance CL has the following formula:

 $CL = CL1 \times CL2 / (CL1 + CL2) + Cstray$

where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.

Caution: Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF, then CL1 = CL2 = 8 pF.

Conditions: V_{DDO} = 2.7 - 3.6 V, V_{DD} = 1.65 - 2 V, T_A = -40 / 85 °C unless otherwise specified.

Symbol	Parameter	Test	Va	Unit		
Symbol	Farameter	conditions	Min	Тур	Max	Unit
R _F	External feedback resistor			22		MΩ
V _{START(RTC)}	Oscillator start voltage		$V_{DD_LVD^+}$ ⁽¹⁾			V
g _M	Oscillator transconductance ⁽²⁾	Start-up	1.8			µA/Volts
t _{STUP(RTC)}	Oscillator Start-up Time ⁽²⁾	V _{DD} stable			1	S

1. Refer to Table 14 for min. value of V_{DD LVD+}

2. Data based on bench measurements, not tested in production.

7.9.5 Static latch-up

Two complementary static tests are required on 10 parts to assess the latch-up performance.

- A supply overvoltage (applied to each power supply pin) and
- A current injection (applied to each input, output and configurable I/O pin) are performed on each sample.

This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

7.9.6 Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations:

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials:

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

7.9.7 Electrical sensitivity

Table 30. Static latch-up data

Symbol	Parameter	Conditions	Class ⁽¹⁾
LU	Static latch-up class	$T_A = +25 \ ^{\circ}C$ conforming to JESD78A	II class A

 Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B Class strictly covers all the JEDEC criteria (international standard).

Ethernet MII management timings

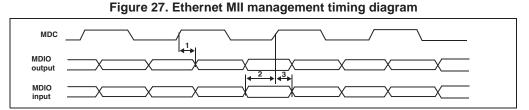
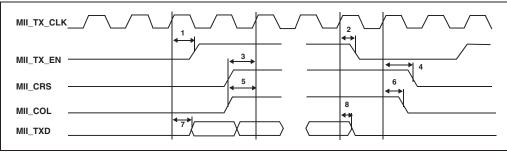



Table 42. Ethernet MII management timing table

Symbol	Parameter	Symbol	Va	Unit		
Symbol	Falameter	Symbol	Min	Мах	Onit	
1	MDIO delay from rising edge of MDC	t _c (MDIO)		2.83	ns	
2	MDIO setup time to rising edge of MDC	T _{su} (MDIO)	2.70		ns	
3	3 MDIO hold time from rising edge of MDC		-2.03		ns	

Ethernet MII transmit timings

9 Package mechanical data

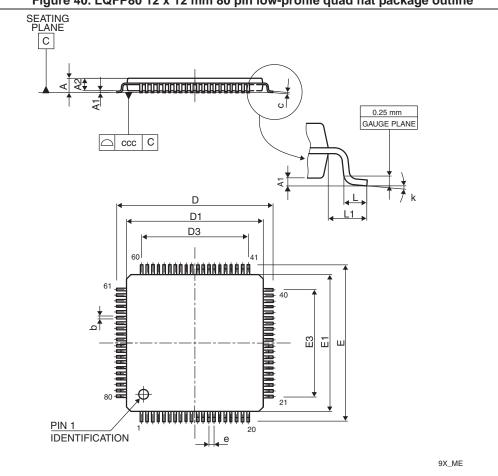


Figure 40. LQFP80 12 x 12 mm 80 pin low-profile quad flat package outline

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

	Dimensions										
Ref.		Millimeters		Inches ⁽¹⁾							
	Min.	Тур.	Max.	Min.	Тур.	Max.					
A	-	-	1.600	-	-	0.0630					
A1	0.050	-	0.150	0.0020	-	0.0059					
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571					
b	0.130	0.180	0.230	0.0051	0.0071	0.0091					
с	0.090	-	0.200	0.0035	-	0.0079					
D	15.800	16.000	16.200	0.6220	0.6299	0.6378					
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591					
D3	-	12.400	-	-	0.4882	-					
E	15.800	16.000	16.200	0.6220	0.6299	0.6378					
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591					
E3	-	12.400	-	-	0.4882	-					
е	-	0.400	-	-	0.0157	-					
L	0.450	0.600	0.750	0.0177	0.0236	0.0295					
L1	-	1.000	-	-	0.0394	-					
k	0°	3.5°	7°	0°	3.5°	7°					
ссс	-	-	0.080	-	-	0.0031					

Table 51. LQFP128 - 128-pin, 14 x 14 mm low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

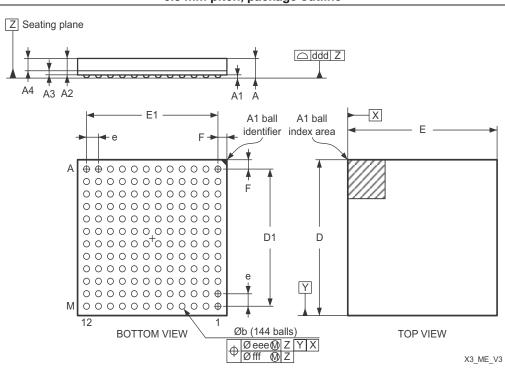


Figure 45. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package outline

Ordering information 10

Table 5	54. Ordering	g info	orma	tion	sch	eme					
Example: Family	STR9	1	2	F 	A 	W	4	4	×	6	Т
ARM9 microcontroller family											
Series											
1 = STR9 series 1											
Feature set											
0 = CAN, UART, IrDA, I2C, SSP											
1 = USB, CAN, UART, IrDA, I2C, S	SSP										
2 = USB, CAN, UART, IrDA, I2C, S	SSP, ETHERI	NET									
Memory type											
F = Flash											
Revision at product level											
A = Revison A											
No. of pins											
M = 80											
W = 128											
Z = 144											
SRAM size											
3 = 64 Kbytes											
4 = 96 Kbytes											
Primary memory size											
2 = 256 Kbytes 6= 1024 Kbytes											
4 = 512 Kbytes 7= 2048 Kbytes											
Package											
X = plastic LQFP											
H = LFBGA											
Temperature range											
6 = -40 to 85 °C											
Shipping option											
T = Tape and reel packing											

1. For a list of available options (e.g. speed, package) or for further information on any aspect of this device, please contact the ST Sales Office nearest to you.

11 Revision history

Date	Revision	Changes
09-May-2007	1	Initial release
26-Nov-2007	2	Updated Standby current in Table 15: Supply current characteristics on page 64 Added Section 7.1: Parameter conditions on page 58 Added Section 7.7.2: X1_CPU external clock source on page 67 Updated Section 7.11: External memory bus timings on page 76 Added Figure 14: LVD reset delay case 3 on page 63 Added Table 48 and Table 49 in ADC characteristics section Added min/max values for E, D, E1, D1 in Figure 43 on page 98
14-May-2008	3	Added 1MB and 2M devices, creating merged datasheet from seperate STR91xFAx32, 42, 44, 46 and 47 devices. Added STR912FAW32 to Table 1: Device summary on page 1 Added paragraph on voltage supply shutdown in Section 3.12 on page 24 Removed DMA feature for I2C in Section 3.21 on page 33 Updated Sleep mode current in Table 10: Current characteristics on page 60 Added Table 16: Typical current consumption at 25 °C on page 65 Updated operating conditions for V _{DD} and f _{CPUCLK} in Section 7.3 on page 61 and Section 7.7: Clock and timing characteristics on page 66 Changed SPI master t _{SU} and t _{H to} TBD in Table 46: SPI electrical characteristics on page 88
17-Jul-2008	4	Updated Section 3.10.6: UART and SSP clock (BRCLK) on page 22 Updated Table 11: Operating conditions on page 61 Updated I _{SLEEP(IDDQ)} in Table 15: Supply current characteristics on page 64 Updated Table 17: Internal clock frequencies on page 66 Updated Table 31: I/O characteristics on page 75
22-Dec-2008	5	Updated Section 7.7.3 on page 68. Small text changes.

Table 55. Document revision history

