

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete			
Core Processor	ARM9®			
Core Size	16/32-Bit			
Speed	96MHz			
Connectivity	CANbus, I ² C, IrDA, Microwire, SPI, SSP, UART/USART, USB			
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT			
Number of I/O	40			
Program Memory Size	1MB (1M x 8)			
Program Memory Type	FLASH			
EEPROM Size	-			
RAM Size	96K x 8			
Voltage - Supply (Vcc/Vdd)	1.65V ~ 2V			
Data Converters	A/D 8x10b			
Oscillator Type	Internal			
Operating Temperature	-40°C ~ 85°C (TA)			
Mounting Type	Surface Mount			
Package / Case	80-LQFP			
Supplier Device Package	-			
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str911fam46x6			

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.13.2 Supply voltage dropout

LVD circuitry will always cause a global reset if the CPU's V_{DD} source drops below it's fixed threshold of 1.4 V.

However, the LVD trigger threshold to cause a global reset for the I/O ring's V_{DDQ} source is set to one of two different levels, depending if V_{DDQ} will be operated in the range of 2.7 V to 3.3 V, or 3.0V to 3.6 V. If V_{DDQ} operation is at 2.7 V to 3.3 V, the LVD dropout trigger threshold is 2.4 V. If V_{DDQ} operation is 3.0 V and 3.6 V, the LVD threshold is 2.7 V. The choice of trigger level is made by STR91xFA device configuration software from STMicroelectronics or IDE from 3rd parties, and is programmed into the STR91xFA device along with other configurable items through the JTAG interface when the Flash memory is programmed.

CPU firmware may prevent some LVD resets if desired by writing a control register at runtime. Firmware may also disable the LVD completely for lowest-power operation when an external LVD device is being used.

3.13.3 Watchdog timer

The STR91xFA has a 16-bit down-counter (not one of the four TIM timers) that can be used as a watchdog timer or as a general purpose free-running timer/counter. The clock source is the peripheral clock from the APB, and an 8-bit clock pre-scaler is available. When enabled by firmware as a watchdog, this timer will cause a system reset if firmware fails to periodically reload this timer before the terminal count of 0x0000 occurs, ensuring firmware sanity. The watchdog function is off by default after a reset and must be enabled by firmware.

3.13.4 External RESET_INn pin

This input signal is active-low with hystereses (V_{HYS}). Other open-drain, active-low system reset signals on the circuit board (such as closure to ground from a push-button) may be connected directly to the RESET_INn pin, but an external pull-up resistor to V_{DDQ} must be present as there is no internal pullup on the RESET_INn pin.

A valid active-low input signal of t_{RINMIN} duration on the RESET_INn pin will cause a system reset within the STR91xFA. There is also a RESET_OUTn pin on the STR91xFA that can drive other system components on the circuit board. RESET_OUTn is active-low and has the same timing of the Power-On-Reset (POR) shown next, t_{POR} .

3.13.5 Power-up

The LVD circuitry will always generate a global reset when the STR91xFA powers up, meaning internal reset is active until V_{DDQ} and V_{DD} are both above the LVD thresholds. This POR condition has a duration of t_{POR} , after which the CPU will fetch its first instruction from address 0x0000.0000 in Flash memory. It is not possible for the CPU to boot from any other source other than Flash memory.

3.13.6 JTAG debug command

When the STR91xFA is in JTAG debug mode, an external device which controls the JTAG interface can command a system reset to the STR91xFA over the JTAG channel.

3.15.2 Boundary scan

Standard JTAG boundary scan testing compliant with IEEE-1149.1 is available on the majority of pins of the STR91xFA for circuit board test during manufacture of the end product. STR91xFA pins that are not serviced by boundary scan are the following:

- JTAG pins JTCK, JTMS, JTDI, JTDO, JTRSTn, JRTCK
- Oscillator input pins X1_CPU, X2_CPU, X1_RTC, X2_RTC
- Tamper detect input pin TAMPER_IN (128-pin and 144-pin packages only)

3.15.3 CPU debug

The ARM966E-S CPU core has standard ARM EmbeddedICE-RT logic, allowing the STR91xFA to be debugged through the JTAG interface. This provides advanced debugging features making it easier to develop application firmware, operating systems, and the hardware itself. Debugging requires that an external host computer, running debug software, is connected to the STR91xFA target system via hardware which converts the stream of debug data and commands from the host system's protocol (USB, Ethernet, etc.) to the JTAG EmbeddedICE-RT protocol on the STR91xFA. These protocol converters are commercially available and operate with debugging software tools.

The CPU may be forced into a Debug State by a breakpoint (code fetch), a watchpoint (data access), or an external debug request over the JTAG channel, at which time the CPU core and memory system are effectively stopped and isolated from the rest of the system. This is known as Halt Mode and allows the internal state of the CPU core, memory, and peripherals to be examined and manipulated. Typical debug functions are supported such as run, halt, and single-step. The EmbeddedICE-RT logic supports two hardware compare units. Each can be configured to be either a watchpoint or a breakpoint. Breakpoints can also be data-dependent.

Debugging (with some limitations) may also occur through the JTAG interface while the CPU is running full speed, known as Monitor Mode. In this case, a breakpoint or watchpoint will not force a Debug State and halt the CPU, but instead will cause an exception which can be tracked by the external host computer running monitor software. Data can be sent and received over the JTAG channel without affecting normal instruction execution. Time critical code, such as Interrupt Service Routines may be debugged real-time using Monitor Mode.

3.15.4 JTAG security bit

This is a non-volatile bit (Flash memory based), which when set will not allow the JTAG debugger or JTAG programmer to read the Flash memory contents.

Using JTAG ISP, this bit is typically programmed during manufacture of the end product to prevent unwanted future access to firmware intellectual property. The JTAG Security Bit can be cleared only by a JTAG "Full Chip Erase" command, making the STR91xFA device blank (except for programmed OTP bytes), and ready for programming again. The CPU can read the status of the JTAG Security Bit, but it may not change the bit value.

A single device can play the role of Master or Slave, or a single device can be a Slave only. A Master or Slave device has the ability to suspend data transfers if the device needs more time to transmit or receive data.

Each I2C interface on the STR91xFA has the following features:

- Programmable clock supports various rates up to I2C Standard rate (100 KHz) or Fast rate (400 KHz).
- Serial I/O Engine (SIOE) takes care of serial/parallel conversion; bus arbitration; clock generation and synchronization; and handshaking
- Multi-master capability
- 7-bit or 10-bit addressing

3.22 SSP interfaces (SPI, SSI, and MICROWIRE) with DMA

The STR91xFA supports two independent Synchronous Serial Port (SSP) interfaces, designated SSP0, and SSP1. Primary use of each interface is for supporting the industry standard Serial Peripheral Interface (SPI) protocol, but also supporting the similar Synchronous Serial Interface (SSI) and MICROWIRE communication protocols.

SPI is a three or four wire synchronous serial communication channel, capable of full-duplex operation. In three-wire configuration, there is a clock signal, and two data signals (one data signal from Master to Slave, the other from Slave to Master). In four-wire configuration, an additional Slave Select signal is output from Master and received by Slave.

The SPI clock signal is a gated clock generated from the Master and regulates the flow of data bits. The Master may transmit at a variety of baud rates, up to 24 MHz

In multi-Slave operation, no more than one Slave device can transmit data at any given time. Slave selection is accomplished when a Slave's "Slave Select" input is permanently grounded or asserted active-low by a Master device. Slave devices that are not selected do not interfere with SPI activities. Slave devices ignore the clock signals and keep their data output pins in high-impedance state when not selected. The STR91xFA supports SPI multi-Master operation because it provides collision detection.

Each SSP interface on the STR91xFA has the following features:

- Full-duplex, three or four-wire synchronous transfers
- Master or Slave operation
- Programmable clock bit rate with prescaler, up to 24 MHz for Master mode and 4 MHz for Slave mode
- Separate transmit and receive FIFOs, each 16-bits wide and 8 locations deep
- Programmable data frame size from 4 to 16 bits
- Programmable clock and phase polarity
- Specifically for MICROWIRE protocol:
 - Half-duplex transfers using 8-bit control message
- Specifically for SSI protocol:
 - Full-duplex four-wire synchronous transfer
 - Transmit data pin tri-stateable when not transmitting

4 Related documentation

Available from www.arm.com:

ARM966E-S - Technical Reference Manual

Available from *www.st.com*:

STR91xFA ARM9[®]- based microcontroller family - Reference manual (RM0006)

STR91xFA Flash - Programming manual (PM0020)

The above is a selected list only, a full list of STR91xFA application notes can be viewed at *www.st.com*.

					Ia	DIE 0. DEVICE					
F	Pack	age		e			Alternate functions				
LQFP80	LQFP128	LFBGA144	Pin name	Signal typ	Default pin function	Default input function	Alternate input 1	Alternate output 1	Alternate output 2	Alternate output 3	
-	67	L11	P0.0	I/O	GPIO_0.0, GP Input, HiZ	MII_TX_CLK, PHY Xmit clock	I2C0_CLKIN, I2C clock in	GPIO_0.0, GP Output	I2C0_CLKOUT, I2C clock out	ETM_PCK0, ETM Packet	
-	69	K10	P0.1	I/O	GPIO_0.1, GP Input, HiZ	-	I2C0_DIN, I2C data in	GPIO_0.1, GP Output	I2C0_DOUT, I2C data out	ETM_PCK1, ETM Packet	
-	71	J11	P0.2	I/O	GPIO_0.2, GP Input, HiZ	MII_RXD0, PHY Rx data0	I2C1_CLKIN, I2C clock in	GPIO_0.2, GP Output	I2C1_CLKOUT, I2C clock out	ETM_PCK2, ETM Packet	
-	76	H12	P0.3	I/O	GPIO_0.3, GP Input, HiZ	MII_RXD1, PHY Rx data	I2C1_DIN, I2C data in	GPIO_0.3, GP Output	I2C1_DOUT, I2C data out	ETM_PCK3, ETM Packet	
-	78	H10	P0.4	I/O	GPIO_0.4, GP Input, HiZ	MII_RXD2, PHY Rx data	TIM0_ICAP1, Input Capture	GPIO_0.4, GP Output	EMI_CS0n, EMI Chip Select	ETM_PSTAT0, ETM pipe status	
-	85	F11	P0.5	I/O	GPIO_0.5, GP Input, HiZ	MII_RXD3, PHY Rx data	TIM0_ICAP2, Input Capture	GPIO_0.5, GP Output	EMI_CS1n, EMI Chip Select	ETM_PSTAT1, ETM pipe status	
-	88	E11	P0.6	I/O	GPIO_0.6, GP Input, HiZ	MII_RX_CLK, PHY Rx clock	TIM2_ICAP1, Input Capture	GPIO_0.6, GP Output	EMI_CS2n, EMI Chip Select	ETM_PSTAT2, ETM pipe status	
-	90	B12	P0.7	I/O	GPIO_0.7, GP Input, HiZ	MII_RX_DV, PHY data valid	TIM2_ICAP2, Input Capture	GPIO_0.7, GP Output	EMI_CS3n, EMI Chip Select	ETM_TRSYNC, ETM trace sync	
-	98	B10	P1.0	I/O	GPIO_1.0, GP Input, HiZ	MII_RX_ER, PHY rcv error	ETM_EXTRIG, ETM ext. trigger	GPIO_1.0, GP Output	UART1_TX, UART xmit data	SSP1_SCLK, SSP mstr clk out	
-	99	C10	P1.1	I/O	GPIO_1.1, GP Input, HiZ	-	UART1_RX, UART rcv data	GPIO_1.1, GP Output	MII_TXD0, MAC Tx data	SSP1_MOSI, SSP mstr dat out	
-	101	В9	P1.2	I/O	GPIO_1.2, GP Input, HiZ	-	SSP1_MISO, SSP mstr data in	GPIO_1.2, GP Output	MII_TXD1, MAC Tx data	UART0_TX, UART xmit data	
-	106	C8	P1.3	I/O	GPIO_1.3, GP Input, HiZ	-	UART2_RX, UART rcv data	GPIO_1.3, GP Output	MII_TXD2, MAC Tx data	SSP1_NSS, SSP mstr sel out	
-	109	В7	P1.4	I/O	GPIO_1.4, GP Input, HiZ	-	I2C0_CLKIN, I2C clock in	GPIO_1.4, GP Output	MII_TXD3, MAC Tx data	I2C0_CLKOUT, I2C clock out	
-	110	A7	P1.5	I/O	GPIO_1.5, GP Input, HiZ	MII_COL, PHY collision	CAN_RX, CAN rcv data	GPIO_1.5, GP Output	UART2_TX, UART xmit data	ETM_TRCLK, ETM trace clock	
-	114	F7	P1.6	I/O	GPIO_1.6, GP Input, HiZ	MII_CRS, PHY carrier sns	I2C0_DIN, I2C data in	GPIO_1.6, GP Output	CAN_TX, CAN Tx data	I2C0_DOUT, I2C data out	
-	116	D6	P1.7	I/O	GPIO_1.7, GP Input, HiZ	-	ETM_EXTRIG, ETM ext. trigger	GPIO_1.7, GP Output	MII_MDC, MAC mgt dat ck	ETM_TRCLK, ETM trace clock	
						•					
7	10	E2	P2.0	I/O	GPIO_2.0, GP Input, HiZ	UART0_CTS, Clear To Send	I2C0_CLKIN, I2C clock in	GPIO_2.0, GP Output	I2C0_CLKOUT, I2C clock out	ETM_PCK0, ETM Packet	
8	11	E3	P2.1	I/O	GPIO_2.1, GP Input, HiZ	UART0_DSR, Data Set Ready	I2C0_DIN, I2C data in	GPIO_2.1, GP Output	I2C0_DOUT, I2C data out	ETM_PCK1, ETM Packet	
21	33	M1	P2.2	I/O	GPIO_2.2, GP Input, HiZ	UART0_DCD, Dat Carrier Det	I2C1_CLKIN, I2C clock in	GPIO_2.2, GP Output	I2C1_CLKOUT, I2C clock out	ETM_PCK2, ETM Packet	
22	35	К3	P2.3	I/O	GPIO_2.3, GP Input, HiZ	UART0_RI, Ring Indicator	I2C1_DIN, I2C data in	GPIO_2.3, GP Output	I2C1_DOUT, I2C data out	ETM_PCK3, ETM Packet	
23	37	L4	P2.4	I/O	GPIO_2.4, GP Input, HiZ	EXTCLK_T0T1E xt clk timer0/1	SSP0_SCLK, SSP slv clk in	GPIO_2.4, GP Output	SSP0_SCLK, SSP mstr clk out	ETM_PSTAT0, ETM pipe status	

 Table 8. Device pin description

F	Pack	age		e			Alternate functions			
LQFP80	LQFP128	LFBGA144	Pin name	Signal typ	Default pin function	Default input function	Alternate input 1	Alternate output 1	Alternate output 2	Alternate output 3
-	118	E6	P7.6	I/O	GPIO_7.6, GP Input, HiZ	EXINT30, External Intr	TIM3_ICAP1, Input Capture	GPIO_7.6, GP Output	8b) EMI_A6, 16b) EMI_A22	EMI_CS1n, EMI Chip Select
-	119	A5	P7.7	I/O	GPIO_7.7, GP Input, HiZ	EXINT31, External Intr	TIM3_ICAP2, Input Capture	GPIO_7.7, GP Output	EMI_CS0n, EMI chip select	16b) EMI_A23, 8b) EMI_A7
-	26	L1	P8.0	I/O	GPIO_8.0, GP Input, HiZ	-	-	GPIO_8.0, GP Output	8b) EMI_D0, 16b) EMI_AD0	-
-	28	H3	P8.1	I/O	GPIO_8.1, GP Input, HiZ	-	-	GPIO_8.1, GP Output	8b) EMI_D1, 16b) EMI_AD1	-
-	30	J2	P8.2	I/O	GPIO_8.2, GP Input, HiZ	-	-	GPIO_8.2, GP Output	8b) EMI_D2, 16b) EMI_AD2	-
-	32	K2	P8.3	I/O	GPIO_8.3, GP Input, HiZ	-	-	GPIO_8.3, GP Output	8b) EMI_D3, 16b) EMI_AD3	-
-	34	L3	P8.4	I/O	GPIO_8.4, GP Input, HiZ	-	-	GPIO_8.4, GP Output	8b) EMI_D4, 16b) EMI_AD4	-
-	36	J4	P8.5	I/O	GPIO_8.5, GP Input, HiZ	-	-	GPIO_8.5, GP Output	8b) EMI_D5, 16b) EMI_AD5	-
-	38	M2	P8.6	I/O	GPIO_8.6, GP Input, HiZ	-	-	GPIO_8.6, GP Output	8b) EMI_D6, 16b) EMI_AD6	-
-	44	K5	P8.7	I/O	GPIO_8.7, GP Input, HiZ	-	-	GPIO_8.7, GP Output	8b) EMI_D7, 16b) EMI_AD7	-
-	46	M6	P9.0	I/O	GPIO_9.0, GP Input, HiZ	-	-	GPIO_9.0, GP Output	8b) EMI_A8 16b) EMI_AD8	-
-	47	M7	P9.1	I/O	GPIO_9.1, GP Input, HiZ	-	-	GPIO_9.1, GP Output	8b) EMI_A9, 16b) EMI_AD9	-
-	50	K6	P9.2	I/O	GPIO_9.2, GP Input, HiZ	-	-	GPIO_9.2, GP Output	8b) EMI_A10, 16b)EMI_AD10	-
-	51	J6	P9.3	I/O	GPIO_9.3, GP Input, HiZ	-	-	GPIO_9.3, GP Output	8b) EMI_A11, 16b)EMI_AD11	-
-	52	H6	P9.4	I/O	GPIO_9.4, GP Input, HiZ	-	-	GPIO_9.4, GP Output	8b) EMI_A12, 16b)EMI_AD12	-
-	58	L8	P9.5	I/O	GPIO_9.5, GP Input, HiZ	-	-	GPIO_9.5, GP Output	8b) EMI_A13, 16b)EMI_AD13	-
-	62	M9	P9.6	I/O	GPIO_9.6, GP Input, HiZ	-	-	GPIO_9.6, GP Output	8b) EMI_A14, 16b)EMI_AD14	-
-	64	K9	P9.7	I/O	GPIO_9.7, GP Input, HiZ	-	-	GPIO_9.7, GP Output	8b) EMI_A15, 16b)EMI_AD15	-

Table 8. Device pin description (continued)

F	Pack	age		~			Alternate functions			
LQFP80	LQFP128	LFBGA144	Pin name	Signal type	Default pin function	Default input function	Alternate input 1	Alternate output 1	Alternate output 2	Alternate output 3
27	42	M5	X1_RTC	I	RTC oscillator or crystal input (32.768 kHz)	N/A				
26	41	M4	X2_RTC	0	RTC crystal connection			N/A		
61	97	B11	JRTCK	0	JTAG return clock or RTC clock			N/A		
67	107	D8	JTRSTn	I	JTAG TAP controller reset			N/A		
68	108	E8	JTCK	Т	JTAG clock			N/A		
69	111	A6	JTMS	I	JTAG mode select			N/A		
72	115	C6	JTDI	Т	JTAG data in			N/A		
73	117	B6	JTDO	0	JTAG data out			N/A		
				•						
-	122	A3	AVDD	v	ADC analog voltage source, 2.7 V - 3.6 V	N/A				
-	4	C3	AVSS	G	ADC analog ground	N/A				
5	-	-	AVSS_ VSSQ	G	Common ground point for digital I/O & analog ADC			N/A		
-	123	A2	AVREF	v	ADC reference voltage input			N/A		
76	-	-	AVREF_ AVDD	v	Combined ADC ref voltage and ADC analog voltage source, 2.7 V - 3.6 V			N/A		
24	39	M3	VBATT	v	Standby voltage input for RTC and SRAM backup			N/A		
6	9	E1	VDDQ	V						
15	23	J1	VDDQ	V						
36	57	-	VDDQ	V						
46	73	K12	VDDQ	V	V Source for					
54	86	B5	VDDQ	V	I/O and USB.	N/A				
28	43	L5	VDDQ	V	2.1 V 10 3.0 V					
63	102	H7	VDDQ	V						
74	120	D9	VDDQ	V						
-	-	F9	VDDQ	V						

Table 8. Device pin description (continued)

DocID13495 Rev 7

I	Pack	age		e			Alternate functions					
LQFP80	LQFP128	LFBGA144	Pin name	Signal typ	Default pin function	Default input function	Alternate input 1	Alternate output 1	Alternate output 2	Alternate output 3		
-	8	L2	VSSQ	G								
16	24	K4	VSSQ	G								
35	56	C5	VSSQ	G								
-	-	D4	VSSQ	G	Digital Ground for							
45	72	G5	VSSQ	G				N/A				
55	87	J7	VSSQ	G	10 and 05b							
25	40	A8	VSSQ	G								
66	105	F8	VSSQ	G								
75	121	L12	VSSQ	G								
11	17	F4	VDD	V								
31	49	D7	VDD	V	V Source for			N1/A				
50	81	L6	VDD	V	1.65 V - 2.0 V			N/A				
70	112	G11	VDD	V								
10	16	F3	VSS	G								
30	48	H5	VSS	G	Digital Ground			N1/A				
51	82	G10	VSS	G	for CPU			N/A				
71	113	E7	VSS	G								
-	-	C9	PLLV DDQ	v	V Source for PLL 2.7 to 3.6 V			N/A				
-	-	B8	PLLV SSQ	G	Digital Ground for PLL	IN/A						

Table 8. Device pin description (continued)

7 Electrical characteristics

7.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

7.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T_A max (given by the selected temperature range).

Data based on product characterisation, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

7.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25^{\circ}$ C, $V_{DDQ} = 3.3$ V and $V_{DD}=1.8$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2 \Sigma$).

7.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

7.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 10.

Figure 10. Pin loading conditions

7.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 11*.

Symbol	Ratings	Maximum value	Unit
I _{VDD_IO} ⁽¹⁾	Total current into $V_{DD_{IO}}$ power lines (source) ⁽²⁾	200	
I _{VSS_IO} ⁽¹⁾	Total current out of V_{SS} ground lines (sink) $^{\rm (2)}$	200	m۸
	Output current sunk by any I/O and control pin	25	
IO	Output current source by any I/Os and control pin	- 25	
I _{INJ(PIN)} ⁽³⁾	Injected current on any pin during overload condition ⁽⁴⁾	± 5	
$\Sigma I_{\rm INJ(PIN)}^{(3)}$	Absolute sum of all input currents during overload condition (4)	± 25	mA

1. The user can use GPIOs to source or sink current. In this case, the user must ensure that these absolute max. values are not exceeded (taking into account the RUN power consumption).

2. All 3.3 V or 5.0 V power (V_{DD IO}, V_{DDA ADC}, V_{DDA PLL}) and ground (V_{SS-IO}, V_{SSA_ADC}, V_{DDA ADC}) pins must always be connected to the external 3.3 V or 5.0V supply.

I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}.

4. When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with ΣI_{INJ(PIN)} maximum current injection on four I/O port pins of the device.

7.8 Memory characteristics

7.8.1 SRAM characteristics

Table	23.	SRAM	and	hardware	registers
-------	-----	------	-----	----------	-----------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DR}	Supply voltage for data retention ⁽¹⁾	T _A = 85 °C (worst case)	1.1			V

1. Guaranteed by characterization, not tested in production.

7.8.2 Flash memory characteristics

 V_{DDQ} = 2.7 - 3.6 V, V_{DD} = 1.65 - 2 V, T_A = -40 / 85 °C unless otherwise specified.

Note: Flash read access for sequential addresses is 0 wait states at 96 MHz. Flash read access for non-sequential accesses requires 2 wait states when FMI clock is above 66 MHz. See STR91xF Flash Programming Manual for more information.

	Parameter	Test conditions	Typ ⁽¹⁾	Typ after 100K W/E cycles ⁽¹⁾	Max	Unit
	Primary bank (512 Kbytes)		8	9	11.5	S
Bank erase	Primary bank (256 Kbytes)		4	4.5	6	s
	Secondary bank (32 Kbytes)		700	750	950	ms
Contar areas	Of primary bank (64 Kbytes)		1300	1400	1800	ms
Secior erase	Of secondary bank (8 Kbytes)		300	320	450	ms
	Primary bank (512 Kbytes)		3700	4700	5100	ms
Bank program	Primary bank (256 Kbytes)		1900	2000	2550	ms
	Secondary bank (32 Kbytes)		250	260	320	ms
Soctor program	Of primary bank (64 Kbytes)		500	520	640	ms
Sector program	Of secondary bank (8 Kbytes)		60	62	80	ms
Word program		Half word (16 bits)	8	9	11	μs

Table 24. Flash memory program/erase characteristics (Flash size \leq 512 KB)

1. V_{DD} = 1.8 V, V_{DDQ} = 3.3 V, T_A = 25 °C.

7.10 I/O characteristics

 V_{DDQ} = 2.7 - 3.6 V, V_{DD} = 1.65 - 2 V, T_A = -40 / 85 °C unless otherwise specified.

Cumbal	Devementer	Test conditions		Value		Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
		General inputs ⁽¹⁾	2.0		(2)	V
		RESET and TCK inputs ⁽¹⁾	0.8 V _{DDQ}			
V _{IH}	Input high level	TAMPER_IN input ⁽³⁾ (Run mode)	V _{DDQ} /2			
		TAMPER_IN input ⁽³⁾ (Standby mode)	V _{BAT} /2			
		General inputs ⁽¹⁾			0.8	
		RESET and TCK inputs ⁽¹⁾			$0.2 V_{DDQ}$	
V _{IL}	Input low level	TAMPER_IN input ⁽³⁾ (Run mode)			V _{DDQ} /2	
		TAMPER_IN input ⁽³⁾ (Standby mode)			V _{BAT} /2	
V _{HYS}	Input hysteresis Schmitt trigger	General inputs ⁽⁴⁾			0	V
	Output high level High current pins	I/O ports 3 and 6: Push-Pull, I _{OH} = 8mA	V _{DDQ} -0.7			
V _{OH}	Output high level Standard current pins	l/O ports 0,1,2,4,5,7,8,9: Push-Pull, I _{OH} = 4mA	V _{DDQ} -0.7			V
	Output high level JTAG JTDO pin	I _{OH} = -100 μA	V _{DDQ} -0.1			
	Output low level High current pins	I/O ports 3 and 6: Push-Pull, I _{OL} = 8mA			0.4	
V _{OL}	Output low level Standard current pins	I/O ports 0,1,2,4,5,7,8,9: Push-Pull, I _{OL} = 4mA			0.4	V
	Output low level JTAG JTDO pin	I _{OL} =100 μA			0.1	

Table 31. I/O characteristics

1. Guaranteed by characterization, not tested in production.

2. Input pins are 5V tolerant, max input voltage is $5.5 \ensuremath{\mathsf{V}}$

3. Guaranteed by design, not tested in production.

4. TAMPER_IN pin and STR9 general inputs have no built-in hysteresis.

Mux write

Table 35. Mux write times

Symbol	Parameter	١	/alue
Cymbol	Tarameter	Min	Мах
t _{WCR}	WRn to CSn inactive	(t _{BCLK} /2) - 2ns	(t _{BCLK} /2) + 2ns
t _{WAS}	Write address setup time	(WSTWEN + 1/2) x t _{BCLK} - 2.5 ns	(WSTWEN + 1/2) x t _{BCLK} + 2 ns
t _{WDS}	Write data setup time	((WSTWEN - ALE_LENGTH) x t _{BCLK}) - 2 ns	((WSTWEN - ALE_LENGTH) x t _{BCLK}) + 1 ns
t _{WP}	Write pulse width	((WSTWR-WSTWEN + 1) x t _{BCLK}) - 1 ns	((WSTWR-WSTWEN + 1) x t _{BCLK)} + 1.5 ns
t _{AW}	ALE pulse width	(ALE_LENGTH x t _{BCLK})- 3.5 ns	(ALE_LENGTH x t _{BCLK})
t _{AAS}	Address to ALE setup time	(ALE_LENGTH x t _{BCLK})- 3.5 ns	(ALE_LENGTH x t _{BCLK})
t _{AAH}	Address to ALE hold time	(t _{BCLK} /2) - 1 ns	(t _{BCLK} /2) + 2 ns

	-		-		
Symbol	Parameter	Value			
Symbol	Falameter	Min	Мах		
t _{D1BAA}	BAA t _{D1}	0	2 ns		
t _{D2BAA}	BAA t _{D2}	0.5 ns	2.5 ns		
t _{D1ALE}	ALE t _{D1}	1 ns	3.5 ns		
t _{D2ALE}	ALE t _{D2}	(t _{BCLK} /2) -0.5 ns	(t _{BCLK} /2) + 3.5 ns		
t _{D1WR}	RD t _{D1}	0	2ns		
t _{D2WR}	RD t _{D2}	0.5 ns	2.5 ns		
t _{D1A}	Address t _{D1}	1.5 ns	4 ns		
t _{D2A}	Address t _{D2}	2ns	4.5 ns		
t _{D1CS}	CS t _{D1}	0.5ns	3 ns		
t _{D2CS}	CS t _{D2}	1 ns	3.5 ns		
t _{WS}	WAIT setup time	3 ns	6 ns		
t _{DS}	Data setup time	(t _{BCLK} /2) -3.5 ns	(t _{BCLK} /2)+ 0.5 ns		
t _{DH}	Data hold time	(t _{BCLK} /2) - 1 ns	(t _{BCLK} /2)+3.5 ns		

Table	38	Sync	burst	write	times
lanc	50.	Sync	Duisi	WIIIC	umes

Sync burst read

Figure 24. Sync burst read diagram

Table 39. Sync burst read time	Table	39.	Sync	burst	read	times
--------------------------------	-------	-----	------	-------	------	-------

Symbol	Peremeter	Value			
Symbol	Farameter	Min	Мах		
t _{D1BAA}	BAA t _{D1}	0 ns	2 ns		
t _{D2BAA}	BAA t _{D2}	0.5ns	2.5 ns		
t _{D1ALE}	ALE t _{D1}	1 ns	3.5 ns		
t _{D2ALE}	ALE t _{D2}	(t _{BCLK} /2)+0.5 ns	(t _{BCLK} /2)+3 ns		
t _{D1RD}	RD t _{D1}	0	2 ns		
t _{D2RD}	RD t _{D2}	0.5 ns	2.5 ns		
t _{D1A}	Address t _{D1}	2 ns	4 ns		
t _{D2A}	Address t _{D2}	2.5 ns	3.5 ns		
t _{D1CS}	CS t _{D1}	0.5 ns	3 ns		
t _{D2CS}	CS t _{D2}	1 ns	3.5 ns		
t _{WS}	WAIT set up time	1 ns	4 ns		
t _{DS}	Data setup time	4.5 ns	-		
t _{DH}	Data hold time	0	-		

7.12.4 I²C electrical characteristics

 V_{DDQ} = 2.7 - 3.6 V, V_{DD} = 1.65 - 2 V, T_A = -40 / 85 °C unless otherwise specified.

Symbol	Paramotor	Standa	ard I ² C	Fast	Unit	
Symbol	Falameter	Min	Max	Min	Max	Onit
t _{BUF}	Bus free time between a STOP and START condition	4.7		1.3		μs
t _{HD:STA}	Hold time START condition. After this period, the first clock pulse is generated ⁽¹⁾	4.0		0.6		μs
t _{LOW}	Low period of the SCL clock	4.7		1.3		μs
t _{HIGH}	High period of the SCL clock	4.0		0.6		μs
t _{SU:STA}	Setup time for a repeated START condition	4.7		0.6		μs
t _{HD:DAT}	Data hold time ⁽²⁾	0		0		ns
t _{SU:DAT}	Data setup time	250		100		ns
t _R	Rise time of both SDA and SCL signals		1000	20+0.1C _b	300	ns
t _F	Fall time of both SDA and SCL signals		300	20+0.1C _b	300	ns
t _{SU:STO}	Setup time for STOP condition	4.0		0.6		μs
Cb	Capacitive load for each bus line		400		400	pF

Table 45.	l ² C	electrical	characteristics
-----------	------------------	------------	-----------------

1. The maximum hold time of the START condition has only to be met if the interface does not stretch the low period of SCL signal

2. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

3. C_b = total capacitance of one bus line in pF

Symbol	D	Test				
	Parameter	conditions	Min	Тур	Мах	Unit
t _{CONV(S]} Si	Single mode conversion time		2*16/f _{ADC}		3*16/f _{ADC}	μs
		f _{ADC} = 24 MHz	1.33		2	
TR(S)	Single mode throughput rate ⁽³⁾	f _{ADC} = 24 MHz			500	ksps
t _{CONV(C]}	Continuous mode conversion time ⁽⁴⁾			1*16/f _{ADC}		μs
		f _{ADC} = 24 MHz		0.66		μs
TR(C)	Continuous mode throughput rate	f _{ADC} = 24 MHz		1500		ksps

Table 48. ADC conversion time (silicon Rev G)

1. Guaranteed by design, not tested in production.

2. Parameters in this table apply to devices with silicon Rev G. Refer to *Table 5* for device rev identification in OTP memory and to *Section 8: Device marking*.

3. Value obtained on conversions started by trigger in single mode

4. All sucessive conversions in continuous and scan modes.

Symbol	Parameter(1)(2)	Test		Unit			
Symbol	Farameter	conditions Min		Тур	Мах	onit	
t	Single mode conversion time		1*16/f _{ADC}		2*16/f _{ADC}	116	
^L CONV(S]		f _{ADC} = 24 MHz	0.66		1.33	μs	
TR(S)	Single mode throughput rate ⁽³⁾	f _{ADC} = 24 MHz			750	ksps	
	Continuous mode conversion time ⁽⁴⁾			1*16/f _{ADC}		μs	
CONV(C]		f _{ADC} = 24 MHz		0.66		μs	
TR(C)	Continuous mode throughput rate	f _{ADC} = 24 MHz		1500		ksps	
t _{CONV(FT]}	Fast trigger mode conversion time ⁽⁵⁾			1*16/f _{ADC}		μs	
		f _{ADC} = 24 MHz		0.66		μs	
TR(FT)	Fast trigger mode throughput rate ⁽⁶⁾	f _{ADC} = 24 MHz	100		1200	ksps	

Table 49. ADC conversion time (silicon Rev H and higher)

1. Guaranteed by design, not tested in production.

2. Parameters in this table apply to devices with silicon Rev H and higher. Refer to *Table 5* for device rev identification in OTP memory and to *Section 8: Device marking*.

3. Value obtained from conversions started by trigger in single mode

4. All successive conversions in continuous and scan modes.

5. Conversion started by trigger when automatic clock gated mode enabled. Fast trigger mode is available only in devices with silicon Rev H and higher.

6. Value obtained from conversions started by fast trigger in single mode

9 Package mechanical data

Figure 40. LQFP80 12 x 12 mm 80 pin low-profile quad flat package outline

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

		Dimensions					
Ref.		Millimeters			Inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
A	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.130	0.180	0.230	0.0051	0.0071	0.0091	
с	0.090	-	0.200	0.0035	-	0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3	-	12.400	-	-	0.4882	-	
E	15.800	16.000	16.200	0.6220	0.6299	0.6378	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3	-	12.400	-	-	0.4882	-	
е	-	0.400	-	-	0.0157	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
ССС	-	-	0.080	-	-	0.0031	

Table 51. LQFP128 - 128-pin, 14 x 14 mm low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Marking of engineering samples for LFBGA144

The following figure shows the engineering sample marking for the LFBGA package. Only the information field containing the engineering sample marking is shown.

Figure 46. LFBGA144 package top view

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Figure 47. Recommended PCB design rules (0.80/0.75 mm pitch BGA)

Dsm