

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM9®
Core Size	16/32-Bit
Speed	96MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, Microwire, SPI, SSI, SSP, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	80
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96К х 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 2V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	128-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str912faw42x6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 49.	ADC conversion time (silicon Rev H and higher)	91
Table 50.	LQFP80 12 x12 mm low-profile quad flat package	
	mechanical data	96
Table 51.	LQFP128 - 128-pin, 14 x 14 mm low-profile quad flat package	
	mechanical data	99
Table 52.	LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,	
	0.8 mm pitch, package mechanical data1	02
Table 53.	Thermal characteristics	04
Table 54.	Ordering information scheme	05
Table 55.	Document revision history	06

3 Functional overview

3.1 System-in-a-package (SiP)

The STR91xFA is a SiP device, comprised of two stacked die. One die is the ARM966E-S CPU with peripheral interfaces and analog functions, and the other die is the burst Flash. The two die are connected to each other by a custom high-speed 32-bit burst memory interface and a serial JTAG test/programming interface.

3.2 Package choice

STR91xFA devices are available in 128-pin (14 x 14 mm) and 80-pin (12 x 12 mm) LQFP and LFBGA144 (10 x 10 mm) packages. Refer to *Table 2: Device summary on page 11* for a list of available peripherals for each of the package choices.

3.3 ARM966E-S CPU core

The ARM966E-S core inherently has separate instruction and data memory interfaces (Harvard architecture), allowing the CPU to simultaneously fetch an instruction, and read or write a data item through two Tightly-Coupled Memory (TCM) interfaces as shown in *Figure 1*. The result is streamlined CPU Load and Store operations and a significant reduction in cycle count per instruction. In addition to this, a 5-stage pipeline is used to increase the amount of operational parallelism, giving the most performance out of each clock cycle.

Ten DSP-enhanced instruction extensions are supported by this core, including single-cycle execution of 32x16 Multiply-Accumulate, saturating addition/subtraction, and count leading-zeros.

The ARM966E-S core is binary compatible with 32-bit ARM7 code and 16-bit Thumb[®] code.

3.4 Burst Flash memory interface

A burst Flash memory interface (*Figure 1*) has been integrated into the Instruction TCM (I-TCM) path of the ARM966E-S core. Also in this path is an 8-instruction Pre-Fetch Queue (PFQ) and a 15-entry Branch Cache (BC), enabling the ARM966E-S core to perform up to 96 MIPS while executing code directly from Flash memory. This architecture provides high performance levels without a costly instruction SRAM, instruction cache, or external SDRAM. Eliminating the instruction cache also means interrupt latency is reduced and code execution becomes more deterministic.

3.4.1 Pre-fetch queue (PFQ)

As the CPU core accesses sequential instructions through the I-TCM, the PFQ always looks ahead and will pre-fetch instructions, taking advantage any idle bus cycles due to variable length instructions. The PFQ will fetch 32-bits at a time from the burst Flash memory at a rate of up to 96 MHz.

3.9 Vectored interrupt controller (VIC)

Interrupt management in the STR91xFA is implemented from daisy-chaining two standard ARM VIC units. This combined VIC has 32 prioritized interrupt request channels and generates two interrupt output signals to the CPU. The output signals are FIQ and IRQ, with FIQ having higher priority.

3.9.1 FIQ handling

FIQ (Fast Interrupt reQuest) is the only non-vectored interrupt and the CPU can execute an Interrupt Service Routine (ISR) directly without having to determine/prioritize the interrupt source, minimizing ISR latency. Typically only one interrupt source is assigned to FIQ. An FIQ interrupt has its own set of banked registers to minimize the time to make a context switch. Any of the 32 interrupt request input signals coming into the VIC can be assigned to FIQ.

3.9.2 IRQ handling

IRQ is a vectored interrupt and is the logical OR of all 32 interrupt request signals coming into the 32 IRQ channels. Priority of individual vectored interrupt requests is determined by hardware (IRQ channel Intr 0 is highest priority, IRQ channel Intr 31 is lowest).

However, inside the same VIC (primary or secondary VIC), CPU firmware may re-assign individual interrupt sources to individual hardware IRQ channels, meaning that firmware can effectively change interrupt priority levels as needed within the same VIC (from priority 0 to priority 16).

Note: VIC0 (primary VIC) interrupts always have higher priority than VIC1 (secondary VIC) interrupts

When the IRQ signal is activated by an interrupt request, VIC hardware will resolve the IRQ interrupt priority, then the ISR reads the VIC to determine both the interrupt source and the vector address to jump to the service code.

The STR91xFA has a feature to reduce ISR response time for IRQ interrupts. Typically, it requires two memory accesses to read the interrupt vector address from the VIC, but the STR91xFA reduces this to a single access by adding a 16th entry in the instruction branch cache, dedicated for interrupts. This 16th cache entry always holds the instruction that reads the interrupt vector address from the VIC, eliminating one of the memory accesses typically required in traditional ARM implementations.

3.9.3 Interrupt sources

The 32 interrupt request signals coming into the VIC on 32 IRQ channels are from various sources; 5 from a wake-up unit and the remaining 27 come from internal sources on the STR91xFA such as on-chip peripherals, see *Table 6*. Optionally, firmware may force an interrupt on any IRQ channel.

One of the 5 interrupt requests generated by the wake-up unit (IRQ25 in *Table 6*) is derived from the logical OR of all 32 inputs to the wake-up unit. Any of these 32 inputs may be used to wake up the CPU and cause an interrupt. These 32 inputs consist of 30 external interrupts on selected and enabled GPIO pins, plus the RTC interrupt, and the USB Resume interrupt.

Each of 4 remaining interrupt requests generated by the wake-up unit (IRQ26 in *Table 6*) are derived from groupings of 8 interrupt sources. One group is from GPIO pins P3.2 to P3.7 plus the RTC interrupt and the USB Resume interrupt; the next group is from pins P5.0 to P5.7; the next group is from pins P6.0 to P6.7; and last the group is from pins P7.0 to P7.7. This allows individual pins to be assigned directly to vectored IRQ interrupts or one pin assigned directly to the non-vectored FIQ interrupt.

IRQ channel hardware priority	VIC input channel	Logic block	Interrupt source
0 (high priority)	VIC0.0	Watchdog	Timeout in WDT mode, Terminal Count in Counter Mode
1	VIC0.1	CPU Firmware	Firmware generated interrupt
2	VIC0.2	CPU Core	Debug Receive Command
3	VIC0.3	CPU Core	Debug Transmit Command
4	VIC0.4	TIM Timer 0	Logic OR of ICI0_0, ICI0_1, OCI0_0, OCI0_1, Timer overflow
5	VIC0.5	TIM Timer 1	Logic OR of ICI1_0, ICI1_1, OCI1_0, OCI1_1, Timer overflow
6	VIC0.6	TIM Timer 2	Logic OR of ICI2_0, ICI2_1, OCI2_0, OCI2_1, Timer overflow
7	VIC0.7	TIM Timer 3	Logic OR of ICI3_0, ICI3_1, OCI3_0, OCI3_1, Timer overflow
8	VIC0.8	USB	Logic OR of high priority USB interrupts
9	VIC0.9	USB	Logic OR of low priority USB interrupts
10	VIC0.10	CCU	Logic OR of all interrupts from Clock Control Unit
11	VIC0.11	Ethernet MAC	Logic OR of Ethernet MAC interrupts via its own dedicated DMA channel.
12	VIC0.12	DMA	Logic OR of interrupts from each of the 8 individual DMA channels
13	VIC0.13	CAN	Logic OR of all CAN interface interrupt sources
14	VIC0.14	IMC	Logic OR of 8 Induction Motor Control Unit interrupts
15	VIC0.15	ADC	End of AtoD conversion interrupt
16	VIC1.0	UART0	Logic OR of 5 interrupts from UART channel 0
17	VIC1.1	UART1	Logic OR of 5 interrupts from UART channel 1
18	VIC1.2	UART2	Logic OR of 5 interrupts from UART channel 2
19	VIC1.3	I2C0	Logic OR of transmit, receive, and error interrupts of I2C channel 0
20	VIC1.4	I2C1	Logic OR of transmit, receive, and error interrupts of I2C channel 1
21	VIC1.5	SSP0	Logic OR of all interrupts from SSP channel 0
22	VIC1.6	SSP1	Logic OR of all interrupts from SSP channel 1
23	VIC1.7	BROWNOUT	LVD warning interrupt
24	VIC1.8	RTC	Logic OR of Alarm, Tamper, or Periodic Timer interrupts

Table	6.	VIC	IRQ	chann	els
-------	----	-----	-----	-------	-----

As an option, there are a number of peripherals that do not have to receive a clock sourced from the CCU. The USB interface can receive an external clock on pin P2.7, TIM timers TIM0/ TIM1 can receive an external clock on pin P2.4, and timers TIM2/TIM3 on pin P2.5.

Figure 2. Clock control

3.10.2 Reference clock (RCLK)

The main clock (f_{MSTR}) can be divided to operate at a slower frequency reference clock (RCLK) for the ARM core and all the peripherals. The RCLK provides the divided clock for the ARM core, and feeds the dividers for the AHB, APB, External Memory Interface, and FMI units.

3.10.3 AHB clock (HCLK)

The RCLK can be divided by 1, 2 or 4 to generate the AHB clock. The AHB clock is the bus clock for the AHB bus and all bus transfers are synchronized to this clock. The maximum HCLK frequency is 96 MHz.

3.10.4 APB clock (PCLK)

The RCLK can be divided by 1, 2, 4 or 8 to generate the APB clock. The APB clock is the bus clock for the APB bus and all bus transfers are synchronized to this clock. Many of the peripherals that are connected to the AHB bus also use the PCLK as the source for external bus data transfers. The maximum PCLK frequency is 48 MHz.

3.11.2 Idle mode

In this mode the CPU suspends code execution and the CPU and FMI clocks are turned off immediately after firmware sets the Idle Bit. Various peripherals continue to run based on the settings of the mask registers that exist just prior to entering Idle Mode. There are 3 ways to exit Idle Mode and return to Run Mode:

- Any reset (external reset pin, watchdog, low-voltage, power-up, JTAG debug command)
- Any interrupt (external, internal peripheral, RTC alarm or interval)
- Input from wake-up unit on GPIO pins

Note: It is possible to remain in Idle Mode for the majority of the time and the RTC can be programmed to periodically wake up to perform a brief task or check status.

3.11.3 Sleep mode

In this mode all clock circuits except the RTC are turned off and main oscillator input pins X1_CPU and X2_CPU are disabled. The RTC clock is required for the CPU to exit Sleep Mode. The entire chip is quiescent (except for RTC and wake-up circuitry). There are three means to exit Sleep Mode and re-start the system:

- Some resets (external reset pin, low-voltage, power-up, JTAG debug command)
- RTC alarm
- Input from wake-up unit

3.12 Voltage supplies

The STR91xFA requires two separate operating voltage supplies. The CPU and memories operate from a 1.65V to 2.0V on the VDD pins, and the I/O ring operates at 2.7V to 3.6V on the VDDQ pins.

In Standby mode, both VDD and VDDQ must be shut down. Otherwise the specified maximum power consumption for Standby mode (I_{RTC_STBY} and I_{SRAM_STBY}) may be exceeded. Leakage may occur if only one of the voltage supplies is off.

3.12.1 Independent A/D converter supply and reference voltage

The ADC unit on 128-pin and 144-ball packages has an isolated analog voltage supply input at pin AVDD to accept a very clean voltage source, independent of the digital voltage supplies. Additionally, an isolated analog supply ground connection is provided on pin AVSS only on 128-pin and 144-ball packages for further ADC supply isolation. On 80-pin packages, the analog voltage supply is shared with the ADC reference voltage pin (as described next), and the analog ground is shared with the digital ground at a single point in the STR91xFA device on pin AVSS VSSQ.

A separate external analog reference voltage input for the ADC unit is available on 128-pin and 144-ball packages at the AVREF pin for better accuracy on low voltage inputs. For 80pin packages, the ADC reference voltage is tied internally to the ADC unit supply voltage at pin AVREF_AVDD, meaning the ADC reference voltage is fixed to the ADC unit supply voltage.

See *Table 11: Operating conditions*, for restrictions to the relative voltage levels of VDDQ, AVDD, AVREF, and AVREF_AVDD.

DocID13495 Rev 7

3.13.7 Tamper detection

On 128-pin and 144-ball STR91xFA devices only, there is a tamper detect input pin, TAMPER_IN, used to detect and record the time of a tamper event on the end product such as malicious opening of an enclosure, unwanted opening of a panel, etc. The activation mode of the tamper pin detects when a signal on the tamper input pin is driven from low-to-high, or high-to-low depending on firmware configuration. Once a tamper event occurs, the RTC time (millisecond resolution) and the date are recorded in the RTC unit. Simultaneously, the SRAM standby voltage source will be cut off to invalidate all SRAM contents. Tamper detection control and status logic are part of the RTC unit.

3.14 Real-time clock (RTC)

The RTC combines the functions of a complete time-of-day clock (millisecond resolution) with an alarm programmable up to one month, a 9999-year calender with leap-year support, periodic interrupt generation from 1 to 512 Hz, tamper detection (described in *Section 3.13.7*), and an optional clock calibration output on the JRTCK pin. The time is in 24 hour mode, and time/calendar values are stored in binary-coded decimal format.

The RTC also provides a self-isolation mode that is automatically activated during power down. This feature allows the RTC to continue operation when V_{DDQ} and V_{DD} are absent, as long as an alternate power source, such as a battery, is connected to the VBATT input pin. The current drawn by the RTC unit on the VBATT pin is very low in this standby mode, I_{RTC_STBY} .

3.15 JTAG interface

An IEEE-1149.1 JTAG interface on the STR91xFA provides In-System-Programming (ISP) of all memory, boundary scan testing of pins, and the capability to debug the CPU.

STR91xFA devices are shipped from ST with blank Flash memories. The CPU can only boot from Flash memory (selection of which Flash bank is programmable). Firmware must be initially programmed through JTAG into one of these Flash memories before the STR91xFA is used.

Six pins are used on this JTAG serial interface. The five signals JTDI, JTDO, JTMS, JTCK, and JTRSTn are all standard JTAG signals complying with the IEEE-1149.1 specification. The sixth signal, JRTCK (Return TCK), is an output from the STR91xFA and it is used to pace the JTCK clock signal coming in from the external JTAG test equipment for debugging. The frequency of the JTCK clock signal coming from the STR91xFA and is input to the at least 10 times less than the ARM966E-S CPU core operating frequency (f_{CPUCLK}). To ensure this, the signal JRTCK is output from the STR91xFA and is input to the external JTAG test equipment to hold off transitions of JTCK until the CPU core is ready, meaning that the JTAG equipment cannot send the next rising edge of JTCK until the equipment must be able to interpret the signal JRTCK and perform this adaptive clocking function. If it is known that the CPU clock will always be at least ten times faster than the incoming JTCK clock signal, then the JRTCK signal is not needed.

The two die inside the STR91xFA (CPU die and Flash memory die) are internally daisychained on the JTAG bus, see *Figure 3 on page 28*. The CPU die has two JTAG Test Access Ports (TAPs), one for boundary scan functions and one for ARM CPU debug. The Flash memory die has one TAP for program/erase of non-volatile memory. Because these

A single device can play the role of Master or Slave, or a single device can be a Slave only. A Master or Slave device has the ability to suspend data transfers if the device needs more time to transmit or receive data.

Each I2C interface on the STR91xFA has the following features:

- Programmable clock supports various rates up to I2C Standard rate (100 KHz) or Fast rate (400 KHz).
- Serial I/O Engine (SIOE) takes care of serial/parallel conversion; bus arbitration; clock generation and synchronization; and handshaking
- Multi-master capability
- 7-bit or 10-bit addressing

3.22 SSP interfaces (SPI, SSI, and MICROWIRE) with DMA

The STR91xFA supports two independent Synchronous Serial Port (SSP) interfaces, designated SSP0, and SSP1. Primary use of each interface is for supporting the industry standard Serial Peripheral Interface (SPI) protocol, but also supporting the similar Synchronous Serial Interface (SSI) and MICROWIRE communication protocols.

SPI is a three or four wire synchronous serial communication channel, capable of full-duplex operation. In three-wire configuration, there is a clock signal, and two data signals (one data signal from Master to Slave, the other from Slave to Master). In four-wire configuration, an additional Slave Select signal is output from Master and received by Slave.

The SPI clock signal is a gated clock generated from the Master and regulates the flow of data bits. The Master may transmit at a variety of baud rates, up to 24 MHz

In multi-Slave operation, no more than one Slave device can transmit data at any given time. Slave selection is accomplished when a Slave's "Slave Select" input is permanently grounded or asserted active-low by a Master device. Slave devices that are not selected do not interfere with SPI activities. Slave devices ignore the clock signals and keep their data output pins in high-impedance state when not selected. The STR91xFA supports SPI multi-Master operation because it provides collision detection.

Each SSP interface on the STR91xFA has the following features:

- Full-duplex, three or four-wire synchronous transfers
- Master or Slave operation
- Programmable clock bit rate with prescaler, up to 24 MHz for Master mode and 4 MHz for Slave mode
- Separate transmit and receive FIFOs, each 16-bits wide and 8 locations deep
- Programmable data frame size from 4 to 16 bits
- Programmable clock and phase polarity
- Specifically for MICROWIRE protocol:
 - Half-duplex transfers using 8-bit control message
- Specifically for SSI protocol:
 - Full-duplex four-wire synchronous transfer
 - Transmit data pin tri-stateable when not transmitting

3.22.1 DMA

A programmable DMA channel may be assigned by CPU firmware to service each SSP channel for fast and direct transfers between the SSP bus and SRAM with little CPU involvement. Both DMA single-transfers and DMA burst-transfers are supported for transmit and receive. Burst transfers require that FIFOs are enabled.

3.23 General purpose I/O

There are up to 80 GPIO pins available on 10 I/O ports for 128-pin and 144-ball devices, and up to 40 GPIO pins on 5 I/O ports for 80-pin devices. Each and every GPIO pin by default (during and just after a reset condition) is in high-impedance input mode, and some GPIO pins are additionally routed to certain peripheral function inputs. CPU firmware may initialize GPIO pins to have alternate input or output functions as listed in *Table 8*. At any time, the logic state of any GPIO pin may be read by firmware as a GPIO input, regardless of its reassigned input or output function.

Bit masking is available on each port, meaning firmware may selectively read or write individual port pins, without disturbing other pins on the same port during a write.

Firmware may designate each GPIO pin to have open-drain or push-pull characteristics.

All GPIO pins are 5 V tolerant, meaning they can drive a voltage level up to VDDQ, and can be safely driven by a voltage up to 5 V.

3.24 A/D converter (ADC) with DMA

The STR91xFA provides an eight-channel, 10-bit successive approximation analog-todigital converter. The ADC input pins are multiplexed with other functions on Port 4 as shown in *Table 8*. Following are the major ADC features:

- Fast conversion time, as low as 0.7 usec
- Accuracy. Integral and differential non-linearity are typically within 4 conversion counts.
- 0 to 3.6 V input range. External reference voltage input pin (AVREF) available on 128pin packages for better accuracy on low-voltage inputs. See *Table 11: Operating conditions*, for restrictions to the relative voltage levels of VDDQ, AVDD, AVREF, and AVREF_AVDD.
- CPU Firmware may convert one ADC input channel at a time, or it has the option to set the ADC to automatically scan and convert all eight ADC input channels sequentially before signalling an end-of-conversion
- Automatic continuous conversion mode is available for any number of designated ADC input channels
- Analog watchdog mode provides automatic monitoring of any ADC input, comparing it
 against two programmable voltage threshold values. The ADC unit will set a flag or it
 will interrupt the CPU if the input voltage rises above the higher threshold, or drops
 below the lower threshold.
- The ADC unit goes to stand-by mode (very low-current consumption) after any reset event. CPU firmware may also command the ADC unit to stand-by mode at any time.
- ADC conversion can be started or triggered by software command as well as triggers from Timer/Counter (TIM), Motor Controller and input from external pin.

3.27 External memory interface (EMI)

STR91xFA devices in 128-pin and 144-ball packages offer an external memory bus for connecting external parallel peripherals and memories. The EMI bus resides on ports 7, 8, and 9 and operates with either an 8 or 16-bit data path. The configuration of 8 or 16 bit mode is specified by CPU firmware writing to configuration registers at run-time. If the application does not use the EMI bus, then these port pins may be used for general purpose I/O as shown in *Table 8*.

The EMI has the following features:

- Supports static asynchronous memory access cycles, including page mode for nonmux operation. The bus control signals include:
 - EMI_RDn read signal, x8 or x16 mode
 - EMI_BWR_WRLn write signal in x8 mode and write low byte signal in x16 mode
 - EMI_WRHn write high byte signal in x16 mode
 - EMI_ALE address latch signal for x8 or x16 mux bus mode with programmable polarity
- Four configurable memory regions, each with a chip select output (EMI_CS0n ... EMI_CS3n)
- Programmable wait states per memory region for both write and read operations
- **16-bit multiplexed data mode** (*Figure 4*): 16 bits of data and 16 bits of low-order address are multiplexed together on ports 8 and 9, while port 7 contains eight more high-order address signals. The output signal on pin EMI_ALE is used to demultiplex the signals on ports 8 and 9, and the polarity of EMI_ALE is programmable. The output signals on pins EMI_BWR_WRLn and EMI_WRHn are the write strobes for the low and high data bytes respectively. The output signal EMI_RDn is the read strobe for both the low and high data bytes.
- **8-bit multiplexed data mode**: This is a variant of the 16-bit multiplexed mode. Although this mode can provide 24 bits of address and 8 bits of data, it does require an external latch device on Port 8. However, this mode is most efficient when connecting devices that only require 8 bits of address on an 8-bit multiplexed address/data bus, and have simple read, write, and latch inputs as shown in *Figure 5*

To use all 24 address bits, the following applies: 8 bits of lowest-order data and 8 bits of lowest-order address are multiplexed on port 8. On port 9, 8-bits of mid-order address are multiplexed with 8 bits of data, but these 8 data values are always at logic zero on this port during a write operation, and these 8 data bits are ignored during a read operation. An external latch device is needed to de-multiplex the mid-order 8 address bits that are generated on port 8. Port 7 outputs the 8 highest-order address signals directly (not multiplexed). The output signal on pin EMI_ALE is used to demultiplex the signals on ports 8 and 9, and the polarity of EMI_ALE is programmable. The output signal on pin

4 Related documentation

Available from www.arm.com:

ARM966E-S - Technical Reference Manual

Available from *www.st.com*:

STR91xFA ARM9[®]- based microcontroller family - Reference manual (RM0006)

STR91xFA Flash - Programming manual (PM0020)

The above is a selected list only, a full list of STR91xFA application notes can be viewed at *www.st.com*.

5 Pin description

Figure 7. STR91xFAM 80-pin package pinout

1. NU (Not Used) on STR910FAM devices. Pin 59 is not connected, pin 60 must be pulled up by a 1.5Kohm resistor to VDDQ.

2. No USBCLK function on STR910FAM devices.

Figure 16. Typical application with an external clock source

7.7.3 RTC clock generated from a crystal/ceramic resonator

The RTC (Real-Time Clock) can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results obtained with typical external components specified in *Table 20 & Table 21*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Note: For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5 pF to 16 pF range, selected to match the requirements of the crystal or resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2.

Load capacitance CL has the following formula:

 $CL = CL1 \times CL2 / (CL1 + CL2) + Cstray$

where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.

Caution: Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF, then CL1 = CL2 = 8 pF.

Conditions: V_{DDO} = 2.7 - 3.6 V, V_{DD} = 1.65 - 2 V, T_A = -40 / 85 °C unless otherwise specified.

Symbol	Parameter	Test	Va	Unit		
Symbol	Falameter	conditions	Min	Тур	Мах	Onit
R _F	External feedback resistor			22		MΩ
V _{START(RTC)}	Oscillator start voltage		V _{DD_LVD+} ⁽¹⁾			V
9 _M	Oscillator transconductance ⁽²⁾	Start-up	1.8			µA/Volts
t _{STUP(RTC)}	Oscillator Start-up Time ⁽²⁾	V _{DD} stable			1	S

Table 20. RTC oscillator electrical characteristics

1. Refer to Table 14 for min. value of V_{DD LVD+}

2. Data based on bench measurements, not tested in production.

7.10 I/O characteristics

 V_{DDQ} = 2.7 - 3.6 V, V_{DD} = 1.65 - 2 V, T_A = -40 / 85 °C unless otherwise specified.

Cumbal	Devementer	Test conditions		Value			
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
		General inputs ⁽¹⁾	2.0		(2)	V	
V _{IH}		RESET and TCK inputs ⁽¹⁾	0.8 V _{DDQ}				
	Input high level	TAMPER_IN input ⁽³⁾ (Run mode)	V _{DDQ} /2				
		TAMPER_IN input ⁽³⁾ (Standby mode)	V _{BAT} /2				
		General inputs ⁽¹⁾			0.8		
V _{IL}		RESET and TCK inputs ⁽¹⁾			$0.2 V_{DDQ}$		
	Input low level	TAMPER_IN input ⁽³⁾ (Run mode)			V _{DDQ} /2		
		TAMPER_IN input ⁽³⁾ (Standby mode)			V _{BAT} /2		
V _{HYS}	Input hysteresis Schmitt trigger	General inputs ⁽⁴⁾			0	V	
	Output high level High current pins	I/O ports 3 and 6: Push-Pull, I _{OH} = 8mA	V _{DDQ} -0.7				
V _{OH}	Output high level Standard current pins	l/O ports 0,1,2,4,5,7,8,9: Push-Pull, I _{OH} = 4mA	V _{DDQ} -0.7			V	
	Output high level JTAG JTDO pin	I _{OH} = -100 μA	V _{DDQ} -0.1				
	Output low level High current pins	I/O ports 3 and 6: Push-Pull, I _{OL} = 8mA			0.4		
V _{OL}	Output low level Standard current pins	I/O ports 0,1,2,4,5,7,8,9: Push-Pull, I _{OL} = 4mA			0.4	V	
	Output low level JTAG JTDO pin	I _{OL} =100 μA			0.1		

Table 31. I/O characteristics

1. Guaranteed by characterization, not tested in production.

2. Input pins are 5V tolerant, max input voltage is $5.5 \ensuremath{\mathsf{V}}$

3. Guaranteed by design, not tested in production.

4. TAMPER_IN pin and STR9 general inputs have no built-in hysteresis.

Non-mux read

Figure 19. Non-mux bus read timings

Table 3	34. EN	II read	operation

Symbol	Parameter	Value			
Symbol	i didiletei	Min	Мах		
t _{RCR}	Read to CSn inactive	0	1.5 ns		
t _{RAS}	Read address setup time	((WSTOEN) x t _{BCLK})- 1.5 ns	(WSTOEN) x t _{BCLK}		
t _{RDS}	Read data setup time	12.5	-		
t _{RDH}	Read data hold time	0	-		
t _{RP}	Read pulse width	((WSTRD-WSTOEN+1) x t _{BCLK})- 0.5 ns	((WSTRD-WSTOEN+1) x t _{BCLK})+ 2 ns		

Mux write

Table 35. Mux write times

Symbol Parameter		Value				
Cymbol	Tarameter	Min	Мах			
t _{WCR}	WRn to CSn inactive	(t _{BCLK} /2) - 2ns	(t _{BCLK} /2) + 2ns			
t _{WAS}	Write address setup time	(WSTWEN + 1/2) x t _{BCLK} - 2.5 ns	(WSTWEN + 1/2) x t _{BCLK} + 2 ns			
t _{WDS}	Write data setup time	((WSTWEN - ALE_LENGTH) x t _{BCLK}) - 2 ns	((WSTWEN - ALE_LENGTH) x t _{BCLK}) + 1 ns			
t _{WP}	Write pulse width	((WSTWR-WSTWEN + 1) x t _{BCLK}) - 1 ns	((WSTWR-WSTWEN + 1) x t _{BCLK)} + 1.5 ns			
t _{AW}	ALE pulse width	(ALE_LENGTH x t _{BCLK})- 3.5 ns	(ALE_LENGTH x t _{BCLK})			
t _{AAS}	Address to ALE setup time	(ALE_LENGTH x t _{BCLK})- 3.5 ns	(ALE_LENGTH x t _{BCLK})			
t _{AAH}	Address to ALE hold time	(t _{BCLK} /2) - 1 ns	(t _{BCLK} /2) + 2 ns			

7.12 Communication interface electrical characteristics

7.12.1 10/100 Ethernet MAC electrical characteristics

 V_{DDQ} = 2.7 - 3.6 V, V_{DD} = 1.65 - 2 V, T_A = -40 / 85 °C unless otherwise specified.

Ethernet MII interface timings

Table 40. MII_RX_CLK and MII_TX_CLK timing table

Symbol	Decomptor	Symbol	Va	l Incid		
Symbol	Farameter	Symbol	Min	Max	onit	
1	Cycle time	t _c (CLK)	40		ns	
2	Pulse duration high	t _{HIGH} (CLK)	40%	60%		
3	Pulse duration low	t _{LOW} (CLK)	40%	60%		
4	Transition time	t _t (CLK)		1	ns	

Figure 26. MDC timing diagram

Table 41. MDC timing table

Symbol	Paramotor	Symbol	Va	Unit		
Symbol	Falameter	Symbol	Min	Мах	onn	
1	Cycle time	t _c (MDC)	266		ns	
2	Pulse duration high	t _{HIGH} (MDC)	40%	60%		
3	Pulse duration low	t _{LOW} (MDC)	40%	60%		
4	Transition time	t _t (MDC)		1	ns	

7.13 ADC electrical characteristics

 V_{DDQ} = 2.7 - 3.6 V, V_{DD} = 1.65 - 2 V, T_{A} = -40 / 85 °C unless otherwise specified.

Symbol	Parameter ⁽¹⁾	Test		11:::4		
Symbol	Farameter	conditions	Min	Тур	Max	Unit
V _{AIN}	Input voltage range		0		AV _{REF}	V
RES	Resolution				10	Bits
N _{CH}	Number of input channels				8	N
f _{ADC}	ADC clock frequency				25	MHz
t _{POR(ADC)}	POR bit set to Standby mode				500	ms
t _{ck_off(ADC)}	ADC clock disabled before conversion (2)				1	ms
t _{STAB}	Stabilization time				15	μs
C _{IN}	Input capacitance			5		pF
ED	Differential non-linearity	(3) (4)		1	3	LSB ⁽⁵⁾
EL	Integral non-linearity	(3)		3	6	LSB ⁽⁵⁾
E _O	Offset error	(3)		3	6	LSB ⁽⁵⁾
E _G	Gain error	(3)		0.5	2	LSB ⁽⁵⁾
ET	Total unadjusted error	(3)		4	6	LSB ⁽⁵⁾
I _{ADC}	Power consumption			4.6		mA
I _{VREF}	Current on VREF input pin	(6) (7)			920	μA

Table 47. General ADC electrical characteristics

1. Guaranteed by design, not tested in production.

2. The ADC clock can be disabled by setting the ADC bit in the SCU_PCGR1 register or by setting the ACG bit in the SCU_GPIOANA register (for Rev H and higher)

3. Conditions: $\mathrm{AV}_{\mathrm{SS}}$ = 0 V, $\mathrm{AV}_{\mathrm{DD}}$ = 3.3 V f_{\mathrm{ADC}} = 25 MHz.

4. The A/D is monotonic, there are no missing codes.

5. 1 LSB = $(AV_{DD} - AV_{SS})/1024$

6. Data based on characterization, not tested in production.

7. Conditions: V_{DD} =1.8 V, f_{CPU} =96 MHz , f_{ADC} =24 MHz

Figure 45. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package outline

Marking of engineering samples for LFBGA144

The following figure shows the engineering sample marking for the LFBGA package. Only the information field containing the engineering sample marking is shown.

Figure 46. LFBGA144 package top view

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Figure 47. Recommended PCB design rules (0.80/0.75 mm pitch BGA)

Dsm