

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM9®
Core Size	16/32-Bit
Speed	96MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, Microwire, SPI, SSI, SSP, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	80
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 2V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	128-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str912faw46x6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Desc	ription						
2	Devie	ce sumi	mary					
3	Func	tional o	overview					
	3.1	System	n-in-a-package (SiP) 12					
	3.2	Packag	ge choice					
	3.3	ARM96	66E-S CPU core					
	3.4	Burst F	lash memory interface					
		3.4.1	Pre-fetch queue (PFQ)					
		3.4.2	Branch cache (BC)					
		3.4.3	Management of literals					
	3.5	SRAM	(64 Kbytes or 96 Kbytes) 15					
		3.5.1	Arbitration					
		3.5.2	Battery backup					
	3.6	DMA data movement						
	3.7	Non-vo	latile memories					
		3.7.1	Primary Flash memory					
		3.7.2	Secondary Flash memory16					
	3.8	One-tin	ne-programmable (OTP) memory 17					
		3.8.1	Product ID and revision level					
	3.9	Vectore	ed interrupt controller (VIC) 18					
		3.9.1	FIQ handling					
		3.9.2	IRQ handling					
		3.9.3	Interrupt sources					
	3.10	Clock o	control unit (CCU)					
		3.10.1	Master clock sources					
		3.10.2	Reference clock (RCLK)					
		3.10.3	AHB clock (HCLK)					
		3.10.4	APB clock (PCLK)					
		3.10.5	Flash memory interface clock (FMICLK)					
		3.10.6	UART and SSP clock (BRCLK)					
		3.10.7	External memory interface bus clock (BCLK)					

75		atrical characteristics	60
<i>I</i> .3			62
7.0	7.5.1		. 03
1.6	Supply		64
	7.6.1	Typical power consumption for frequencies below 10 MHz	. 65
7.7	Clock a	nd timing characteristics	66
	7.7.1	Main oscillator electrical characteristics	. 67
	7.7.2	X1_CPU external clock source	. 67
	7.7.3	RTC clock generated from a crystal/ceramic resonator	. 68
	7.7.4	PLL electrical characteristics	. 69
7.8	Memory	characteristics	70
	7.8.1	SRAM characteristics	. 70
	7.8.2	Flash memory characteristics	. 70
7.9	EMC ch	naracteristics	72
	7.9.1	Functional EMS (electro magnetic susceptibility)	. 72
	7.9.2	Electro magnetic interference (EMI)	. 73
	7.9.3	Absolute maximum ratings (electrical sensitivity)	. 73
	7.9.4	Electro-static discharge (ESD)	. 73
	7.9.5	Static latch-up	. 74
	7.9.6	Designing hardened software to avoid noise problems	. 74
	7.9.7	Electrical sensitivity	. 74
7.10	I/O cha	racteristics	75
7.11	Externa	I memory bus timings	76
	7.11.1	Asynchronous mode	. 76
	7.11.2	Synchronous mode	. 81
7.12	Commu	inication interface electrical characteristics	84
	7.12.1	10/100 Ethernet MAC electrical characteristics	. 84
	7.12.2	USB electrical interface characteristics	. 86
	7.12.3	CAN interface electrical characteristics	. 86
	7.12.4	I2C electrical characteristics	. 87
	7.12.5	SPI electrical characteristics	. 88
7 13	ADC el	ectrical characteristics	90
7.10			00
Devic	e mark	ing	93
8.1	STR91	xFAx32 / STR91xFAx42 / STR91xFAx44	93
8.2	STR91	(FAx46 / STR91xFAx47	94

8

3.4.2 Branch cache (BC)

When instruction addresses are not sequential, such as a program branch situation, the PFQ would have to flush and reload which would cause the CPU to stall if no BC were present. Before reloading, the PFQ checks the BC to see if it contains the desired target branch address. The BC contains up to fifteen of the most recently taken branch addresses and the first eight instructions associated with each of these branches. This check is extremely fast, checking all fifteen BC entries simultaneously for a branch address match (cache hit). If there is a hit, the BC rapidly supplies the instruction and reduces the CPU stall. This gives the PFQ time to start pre-fetching again while the CPU consumes these eight instructions from the BC. The advantage here is that program loops (very common with embedded control applications) run very fast if the address of the loops are contained in the BC.

In addition, there is a 16th branch cache entry that is dedicated to the Vectored Interrupt Controller (VIC) to further reduce interrupt latency by eliminating the stall latency typically imposed by fetching the instruction that reads the interrupt vector address from the VIC.

3.4.3 Management of literals

Typical ARM architecture and compilers do not place literals (data constants) sequentially in Flash memory with the instructions that use them, but instead the literals are placed at some other address which looks like a program branch from the PFQ's point of view. The STR91xFA implementation of the ARM966E-S core has special circuitry to prevent flushing the PFQ when literals are encountered in program flow to keep performance at a maximum.

3.20 UART interfaces with DMA

The STR91xFA supports three independent UART serial interfaces, designated UART0, UART1, and UART2. Each interface is very similar to the industry-standard 16C550 UART device. All three UART channels support IrDA encoding/decoding, requiring only an external LED transceiver to pins UARTx_RX and UARTx_Tx for communication. One UART channel (UART0) supports full modem control signals.

UART interfaces include the following features:

- Maximum baud rate of 1.5 Mbps
- Separate FIFOs for transmit and receive, each 16 deep, each FIFO can be disabled by firmware if desired
- Programmable FIFO trigger levels between 1/8 and 7/8
- Programmable baud rate generator based on CCU master clock, or CCU master clock divided by two
- Programmable serial data lengths of 5, 6, 7, or 8 bits with start bit and 1 or 2 stop bits
- Programmable selection of even, odd, or no-parity bit generation and detection
- False start-bit detection
- Line break generation and detection
- Support of IrDA SIR ENDEC functions for data rates of up to 115.2K bps
- IrDA bit duration selection of 3/16 or low-power (1.14 to 2.23 µsec)
- Channel UART0 supports modem control functions CTS, DCD, DSR, RTS, DTR, and RI

For your reference, only two standard 16550 UART features are not supported, 1.5 stop bits and independent receive clock.

3.20.1 DMA

A programmable DMA channel may be assigned by CPU firmware to service channels UART0 and UART1 for fast and direct transfers between the UART bus and SRAM with little CPU involvement. Both DMA single-transfers and DMA burst-transfers are supported for transmit and receive. Burst transfers require that UART FIFOs are enabled.

3.21 I²C interfaces

The STR91xFA supports two independent I2C serial interfaces, designated I2C0, and I2C1. Each interface allows direct connection to an I2C bus as either a bus master or bus slave device (firmware configurable). I2C is a two-wire communication channel, having a bidirectional data signal and a single-directional clock signal based on open-drain line drivers, requiring external pull-up resistors.

Byte-wide data is transferred between a Master device and a Slave device on two wires. More than one bus Master is allowed, but only one Master may control the bus at any given time. Data is not lost when another Master requests the use of a busy bus because I2C supports collision detection and arbitration. More than one Slave device may be present on the bus, each having a unique address. The bus Master initiates all data movement and generates the clock that permits the transfer. Once a transfer is initiated by the Master, any device that is addressed is considered a Slave. Automatic clock synchronization allows I2C devices with different bit rates to communicate on the same physical bus.

3.24.1 DMA

A programmable DMA channel may be assigned by CPU firmware to service each ADC conversion result for fast DMA single-transfer.

3.25 Standard timers (TIM) with DMA

The STR91xFA has four independent, free-running 16-bit timer/counter modules designated TIM0, TIM1, TIM2, and TIM3. Each general purpose timer/counter can be configured by firmware for a variety of tasks including; pulse width and frequency measurement (input capture), generation of waveforms (output compare and PWM), event counting, delay timing, and up/down counting.

Each of the four timer units have the following features:

- 16-bit free running timer/counter
- Internal timer/counter clock source from a programmable 8-bit prescale of the CCU PCLK clock output
- Optional external timer/counter clock source from pin P2.4 shared by TIM0/TIM1, and pin P2.5 shared by TIM2/TIM3. Frequency of these external clocks must be at least 4 times less the frequency of the internal CCU PCLK clock output.
- Two dedicated 16-bit Input Capture registers for measuring up to two input signals. Input Capture has programmable selection of input signal edge detection
- Two dedicated 16-bit Output Compare registers for generation up to two output signals
- PWM output generation with 16-bit resolution of both pulse width and frequency
- One pulse generation in response to an external event
- A dedicated interrupt to the CPU with five interrupt flags
- The OCF1 flag (Output Compare 1) from the timer can be configured to trigger an ADC conversion

3.25.1 DMA

A programmable DMA channel may be assigned by CPU firmware to service each timer/counter module TIM0 and TIM1 for fast and direct single transfers.

3.26 Three-phase induction motor controller (IMC)

The STR91xFA provides an integrated controller for variable speed motor control applications.

Six PWM outputs are generated on high current drive pins P6.0 to P6.5 for controlling a three-phase AC induction motor drive circuit assembly. Rotor speed feedback is provided by capturing a tachometer input signal on pin P6.6, and an asynchronous hardware emergency stop input is available on pin P6.7 to stop the motor immediately if needed, independently of firmware.

The IMC unit has the following features:

- Three PWM outputs generated using a 10 or 16-bit PWM counter, one for each phase U, V, W. Complimentary PWM outputs are also generated for each phase.
- Choice of classic or zero-centered PWM generation modes
- 10 or 16-bit PWM counter clock is supplied through a programmable 8-bit prescaler of the APB clock.
- Programmable 6 or 10-bit dead-time generator to add delay to each of the three complimentary PWM outputs
- 8-bit repetition counter
- Automatic rotor speed measurement with 16-bit resolution. Schmitt trigger tachometer input with programmable edge detection
- Hardware asynchronous emergency stop input
- A dedicated interrupt to CPU with eight flags
- Enhanced Motor stop output polarity configuration
- Double update option when PWM counter reaches the max and min values in Zerocentered mode
- Locking feature to prevent some control register bits from being advertently modified
- Trigger output to start an ADC conversion

5 Pin description

Figure 7. STR91xFAM 80-pin package pinout

1. NU (Not Used) on STR910FAM devices. Pin 59 is not connected, pin 60 must be pulled up by a 1.5Kohm resistor to VDDQ.

2. No USBCLK function on STR910FAM devices.

					Ia	DIE 0. DEVICE				
F	Pack	age		e			Alternate functions			
LQFP80	LQFP128	LFBGA144	Pin name	Signal typ	Default pin function	Default input function	Alternate input 1	Alternate output 1	Alternate output 2	Alternate output 3
-	67	L11	P0.0	I/O	GPIO_0.0, GP Input, HiZ	MII_TX_CLK, PHY Xmit clock	I2C0_CLKIN, I2C clock in	GPIO_0.0, GP Output	I2C0_CLKOUT, I2C clock out	ETM_PCK0, ETM Packet
-	69	K10	P0.1	I/O	GPIO_0.1, GP Input, HiZ	-	I2C0_DIN, I2C data in	GPIO_0.1, GP Output	I2C0_DOUT, I2C data out	ETM_PCK1, ETM Packet
-	71	J11	P0.2	I/O	GPIO_0.2, GP Input, HiZ	MII_RXD0, PHY Rx data0	I2C1_CLKIN, I2C clock in	GPIO_0.2, GP Output	I2C1_CLKOUT, I2C clock out	ETM_PCK2, ETM Packet
-	76	H12	P0.3	I/O	GPIO_0.3, GP Input, HiZ	MII_RXD1, PHY Rx data	I2C1_DIN, I2C data in	GPIO_0.3, GP Output	I2C1_DOUT, I2C data out	ETM_PCK3, ETM Packet
-	78	H10	P0.4	I/O	GPIO_0.4, GP Input, HiZ	MII_RXD2, PHY Rx data	TIM0_ICAP1, Input Capture	GPIO_0.4, GP Output	EMI_CS0n, EMI Chip Select	ETM_PSTAT0, ETM pipe status
-	85	F11	P0.5	I/O	GPIO_0.5, GP Input, HiZ	MII_RXD3, PHY Rx data	TIM0_ICAP2, Input Capture	GPIO_0.5, GP Output	EMI_CS1n, EMI Chip Select	ETM_PSTAT1, ETM pipe status
-	88	E11	P0.6	I/O	GPIO_0.6, GP Input, HiZ	MII_RX_CLK, PHY Rx clock	TIM2_ICAP1, Input Capture	GPIO_0.6, GP Output	EMI_CS2n, EMI Chip Select	ETM_PSTAT2, ETM pipe status
-	90	B12	P0.7	I/O	GPIO_0.7, GP Input, HiZ	MII_RX_DV, PHY data valid	TIM2_ICAP2, Input Capture	GPIO_0.7, GP Output	EMI_CS3n, EMI Chip Select	ETM_TRSYNC, ETM trace sync
		•	•		•	•				
-	98	B10	P1.0	I/O	GPIO_1.0, GP Input, HiZ	MII_RX_ER, PHY rcv error	ETM_EXTRIG, ETM ext. trigger	GPIO_1.0, GP Output	UART1_TX, UART xmit data	SSP1_SCLK, SSP mstr clk out
-	99	C10	P1.1	I/O	GPIO_1.1, GP Input, HiZ	-	UART1_RX, UART rcv data	GPIO_1.1, GP Output	MII_TXD0, MAC Tx data	SSP1_MOSI, SSP mstr dat out
-	101	В9	P1.2	I/O	GPIO_1.2, GP Input, HiZ	-	SSP1_MISO, SSP mstr data in	GPIO_1.2, GP Output	MII_TXD1, MAC Tx data	UART0_TX, UART xmit data
-	106	C8	P1.3	I/O	GPIO_1.3, GP Input, HiZ	-	UART2_RX, UART rcv data	GPIO_1.3, GP Output	MII_TXD2, MAC Tx data	SSP1_NSS, SSP mstr sel out
-	109	B7	P1.4	I/O	GPIO_1.4, GP Input, HiZ	-	I2C0_CLKIN, I2C clock in	GPIO_1.4, GP Output	MII_TXD3, MAC Tx data	I2C0_CLKOUT, I2C clock out
-	110	A7	P1.5	I/O	GPIO_1.5, GP Input, HiZ	MII_COL, PHY collision	CAN_RX, CAN rcv data	GPIO_1.5, GP Output	UART2_TX, UART xmit data	ETM_TRCLK, ETM trace clock
-	114	F7	P1.6	I/O	GPIO_1.6, GP Input, HiZ	MII_CRS, PHY carrier sns	I2C0_DIN, I2C data in	GPIO_1.6, GP Output	CAN_TX, CAN Tx data	I2C0_DOUT, I2C data out
-	116	D6	P1.7	I/O	GPIO_1.7, GP Input, HiZ	-	ETM_EXTRIG, ETM ext. trigger	GPIO_1.7, GP Output	MII_MDC, MAC mgt dat ck	ETM_TRCLK, ETM trace clock
						•				
7	10	E2	P2.0	I/O	GPIO_2.0, GP Input, HiZ	UART0_CTS, Clear To Send	I2C0_CLKIN, I2C clock in	GPIO_2.0, GP Output	I2C0_CLKOUT, I2C clock out	ETM_PCK0, ETM Packet
8	11	E3	P2.1	I/O	GPIO_2.1, GP Input, HiZ	UART0_DSR, Data Set Ready	I2C0_DIN, I2C data in	GPIO_2.1, GP Output	I2C0_DOUT, I2C data out	ETM_PCK1, ETM Packet
21	33	M1	P2.2	I/O	GPIO_2.2, GP Input, HiZ	UART0_DCD, Dat Carrier Det	I2C1_CLKIN, I2C clock in	GPIO_2.2, GP Output	I2C1_CLKOUT, I2C clock out	ETM_PCK2, ETM Packet
22	35	К3	P2.3	I/O	GPIO_2.3, GP Input, HiZ	UART0_RI, Ring Indicator	I2C1_DIN, I2C data in	GPIO_2.3, GP Output	I2C1_DOUT, I2C data out	ETM_PCK3, ETM Packet
23	37	L4	P2.4	I/O	GPIO_2.4, GP Input, HiZ	EXTCLK_T0T1E xt clk timer0/1	SSP0_SCLK, SSP slv clk in	GPIO_2.4, GP Output	SSP0_SCLK, SSP mstr clk out	ETM_PSTAT0, ETM pipe status

 Table 8. Device pin description

F	Pack	age		e			Alternate functions			
LQFP80	LQFP128	LFBGA144	Pin name	Signal typ	Default pin function	Default input function	Alternate input 1	Alternate output 1	Alternate output 2	Alternate output 3
12	18	F6	P5.1	I/0	GPIO_5.1, GP Input, HiZ	EXINT9, External Intr	UART0_RxD, UART rcv data	GPIO_5.1, GP Output	CAN_TX, CAN Tx data	UART2_TX, UART xmit data
17	25	K1	PHYCLK _P5.2	I/O	GPIO_5.2, GP Input, HiZ	EXINT10, External Intr	UART2_RxD, UART rcv data	GPIO_5.2, GP Output	MII_PHYCLK, 25Mhz to PHY	TIM3_OCMP1, Out comp/PWM
18	27	H2	P5.3	I/O	GPIO_5.3, GP Input, HiZ	EXINT11, External Intr	ETM_EXTRIG, ETM ext. trigger	GPIO_5.3, GP Output	MII_TX_EN, MAC xmit enbl	TIM2_OCMP1, Out comp/PWM
44	70	J12	P5.4	I/O	GPIO_5.4, GP Input, HiZ	EXINT12, External Intr	SSP0_SCLK, SSP slv clk in	GPIO_5.4, GP Output	SSP0_SCLK, SSP mstr clk out	EMI_CS0n, EMI Chip Select
47	77	H11	P5.5	I/O	GPIO_5.5, GP Input, HiZ	EXINT13, External Intr	SSP0_MOSI, SSP slv dat in	GPIO_5.5, GP Output	SSP0_MOSI, SSP mstr dat out	EMI_CS1n, EMI Chip Select
48	79	H9	P5.6	I/O	GPIO_5.6, GP Input, HiZ	EXINT14, External Intr	SSP0_MISO, SSP mstr dat in	GPIO_5.6, GP Output	SSP0_MISO, SSP slv data out	EMI_CS2n, EMI Chip Select
49	80	G12	P5.7	I/O	GPIO_5.7, GP Input, HiZ	EXINT15, External Intr	SSP0_NSS, SSP slv select in	GPIO_5.7, GP Output	SSP0_NSS, SSP mstr sel out	EMI_CS3n, EMI Chip Select
19	29	H4	P6.0	I/O	GPIO_6.0, GP Input, HiZ	EXINT16, External Intr	TIM0_ICAP1, Input Capture	GPIO_6.0, GP Output	TIM0_OCMP1, Out comp/PWM	MC_UH, IMC phase U hi
20	31	J3	P6.1	I/O	GPIO_6.1, GP Input, HiZ	EXINT17, External Intr	TIM0_ICAP2, Input Capture	GPIO_6.1, GP Output	TIM0_OCMP2, Out comp	MC_UL, IMC phase U lo
13	19	G2	P6.2	I/O	GPIO_6.2, GP Input, HiZ	EXINT18, External Intr	TIM1_ICAP1, Input Capture	GPIO_6.2, GP Output	TIM1_OCMP1, Out comp/PWM	MC_VH, IMC phase V hi
14	20	G3	P6.3	I/O	GPIO_6.3, GP Input, HiZ	EXINT19, External Intr	TIM1_ICAP2, Input Capture	GPIO_6.3, GP Output	TIM1_OCMP2, Out comp	MC_VL, IMC phase V lo
52	83	G8	P6.4	I/O	GPIO_6.4, GP Input, HiZ	EXINT20, External Intr	TIM2_ICAP1, Input Capture	GPIO_6.4, GP Output	TIM2_OCMP1, Out comp/PWM	MC_WH, IMC phase W hi
53	84	G7	P6.5	I/O	GPIO_6.5, GP Input, HiZ	EXINT21, External Intr	TIM2_ICAP2, Input Capture	GPIO_6.5, GP Output	TIM2_OCMP2, Out comp	MC_WL, IMC phase W lo
57	92	E9	P6.6	I/O	GPIO_6.6, GP Input, HiZ	EXINT22_TRIG, Ext Intr & Tach	UART0_RxD, UART rcv data	GPIO_6.6, GP Output	TIM3_OCMP1, Out comp/PWM	ETM_TRCLK, ETM trace clock
58	93	D12	P6.7	I/O	GPIO_6.7, GP Input, HiZ	EXINT23_STOP, Ext Intr & Estop	ETM_EXTRIG, ETM ext. trigger	GPIO_6.7, GP Output	TIM3_OCMP2, Out comp	UART0_TX, UART xmit data
-	5	D1	P7.0	I/O	GPIO_7.0, GP Input, HiZ	EXINT24, External Intr	TIM0_ICAP1, Input Capture	GPIO_7.0, GP Output	8b) EMI_A0, 16b) EMI_A16	ETM_PCK0, ETM Packet
-	6	D2	P7.1	I/O	GPIO_7.1, GP Input, HiZ	EXINT25, External Intr	TIM0_ICAP2, Input Capture	GPIO_7.1, GP Output	8b) EMI_A1, 16b) EMI_A17	ETM_PCK1, ETM Packet
-	7	B1	P7.2	I/O	GPIO_7.2, GP Input, HiZ	EXINT26, External Intr	TIM2_ICAP1, Input Capture	GPIO_7.2, GP Output	8b) EMI_A2, 16b) EMI_A18	ETM_PCK2, ETM Packet
-	13	F1	P7.3	I/O	GPIO_7.3, GP Input, HiZ	EXINT27, External Intr	TIM2_ICAP2, Input Capture	GPIO_7.3, GP Output	8b) EMI_A3, 16b) EMI_A19	ETM_PCK3, ETM Packet
-	14	G1	P7.4	I/O	GPIO_7.4, GP Input, HiZ	EXINT28, External Intr	UART0_RxD, UART rcv data	GPIO_7.4, GP Output	8b) EMI_A4, 16b) EMI_A20	EMI_CS3n, EMI Chip Select
-	15	E5	P7.5	I/O	GPIO_7.5, GP Input, HiZ	EXINT29, External Intr	ETM_EXTRIG, ETM ext. trigger	GPIO_7.5, GP Output	8b) EMI_A5, 16b) EMI_A21	EMI_CS2n, EMI Chip Select

Table 8. Device pin description (continued)

6 Memory mapping

The ARM966E-S CPU addresses a single linear address space of 4 giga-bytes (2³²) from address 0x0000.0000 to 0xFFFF.FFFF as shown in *Figure 9*. Upon reset the CPU boots from address 0x0000.0000, which is chip-select zero at address zero in the Flash Memory Interface (FMI).

The Instruction TCM and Data TCM enable high-speed CPU operation without incurring any performance or power penalties associated with accessing the system buses (AHB and APB). I-TCM and D-TCM address ranges are shown at the bottom of the memory map in *Figure 9*.

6.1 Buffered and non-buffered writes

The CPU makes use of write buffers on the AHB and the D-TCM to decouple the CPU from any wait states associated with a write operation. The user may choose to use write with buffers on the AHB by setting bit 3 in control register CP15 and selecting the appropriate AHB address range when writing. By default at reset, buffered writes are disabled (bit 3 of CP15 is clear) and all AHB writes are non-buffered until enabled. *Figure 9* shows that most addressable items on the AHB are aliased at two address ranges, one for buffered writes and another for non-buffered writes. A buffered write will allow the CPU to continue program execution while the write-back is performed through a FIFO to the final destination on the AHB. If the FIFO is full, the CPU is stalled until FIFO space is available. A non-buffered write will impose an immediate delay to the CPU, but results in a direct write to the final AHB destination, ensuring data coherency. Read operations from AHB locations are always direct and never buffered.

6.2 System (AHB) and peripheral (APB) buses

The CPU will access SRAM, higher-speed peripherals (USB, Ethernet, Programmable DMA), and the external bus (EMI) on the AHB at their respective base addresses indicated in *Figure 9*. Lower-speed peripherals reside on the APB and are accessed using two separate AHB-to-APB bridge units (APB0 and APB1). These bridge units are essentially address windows connecting the AHB to the APB. To access an individual APB peripheral, the CPU will place an address on the AHB bus equal to the base address of the appropriate bridge unit APB0 or APB1, plus the offset of the particular peripheral, plus the offset of the individual data location within the peripheral. *Figure 9* shows the base addresses of bridge units APB0 and APB1, and also the base address of each APB peripheral. Please consult the STR91xFA Reference manual for the address of data locations within each individual peripheral.

6.3 SRAM

The SRAM is aliased at three separate address ranges as shown in *Figure 9*. When the CPU accesses SRAM starting at 0x0400.0000, the SRAM appears on the D-TCM. When CPU access starts at 0x4000.0000, SRAM appears in the buffered AHB range. Beginning at CPU address 0x5000.0000, SRAM is in non-buffered AHB range. The SRAM size must be specified by CPU initialization firmware writing to a control register after any reset condition. Default SRAM size is 32K bytes, with option to set to 64K bytes on STR91xFAx3x devices, and to 96K bytes on STR91xFAx4x devices.

When other AHB bus masters (such as a DMA controller) write to SRAM, their access is never buffered. Only the CPU can make use of buffered AHB writes.

6.4 Two independent Flash memories

The STR91xFA has two independent Flash memories, the larger primary Flash and the small secondary Flash. It is possible for the CPU to erase/write to one of these Flash memories while simultaneously reading from the other.

One or the other of these two Flash memories may reside at the "boot" address position of 0x0000.0000 at power-up or at reset as shown in *Figure 9*. The default configuration is that the first sector of primary Flash memory is enabled and residing at the boot position, and the secondary Flash memory is disabled. This default condition may be optionally changed as described below.

6.4.1 Default configuration

When the primary Flash resides at boot position, typical CPU initialization firmware would set the start address and size of the main Flash memory, and go on to enable the secondary Flash, define it's start address and size. Most commonly, firmware would place the secondary Flash start address at the location just after the end of the primary Flash memory. In this case, the primary Flash is used for code storage, and the smaller secondary Flash can be used for data storage (EEPROM emulation).

6.4.2 Optional configuration

Using the STR91xFA device configuration software tool, or IDE from 3rd party, one can specify that the smaller secondary Flash memory is at the boot location at reset and the primary Flash is disabled. The selection of which Flash memory is at the boot location is programmed in a non-volatile Flash-based configuration bit during JTAG ISP. The boot selection choice will remain as the default until the bit is erased and re-written by the JTAG interface. The CPU cannot change this choice for boot Flash, only the JTAG interface has access.

In this case where the secondary Flash defaults to the boot location upon reset, CPU firmware would typically initialize the Flash memories the following way. The secondary Flash start address and size is specified, then the primary Flash is enabled and its start address and size is specified. The primary Flash start address would typically be located just after the final address location of the secondary Flash. This configuration is particularly well-suited for In-Application-Programming (IAP). The CPU would boot from the secondary Flash memory, initialize the system, then check the contents of the primary Flash memory (by checksum or other means). If the contents of primary Flash is OK, then CPU execution continues from either Flash memory.

7.2 Absolute maximum ratings

This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take normal precautions to avoid application of any voltage higher than the specified maximum rated voltages. It is also recommended to ground any unused input pin to reduce power consumption and minimize noise.

Querra la cl	Baramatar	Va	l lu:t	
Symbol	Parameter	Min	Max	Unit
V _{DD}	Voltage on VDD pin with respect to ground V_{SS}	-0.3	2.4	V
V _{DDQ}	Voltage on VDDQ pin with respect to ground V_{SS}	-0.3	4.0	V
V _{BATT}	Voltage on VBATT pin with respect to ground V_{SS}	-0.3	4.0	V
AV _{DD}	Voltage on AVDD pin with respect to ground V _{SS} (128-pin and 144-ball packages)	-0.3	4.0	V
AV _{REF}	Voltage on AVREF pin with respect to ground V_{SS} (128-pin and 144-ball packages)	-0.3	4.0	V
AV _{REF_AVDD}	Voltage on AVREF_AVDD pin with respect to Ground V_{SS} (80-pin package)	-0.3	4.0	V
V	Voltage on 5V tolerant pins with respect to ground $V_{\rm SS}$	-0.3	5.5	V
VIN	Voltage on any other pin with respect to ground $V_{\rm SS}$	-0.3	4.0	V
T _{ST}	Storage Temperature	-55	+150	°C
TJ	Junction Temperature		+125	°C
ESD	ESD Susceptibility (Human Body Model)	20	00	V

Note: Stresses exceeding above listed recommended "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions (V_{IN} > V_{DDQ} or V_{IN} < V_{SSQ}) the voltage on pins with respect to ground (V_{SSQ}) must not exceed the recommended values.

7.7.1 Main oscillator electrical characteristics

 V_{DDQ} = 2.7 - 3.6 V, V_{DD} = 1.65 - 2 V, T_A = -40 / 85 °C unless otherwise specified.

Symbol	Parameter	Test conditions		Unit		
Gymbol	i arameter		Min	Тур	Мах	Onic
t _{STUP(OSC)}	Oscillator Start-up Time	V _{DD} stable ⁽¹⁾		2	3	mS

Table 18. Main oscillator electrical characteristics

1. Data characterized with quartz crystal, not tested in production.

7.7.2 X1_CPU external clock source

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

Table 19.	External	clock	charac	teristics

Symbol	Paramotor	Test		Unit		
Symbol	Farameter	conditions ⁽¹⁾	Min	Тур	Max	Onic
f _{X1}	External clock source frequency		4		25	MHz
V _{X1H}	X1 input pin high level voltage		0.7xV _{DD}		V _{DD}	V
V _{X1L}	X1 input pin low level voltage	See Figure 16	V _{SS}		0.3xV _{DD}	V
t _{w(X1H)} t _{w(X1L)}	X1 high or low time ⁽²⁾		6			ns
$t_{r(X1)} \ t_{f(X1)}$	X1 rise or fall time ⁽²⁾				20	ns
١ _L	X1 input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$			±1	μA
C _{IN(X1)}	X1 input capacitance ⁽²⁾			5		pF
DuCy _(X1)	Duty cycle		45		55	%

1. Data based on typical appilcation software.

2. Data based on design simulation and/or technology characteristics, not tested in production.

7.9.2 Electro magnetic interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm SAE J 1752/3 which specifies the board and the loading of each pin.

Symbol	Paramotor	Conditions	Monitored	Max [f _{OSC} /f _o	Unit	
Symbol	T arameter		Frequency Band	24 MHz / 48 MHz ⁽¹⁾	24 MHz / 96 MHz ⁽¹⁾	Unit
S _{EMI}	Peak level	evel $V_{DDQ} = 3.3 \text{ V}, V_{DD} = 1.8 \text{ V}, T_A = +25 °C, LQFP128 package^{(2)} conforming to SAE J 1752/3$	0.1 MHz to 30 MHz	14	10	
			30 MHz to 130 MHz	18	19	dBμV
			130 MHz to 1GHz	18	22	
			SAE EMI Level	4	4	-

Table	28.	EMI	data
-------	-----	-----	------

1. Data based on characterization results, not tested in production.

2. BGA and LQFP devices have similar EMI characteristics.

7.9.3 Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity.

7.9.4 Electro-static discharge (ESD)

Electro-Static Discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electro-static discharge voltage (Human Body Model)	$T_A = +25^{\circ}C$ conforming to JESD22-A114	2	+/-2000	V
V _{ESD(CDM)}	Electro-static discharge voltage (Charged Device Model)	$T_A = +25^{\circ}C$ conforming to JESD22-C101	Ш	1000	v

1. Data based on characterization results, not tested in production.

7.11 External memory bus timings

 V_{DDQ} = 2.7 - 3.6 V, V_{DD} = 1.65 - 2 V, T_{A} = -40 / 85 °C, C_{L} = 30 pF unless otherwise specified.

•			
Symbol	Parameter ⁽¹⁾	Value ⁽²⁾	
^t BCLK	EMI bus clock period	1 /(f _{HCLK} x EMI_ratio)	

Table 32. EMI bus clock period

1. The internal EMI Bus clock signal is available externally only on LFBGA144 packages (ball M8), and not available on LQFP packages.

2. EMI_ratio =1/ 2 by default (can be programmed to be 1 by setting the proper bits in the SCU_CLKCNTR register)

7.11.1 Asynchronous mode

Non Mux Write

Figure 18. Non-mux write timings

Table 33. EMI non-mux write operation

Symbol	Parameter	Value		
Symbol		Min	Мах	
t _{WCR}	WRn to CSn inactive	(t _{BCLK} /2) - 2 ns	(t _{BCLK} /2) + 2 ns	
t _{WAS}	Write address setup time	((WSTWEN + 1/2) x t _{BCLK}) - 2 ns	((WSTWEN + 1/2) x t _{BCLK}) + 1 ns	
t _{WDS}	Write data setup time	((WSTWEN + 1/2) x t _{BCLK}) - 5 ns	((WSTWEN + 1/2) x t _{BCLK})	
t _{WP}	Write pulse width	(WSTWR-WSTWEN + 1) x t _{BCLK} - 1 ns	(WSTWR-WSTWEN + 1) x t _{BCLK} + 1.5 ns	

Non-mux read

Figure 19. Non-mux bus read timings

Table	34.	EMI	read	operation

Symbol	Parameter	Value			
Symbol		Min	Мах		
t _{RCR}	Read to CSn inactive	0	1.5 ns		
t _{RAS}	Read address setup time	((WSTOEN) x t _{BCLK})- 1.5 ns	(WSTOEN) x t _{BCLK}		
t _{RDS}	Read data setup time	12.5	-		
t _{RDH}	Read data hold time	0	-		
t _{RP}	Read pulse width	((WSTRD-WSTOEN+1) x t _{BCLK})- 0.5 ns	((WSTRD-WSTOEN+1) x t _{BCLK})+ 2 ns		

Ethernet MII management timings

Table 42. Ethernet MII management timing table

	Symbol	Parameter Symbol Min Max	lue	Unit		
	Symbol		Symbol	Min	Max	Onit
	1	MDIO delay from rising edge of MDC	t _c (MDIO)		2.83	ns
	2	MDIO setup time to rising edge of MDC	T _{su} (MDIO)	2.70		ns
	3	MDIO hold time from rising edge of MDC	T _h (MDIO)	-2.03		ns

Ethernet MII transmit timings

Figure 33. ADC conversion characteristics

1. Legend: (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line E_T = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. E_G = Offset Error: deviation between the first actual transition and the first ideal one. E_G = Gain Error: deviation between the last ideal transition and the last actual one. E_D = Differential Linearity Error: maximum deviation between actual steps and the ideal one. E_L = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

Equation 1

$$1LSB_{IDEAL} = \frac{V_{DDA} - V_{SSA}}{1024}$$

Marking of engineering samples for LQFP80

The following figure shows the engineering sample marking for the LQFP80 package. Only the information field containing the engineering sample marking is shown

Figure 42. LQFP80 package top view

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

