

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	ARM9®
Core Size	16/32-Bit
Speed	96MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, Microwire, SPI, SSI, SSP, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	80
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 2V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LFBGA
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str912faz42h6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 49.	ADC conversion time (silicon Rev H and higher)	91
Table 50.	LQFP80 12 x12 mm low-profile quad flat package	
	mechanical data	96
Table 51.	LQFP128 - 128-pin, 14 x 14 mm low-profile quad flat package	
	mechanical data	99
Table 52.	LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,	
	0.8 mm pitch, package mechanical data 1	02
Table 53.	Thermal characteristics	04
Table 54.	Ordering information scheme	05
Table 55.	Document revision history 1	06

1 Description

STR91xFA is a series of ARM[®]-powered microcontrollers which combines a 16/32-bit ARM966E-S RISC processor core, dual-bank Flash memory, large SRAM for data or code, and a rich peripheral set to form an ideal embedded controller for a wide variety of applications such as point-of-sale terminals, industrial automation, security and surveillance, vending machines, communication gateways, serial protocol conversion, and medical equipment. The ARM966E-S core can perform single-cycle DSP instructions, good for speech processing, audio algorithms, and low-end imaging.

Tuble 4. Occioning	of secondary r lash mer	liony
Size of secondary Flash	32 Kbytes	128 Kbytes
Number of sectors	4	8
Size of each sector	8 Kbytes	16 Kbytes

Table 4. Sectoring of secondary Flash memory

3.8 One-time-programmable (OTP) memory

There are 32 bytes of OTP memory ideally suited for serial numbers, security keys, factory calibration constants, or other permanent data constants. These OTP data bytes can be programmed only one time through either the JTAG interface or by the CPU, and these bytes can never be altered afterwards. As an option, a "lock bit" can be set by the JTAG interface or the CPU which will block any further writing to the this OTP area. The "lock bit" itself is also OTP. If the OTP array is unlocked, it is always possible to go back and write to an OTP byte location that has not been previously written, but it is never possible to change an OTP bytes (bytes 31 and 30) are reserved for the STR91xFA product ID and revision level.

3.8.1 **Product ID and revision level**

OTP bytes 31 and 30 are programmed at ST factory before shipment and may be read by firmware to determine the STR91xFA product type and silicon revision so it can optionally take action based on the silicon on which it is running. In Rev H devices and 1MB/2MB Rev A devices, byte 31 contains the major family identifier of "9" (for STR9) in the high-nibble location and the minor family identifier in the low nibble location, which can be used to determine the size of primary flash memory. In all devices, byte 30 contains the silicon revision level indicator. See *Table 5* for values related to the revisions of STR9 production devices and size of primary Flash memory. See *Section 8* for details of external identification of silicon revisions.

Production salestype	Silicon revision	Size of primary Flash	OTP byte 31	OTP byte 30
STR91xFAxxxxx	Rev G	256K or 512K	91h	20h
STR91xFAxxxxx	Rev H	256K	90h	21h
STR91xFAxxxxx	Rev H	512K	91h	21h
STR91xFAx46xx	Rev A	1024K	92h	21h
STR91xFAx47xx	Rev A	2048K	93h	21h

Table 5. Product ID and revision level values

3.9 Vectored interrupt controller (VIC)

Interrupt management in the STR91xFA is implemented from daisy-chaining two standard ARM VIC units. This combined VIC has 32 prioritized interrupt request channels and generates two interrupt output signals to the CPU. The output signals are FIQ and IRQ, with FIQ having higher priority.

3.9.1 FIQ handling

FIQ (Fast Interrupt reQuest) is the only non-vectored interrupt and the CPU can execute an Interrupt Service Routine (ISR) directly without having to determine/prioritize the interrupt source, minimizing ISR latency. Typically only one interrupt source is assigned to FIQ. An FIQ interrupt has its own set of banked registers to minimize the time to make a context switch. Any of the 32 interrupt request input signals coming into the VIC can be assigned to FIQ.

3.9.2 IRQ handling

IRQ is a vectored interrupt and is the logical OR of all 32 interrupt request signals coming into the 32 IRQ channels. Priority of individual vectored interrupt requests is determined by hardware (IRQ channel Intr 0 is highest priority, IRQ channel Intr 31 is lowest).

However, inside the same VIC (primary or secondary VIC), CPU firmware may re-assign individual interrupt sources to individual hardware IRQ channels, meaning that firmware can effectively change interrupt priority levels as needed within the same VIC (from priority 0 to priority 16).

Note: VIC0 (primary VIC) interrupts always have higher priority than VIC1 (secondary VIC) interrupts

When the IRQ signal is activated by an interrupt request, VIC hardware will resolve the IRQ interrupt priority, then the ISR reads the VIC to determine both the interrupt source and the vector address to jump to the service code.

The STR91xFA has a feature to reduce ISR response time for IRQ interrupts. Typically, it requires two memory accesses to read the interrupt vector address from the VIC, but the STR91xFA reduces this to a single access by adding a 16th entry in the instruction branch cache, dedicated for interrupts. This 16th cache entry always holds the instruction that reads the interrupt vector address from the VIC, eliminating one of the memory accesses typically required in traditional ARM implementations.

3.9.3 Interrupt sources

The 32 interrupt request signals coming into the VIC on 32 IRQ channels are from various sources; 5 from a wake-up unit and the remaining 27 come from internal sources on the STR91xFA such as on-chip peripherals, see *Table 6*. Optionally, firmware may force an interrupt on any IRQ channel.

One of the 5 interrupt requests generated by the wake-up unit (IRQ25 in *Table 6*) is derived from the logical OR of all 32 inputs to the wake-up unit. Any of these 32 inputs may be used to wake up the CPU and cause an interrupt. These 32 inputs consist of 30 external interrupts on selected and enabled GPIO pins, plus the RTC interrupt, and the USB Resume interrupt.

5 Pin description

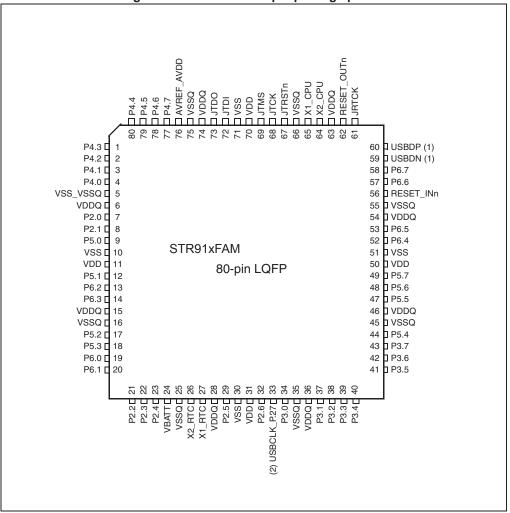


Figure 7. STR91xFAM 80-pin package pinout

1. NU (Not Used) on STR910FAM devices. Pin 59 is not connected, pin 60 must be pulled up by a 1.5Kohm resistor to VDDQ.

2. No USBCLK function on STR910FAM devices.

F	Packa	age		е			Alternate functions			
LQFP80	LQFP128	LFBGA144	Pin name	Signal type	Default pin function	Default input function	Alternate input 1	Alternate output 1	Alternate output 2	Alternate output 3
-	118	E6	P7.6	I/O	GPIO_7.6, GP Input, HiZ	EXINT30, External Intr	TIM3_ICAP1, Input Capture	GPIO_7.6, GP Output	8b) EMI_A6, 16b) EMI_A22	EMI_CS1n, EMI Chip Select
-	119	A5	P7.7	I/O	GPIO_7.7, GP Input, HiZ	EXINT31, External Intr	TIM3_ICAP2, Input Capture	GPIO_7.7, GP Output	EMI_CS0n, EMI chip select	16b) EMI_A23, 8b) EMI_A7
-	26	L1	P8.0	I/O	GPIO_8.0, GP Input, HiZ	-	-	GPIO_8.0, GP Output	8b) EMI_D0, 16b) EMI_AD0	-
-	28	H3	P8.1	I/O	GPIO_8.1, GP Input, HiZ	-	-	GPIO_8.1, GP Output	8b) EMI_D1, 16b) EMI_AD1	-
-	30	J2	P8.2	I/O	GPIO_8.2, GP Input, HiZ	-	-	GPIO_8.2, GP Output	8b) EMI_D2, 16b) EMI_AD2	-
-	32	K2	P8.3	I/O	GPIO_8.3, GP Input, HiZ	-	-	GPIO_8.3, GP Output	8b) EMI_D3, 16b) EMI_AD3	-
-	34	L3	P8.4	I/O	GPIO_8.4, GP Input, HiZ	-	-	GPIO_8.4, GP Output	8b) EMI_D4, 16b) EMI_AD4	-
-	36	J4	P8.5	I/O	GPIO_8.5, GP Input, HiZ	-	-	GPIO_8.5, GP Output	8b) EMI_D5, 16b) EMI_AD5	-
-	38	M2	P8.6	I/O	GPIO_8.6, GP Input, HiZ	-	-	GPIO_8.6, GP Output	8b) EMI_D6, 16b) EMI_AD6	-
-	44	K5	P8.7	I/O	GPIO_8.7, GP Input, HiZ	-	-	GPIO_8.7, GP Output	8b) EMI_D7, 16b) EMI_AD7	-
-	46	M6	P9.0	I/O	GPIO_9.0, GP Input, HiZ	-	-	GPIO_9.0, GP Output	8b) EMI_A8 16b) EMI_AD8	-
-	47	M7	P9.1	I/O	GPIO_9.1, GP Input, HiZ	-	-	GPIO_9.1, GP Output	8b) EMI_A9, 16b) EMI_AD9	-
-	50	K6	P9.2	I/O	GPIO_9.2, GP Input, HiZ	-	-	GPIO_9.2, GP Output	8b) EMI_A10, 16b)EMI_AD10	-
-	51	J6	P9.3	I/O	GPIO_9.3, GP Input, HiZ	-	-	GPIO_9.3, GP Output	8b) EMI_A11, 16b)EMI_AD11	-
-	52	H6	P9.4	I/O	GPIO_9.4, GP Input, HiZ	-	-	GPIO_9.4, GP Output	8b) EMI_A12, 16b)EMI_AD12	-
-	58	L8	P9.5	I/O	GPIO_9.5, GP Input, HiZ	-	-	GPIO_9.5, GP Output	8b) EMI_A13, 16b)EMI_AD13	-
-	62	M9	P9.6	I/O	GPIO_9.6, GP Input, HiZ	-	-	GPIO_9.6, GP Output	8b) EMI_A14, 16b)EMI_AD14	-
-	64	K9	P9.7	I/O	GPIO_9.7, GP Input, HiZ	-	-	GPIO_9.7, GP Output	8b) EMI_A15, 16b)EMI_AD15	-

Table 8. Device pin description (continued)

Table 8. Device pin description (continued)	in description (continued)	descriptio	pin	Device	Table 8.
---	----------------------------	------------	-----	--------	----------

F	Packa	age		đ			escription (d	,	functions	
LQFP80	LQFP128	LFBGA144	Pin name	Signal type	Default pin function	Default input function	Alternate input 1	Alternate output 1	Alternate output 2	Alternate output 3
-	21	G4	EMI_ BWR_ WRLn	0	EMI byte write strobe (8 bit mode) or low byte write strobe (16 bit mode) Can also be configured as EMI_LBn in BGA package			N/A		
-	22	H1	EMI_ WRHn	0	EMI high byte write strobe (16-bit mode) Can also be configured as EMI_UBn in BGA package	N/A				
-	74	J10	EMI_ALE	0	EMI address latch enable (mux mode)	N/A				
-	75	J9	EMI_ RDn	0	EMI read strobe	N/A				
-	-	H8	EMI_ BAAn	0	EMI Burst address advance	N/A				
-	-	K8	EMI_ WAITn	I	EMI Wait input for burst mode device			N/A		
-	-	M8	EMI_ BCLK	0	EMI bus clock			N/A		
-	-	A12	EMI_ WEn	0	EMI write enable			N/A		
-	91	E10	TAMPER _IN	I	Tamper detection input			N/A		
-	94	D11	MII_ MDIO	I/O	MAC/PHY management data line			N/A		
59	95	D10	USBDN	I/O	USB data (-) bus connect			N/A		
60	96	C11	USBDP	I/O	USB data (+) bus connect			N/A		
56	89	C12	RESET _INn	I	External reset input			N/A		
62	100	A9	RESET _OUTn	0	Global or System reset output			N/A		
65	104	A10	X1_CPU	I	CPU oscillator or crystal input			N/A		
64	103	A11	X2_CPU	0	CPU crystal connection			N/A		

_	Dect			1		Alternate functions				
	Packa	age		ЭС				Alternate	tunctions	1
LQFP80	LQFP128	LFBGA144	Pin name	Signal type	Default pin function	Default input function	Alternate input 1	Alternate output 1	Alternate output 2	Alternate output 3
27	42	M5	X1_RTC	I	RTC oscillator or crystal input (32.768 kHz)			N/A		
26	41	M4	X2_RTC	0	RTC crystal connection			N/A		
61	97	B11	JRTCK	0	JTAG return clock or RTC clock			N/A		
67	107	D8	JTRSTn	I	JTAG TAP controller reset			N/A		
68	108	E8	JTCK	I	JTAG clock			N/A		
69	111	A6	JTMS	I	JTAG mode select			N/A		
72	115	C6	JTDI	I	JTAG data in			N/A		
73	117	B6	JTDO	0	JTAG data out			N/A		
-	122	A3	AVDD	v	ADC analog voltage source, 2.7 V - 3.6 V			N/A		
-	4	C3	AVSS	G	ADC analog ground	N/A				
5	-	-	AVSS_ VSSQ	G	Common ground point for digital I/O & analog ADC			N/A		
-	123	A2	AVREF	v	ADC reference voltage input			N/A		
76	-	-	AVREF_ AVDD	v	Combined ADC ref voltage and ADC analog voltage source, 2.7 V - 3.6 V			N/A		
24	39	M3	VBATT	v	Standby voltage input for RTC and SRAM backup			N/A		
6	9	E1	VDDQ	V						
15	23	J1	VDDQ	V						
36	57	-	VDDQ	V						
46	73	K12	VDDQ	V	V Source for					
54	86	B5	VDDQ	V	I/O and USB. 2.7 V to 3.6 V			N/A		
28	43	L5	VDDQ	V	2.7 V (0 0.0 V					
63	102	H7	VDDQ	V						
74	120	D9	VDDQ	V						
-	-	F9	VDDQ	V						

Table 8. Device pin description (continued)

DocID13495 Rev 7

7.4 **RESET_INn and power-on-reset characteristics**

 V_{DDQ} = 2.7 - 3.6V, V_{DD} = 1.65 - 2V, T_{A} = -40 / 85 $^{\circ}\text{C}$ unless otherwise specified.

Symbol	Parameter	Test conditions		Unit			
Symbol	Farameter	Test conditions	Min ⁽¹⁾	Тур	Max	Onit	
t _{RINMIN}	RESET_INn Valid Active Low		100			ns	
t _{POR}	Power-On-Reset Condition duration	V _{DDQ} ,V _{DD} ramp time is less than 10ms: 0V to V _{DD}	10			ms	
t _{RSO}	RESET_OUT Duration (Watchdog reset)		one PCLK			ns	

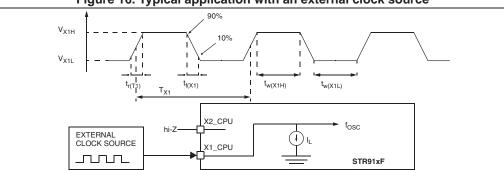
Table 13. RESET	_INn and power-on-reset	characteristics
-----------------	-------------------------	-----------------

1. Data based on bench measurements, not tested in production.

7.5 LVD electrical characteristics

 V_{DDQ} = 2.7 - 3.6V, V_{DD} = 1.65 - 2V, T_{A} = -40 / 85 °C unless otherwise specified.

Symbol	Parameter	Test		Unit		
Symbol	Farameter	conditions	Min	Тур	Max	Unit
V _{DD_LVD+} (1.8V)	LVD threshold during V _{DD} rise		1.43	1.50	1.58	V
V _{DD_LVD-} (1.8V)	LVD threshold during V _{DD} fall		1.33	1.40	1.47	V
V _{DD_BRN} (1.8V)	V _{DD} brown out warning threshold			1.65		V
V _{DDQ_LVD+} (3.0V)	LVD threshold during V _{DDQ} rise	(1)(2)	2.32	2.45	2.57	V
V _{DDQ_LVD-} (3.0V)	LVD threshold during V _{DDQ} fall	(1)(2)	2.23	2.35	2.46	v
V _{DDQ_BRN} (3.0V)	V _{DDQ} brown out warning threshold	(1)(2)		2.65		V
V _{DDQ_LVD+} (3.3V)	LVD threshold during V _{DDQ} rise	(2)(3)	2.61	2.75	2.89	V
V _{DDQ_LVD-} (3.3V)	LVD threshold during V _{DDQ} fall	(2)(3)	2.52	2.65	2.78	
V _{DDQ_BRN} (3.3V)	V _{DDQ} brown out warning threshold	(2)(3)		2.95		V


 Table 14. LVD electrical characteristics

1. For V_{DDQ} I/O voltage operating at 2.7 - 3.3V.

 Selection of V_{DDQ} operation range is made using configuration software from ST, or IDE from 3rd parties. The default condition is V_{DDQ}=2.7V - 3.3V.

3. For V_{DDQ} I/O voltage operating at 3.0 - 3.6V.

Figure 16. Typical application with an external clock source

7.7.3 RTC clock generated from a crystal/ceramic resonator

The RTC (Real-Time Clock) can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results obtained with typical external components specified in *Table 20 & Table 21*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Note: For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5 pF to 16 pF range, selected to match the requirements of the crystal or resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2.

Load capacitance CL has the following formula:

 $CL = CL1 \times CL2 / (CL1 + CL2) + Cstray$

where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.

Caution: Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF, then CL1 = CL2 = 8 pF.

Conditions: V_{DDO} = 2.7 - 3.6 V, V_{DD} = 1.65 - 2 V, T_A = -40 / 85 °C unless otherwise specified.

Symbol	Parameter	Test	Va	Unit		
Symbol	Falameter	conditions	Min	Тур	Max	Onic
R _F	External feedback resistor			22		MΩ
V _{START(RTC)}	Oscillator start voltage		$V_{DD_LVD^+}$ ⁽¹⁾			V
g _M	Oscillator transconductance ⁽²⁾	Start-up	1.8			µA/Volts
t _{STUP(RTC)}	Oscillator Start-up Time ⁽²⁾	V _{DD} stable			1	S

Table 20. RTC oscillator electrical characteristics

1. Refer to Table 14 for min. value of $V_{DD LVD+}$

2. Data based on bench measurements, not tested in production.

7.9.2 Electro magnetic interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm SAE J 1752/3 which specifies the board and the loading of each pin.

Symbol	Sumbol Devenator	Conditions	Monitored	Max [fosc/fo	Unit	
Symbol Parameter	Conditions	Frequency Band	24 MHz / 48 MHz ⁽¹⁾	24 MHz / 96 MHz ⁽¹⁾		
		$V_{DDQ} = 3.3 \text{ V}, V_{DD} = 1.8 \text{ V}, T_{A} = +25 \text{ °C},$	0.1 MHz to 30 MHz	14	10	
S _{EMI}	T _A =		30 MHz to 130 MHz	18	19	dBμV
	conforming to SAE J 1752/3	130 MHz to 1GHz	18	22		
		SAE EMI Level	4	4	-	

Table	28.	EMI	data
-------	-----	-----	------

1. Data based on characterization results, not tested in production.

2. BGA and LQFP devices have similar EMI characteristics.

7.9.3 Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity.

7.9.4 Electro-static discharge (ESD)

Electro-Static Discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electro-static discharge voltage (Human Body Model)	$T_A = +25^{\circ}C$ conforming to JESD22-A114	2	+/-2000	V
V _{ESD(CDM)}	Electro-static discharge voltage (Charged Device Model)	$T_A = +25^{\circ}C$ conforming to JESD22-C101	II	1000	v

Table	29.	ESD	data
-------	-----	-----	------

1. Data based on characterization results, not tested in production.

Mux read

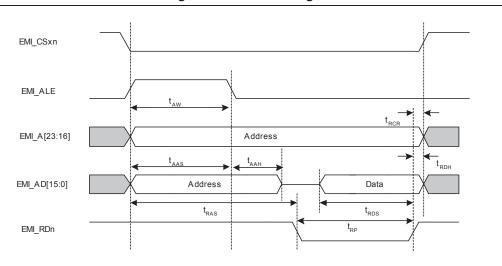


Figure 21. Mux read diagram

Table 36. Mux read times

Symbol	Parameter	Value			
Symbol	Farameter	Min	Мах		
t _{RCR}	Read to CSn inactive	0	1.5 ns		
t _{RAS}	Read address setup time	((WSTOEN) x t _{BCLK})- 4 ns	((WSTOEN) x t _{BCLK})		
t _{RDS}	Read data setup time	12 ns	-		
t _{RDH}	Read data hold time	0			
t _{RP}	Read pulse width	((WSTRD-WSTOEN+1) x t _{BCLK}) - 0.5 ns	((WSTRD-WSTOEN+1) x t_{BCLK}) + 2.5 ns		
t _{AW}	ALE pulse width	(ALE_LENGTH x t _{BCLK}) - 3.5 ns	(ALE_LENGTH x t _{BCLK})		
t _{AAS}	Address to ALE setup time	(ALE_LENGTH x t _{BCLK}) - 3.5 ns	(ALE_LENGTH x t _{BCLK})		
t _{AAH}	Address to ALE hold time	(t _{BCLK} /2)- 1 ns	(t _{BCLK} /2) + 2 ns		

Page mode read

Table 37. Page mode read times

Symbol	Devenetor	Value			
Symbol	Parameter	Min	Мах		
t _{RDH}	Read data hold time	0			
t _{RDS}	Read data setup time	12 ns	-		
t _{ADW}	ALE pulse width	(t _{BCLK}) - 1.5 ns	(t _{BCLK})+ 0.5 ns		
t _{RAS}	Read address setup time	((WSTOEN) x t _{BCLK})	((WSTOEN) x t _{BCLK}) + 2.5 ns		
t _{RP}	Read pulse width	((WSTRD-WSTOEN+1) x t _{BCLK})	((WSTRD-WSTOEN+1) x t _{BCLK}) + 2 ns		
t _{RCR}	Read to CSn inactive	0	1 ns		

Sync burst read

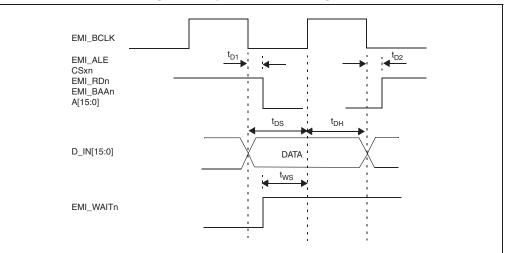
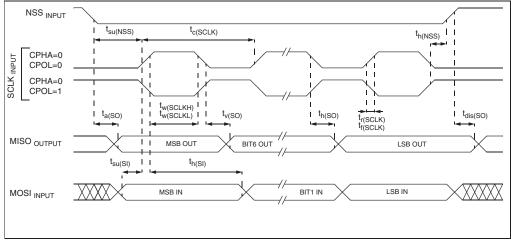


Figure 24. Sync burst read diagram

Table 39. Sync burst read tim

Querra had	Demonster	Val	lue
Symbol	Parameter	Min	Мах
t _{D1BAA}	BAA t _{D1}	0 ns	2 ns
t _{D2BAA}	BAA t _{D2}	0.5ns	2.5 ns
t _{D1ALE}	ALE t _{D1}	1 ns	3.5 ns
t _{D2ALE}	ALE t _{D2}	(t _{BCLK} /2)+0.5 ns	(t _{BCLK} /2)+3 ns
t _{D1RD}	RD t _{D1}	0	2 ns
t _{D2RD}	RD t _{D2}	0.5 ns	2.5 ns
t _{D1A}	Address t _{D1}	2 ns	4 ns
t _{D2A}	Address t _{D2}	2.5 ns	3.5 ns
t _{D1CS}	CS t _{D1}	0.5 ns	3 ns
t _{D2CS}	CS t _{D2}	1 ns	3.5 ns
t _{WS}	WAIT set up time	1 ns	4 ns
t _{DS}	Data setup time	4.5 ns	-
t _{DH}	Data hold time	0	-


7.12.5 SPI electrical characteristics

 V_{DDQ} = 2.7 - 3.6 V, V_{DD} = 1.65 - 2 V, T_A = -40 / 85 °C unless otherwise specified.

Cumbal	Parameter	Test conditions	Value		Unit
Symbol	Parameter	Test conditions	Тур	Max	Unit
f _{SCLK}	SDI alaak fraguanay	Master		24	MHz
1/t _{c(SCLK)}	SPI clock frequency	Slave		4	IVITIZ
t _{r(SCLK)}	SPI clock rise and fall times	50pF load	0	.1	V/ns
t _{f(SCLK)}	or relock tise and fair times		0	. 1	V/113
t _{su(SS)}	SS setup time	Slave	1		
t _{h(SS)}	SS hold time	Slave	1		
t _{w(SCLKH)}	SCLK high and low time	Master	1		
t _{w(SCLKL)}		Slave			
t _{su(MI)}	Data input setup time	Master	TBD		
t _{su(SI)}		Slave	5		
t _{h(MI)}	Data input hold time	Master	TBD		
t _{h(SI)}	Data input noid time	Slave	6		t _{PCLK}
t _{a(SO)}	Data output access time	Slave		6	
t _{dis(SO)}	Data output disable time	Slave		6	
t _{v(SO)}	Data output valid time	Slave (after enable		6	
t _{h(SO)}	Data output hold time	edge)	0		
t _{v(MO)}	Data output valid time	Master (before capture	0.25		
t _{h(MO)}	Data output hold time	edge)	0.25		

Table 46. SPI electrical characteristics

Figure 30. SPI slave timing diagram with CPHA = 0

DocID13495 Rev 7

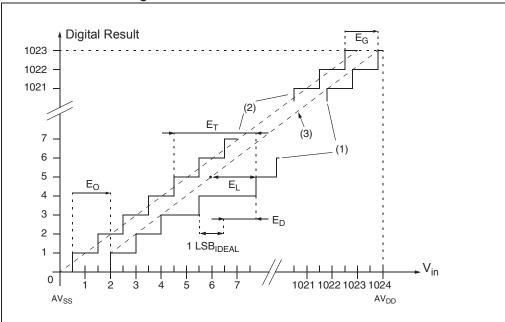


Figure 33. ADC conversion characteristics

1. Legend: (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line E_T = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. E_G = Offset Error: deviation between the first actual transition and the first ideal one. E_G = Gain Error: deviation between the last ideal transition and the last actual one. E_D = Differential Linearity Error: maximum deviation between actual steps and the ideal one. E_L = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

Equation 1

$$1LSB_{IDEAL} = \frac{V_{DDA} - V_{SSA}}{1024}$$

Marking of engineering samples for LQFP128

The following figure shows the engineering sample marking for the LQFP128 package. Only the information field containing the engineering sample marking is shown.

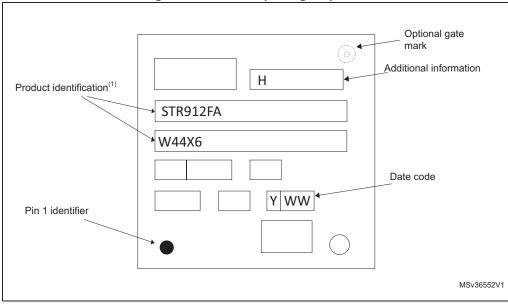


Figure 44. LQFP128 package top view

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Symbol		millimeters	ers inches ⁽¹⁾			
Symbol	Min	Тур	Max	Тур	Min	Max
A ⁽²⁾	-	-	1.700			0.0669
A1	0.210	-	-	0.0083		
A2	-	1.060	-		0.0417	
A3		0.026			0.0010	
A4	-	0.800	-	-	0.0315	-
b	0.350	0.400	0.450	0.0138	0.0157	0.0177
D	9.850	10.000	10.150	0.3878	0.3937	0.3996
D1	-	8.800	-	-	0.3465	-
E	9.850	10.000	10.150	0.3878	0.3937	0.3996
E1	-	8.800	-	-	0.3465	-
е	-	0.800	-	-	0.0315	-
F	-	0.600	-	-	0.0236	-
ddd	0.100				0.0039	
eee	0.150			0.0059		
fff		0.080			0.0031	

Table 52.LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,0.8 mm pitch, package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. STATSChipPAC package dimensions.

11 Revision history

Date	Revision	Changes
09-May-2007	1	Initial release
26-Nov-2007	2	Updated Standby current in Table 15: Supply current characteristics on page 64 Added Section 7.1: Parameter conditions on page 58 Added Section 7.7.2: X1_CPU external clock source on page 67 Updated Section 7.11: External memory bus timings on page 76 Added Figure 14: LVD reset delay case 3 on page 63 Added Table 48 and Table 49 in ADC characteristics section Added min/max values for E, D, E1, D1 in Figure 43 on page 98
14-May-2008	3	Added 1MB and 2M devices, creating merged datasheet from seperate STR91xFAx32, 42, 44, 46 and 47 devices. Added STR912FAW32 to Table 1: Device summary on page 1 Added paragraph on voltage supply shutdown in Section 3.12 on page 24 Removed DMA feature for I2C in Section 3.21 on page 33 Updated Sleep mode current in Table 10: Current characteristics on page 60 Added Table 16: Typical current consumption at 25 °C on page 65 Updated operating conditions for V _{DD} and f _{CPUCLK} in Section 7.3 on page 61 and Section 7.7: Clock and timing characteristics on page 66 Changed SPI master t _{SU} and t _{H to} TBD in Table 46: SPI electrical characteristics on page 88
17-Jul-2008	4	Updated Section 3.10.6: UART and SSP clock (BRCLK) on page 22 Updated Table 11: Operating conditions on page 61 Updated I _{SLEEP(IDDQ)} in Table 15: Supply current characteristics on page 64 Updated Table 17: Internal clock frequencies on page 66 Updated Table 31: I/O characteristics on page 75
22-Dec-2008	5	Updated Section 7.7.3 on page 68. Small text changes.

Table 55. Document revision history

Date	Revision	Changes
02-Jul-2009	6	Section 3.13.7: Tamper detection: Removed information about "Normally Closed/Tamper Open mode". Table 31: I/O characteristics: Updated V _{HYS} row.
3-Mar-2015	7	Updated Figure 40: LQFP80 12 x 12 mm 80 pin low-profile quad flat package outline on page 95, Figure 43: LQFP128 14 x 14 mm 128 pin low-profile quad flat package outline on page 98 and Figure 45: LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package outline on page 101 Updated Table 50: LQFP80 12 x12 mm low-profile quad flat package mechanical data on page 96, Table 51: LQFP128 - 128- pin, 14 x 14 mm low-profile quad flat package mechanical data on page 99, and Table 52: LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package mechanical data on page 102 Added Figure 42: LQFP80 package top view on page 97, Figure 43: LQFP128 14 x 14 mm 128 pin low-profile quad flat package outline on page 98, Figure 44: LQFP128 package top view on page 100 and Figure 45: LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package outline on page 101

Table 55. Document revision history

