

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	-
Number of Gates	-
Voltage - Supply	-
Mounting Type	Surface Mount
Operating Temperature	-
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k250efc672-1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Column Interconnect

Alternatively, one clock and clock enable can be used to control the input registers of the EAB, while a different clock and clock enable control the output registers (see Figure 2).

Dedicated Inputs 8
Global Signals

Dedicated Clocks

Row Interconnect

RAM/ROM
286 × 16
512 × 8
512 × 8
2,048 × 2
Data In 1,024 × 4
2,048 × 2
Data Interconnect.

Note (2)
Write Address []

Figure 2. FLEX 10KE Device in Dual-Port RAM Mode Notes (1), (3)

Notes:

rden

autclacken

inclocken

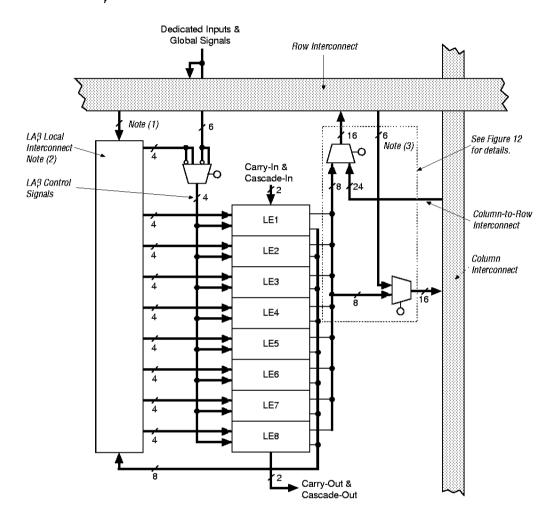
inclock

autclack

(1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset.

Write

- (2) EPF10K30E and EPF10K50E devices have 88 EAB local interconnect channels. EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K250E devices have 104 EAB local interconnect channels.
- (3) The EPF10K100B device does not offer dual-port RAM mode.


The FLEX 10KE EAB can be used in a single-port mode, which is useful for backward-compatibility with FLEX 10K designs (see Figure 3).

Multiplexers allow read

clocked by inclock or outclock signals.

address and read enable registers to be

Figure 6. FLEX 10KE LAB

Notes:

- (1) EPF10K30E and EPF10K50E devices have 22 inputs to the LAB local interconnect channel from the row; EPF10K100E, EPF10K100B, EPF10K130E, EPF10K200E, and EPF10K250E devices have 26.
- (2) EPF10K30E and EPF10K50E devices have 30 LAB local interconnect channels; EPF10K100E, EPF10K100B, EPF10K130E, EPF10K200E, and EPF10K250E devices have 34.
- (3) In EPF10K100B devices, four row channels can drive column channels at each intersection.

Cascade Chain

With the cascade chain, the FLEX 10KE architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. With a delay as low as 0.6 ns per LE, each additional LE provides four more inputs to the effective width of a function. Cascade chain logic can be created automatically by the MAX+PLUS II Compiler during design processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are automatically implemented by linking several LABs together. For easier routing, a long cascade chain skips every other LAB in a row. A cascade chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first LAB in a row cascades to the first LE of the third LAB). The cascade chain does not cross the center of the row (e.g., in the EPF10K50E device, the cascade chain stops at the eighteenth LAB and a new one begins at the nineteenth LAB). This break is due to the EAB's placement in the middle of the row.

Figure 9 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. The LE delay is 1.3 ns; the cascade chain delay is 0.6 ns. With the cascade chain, approximately 3.1 ns are needed to decode a 16-bit address.

Clearable Counter Mode

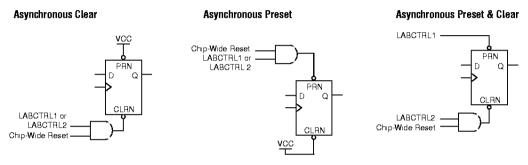
The clearable counter mode is similar to the up/down counter mode, but supports a synchronous clear instead of the up/down control. The clear function is substituted for the cascade-in signal in the up/down counter mode. Two 3-input LUTs are used: one generates the counter data, and the other generates the fast carry bit. Synchronous loading is provided by a 2-to-1 multiplexer. The output of this multiplexer is AND ed with a synchronous clear signal.

Internal Tri-State Emulation

Internal tri-state emulation provides internal tri-stating without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable (OE) signals select which signal drives the bus. However, if multiple OE signals are active, contending signals can be driven onto the bus. Conversely, if no OE signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The MAX+PLUS II software automatically implements tri-state bus functionality with a multiplexer.

Clear & Preset Logic Control

Logic for the programmable register's clear and preset functions is controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control structure of the LE asynchronously loads signals into a register. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear. Alternatively, the register can be set up so that LABCTRL1 implements an asynchronous load. The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the register.


During compilation, the MAX+PLUS II Compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset.

The clear and preset logic is implemented in one of the following six modes chosen during design entry:

- Asynchronous clear
- Asynchronous preset
- Asynchronous clear and preset
- Asynchronous load with clear
- Asynchronous load with preset
- Asynchronous load without clear or preset

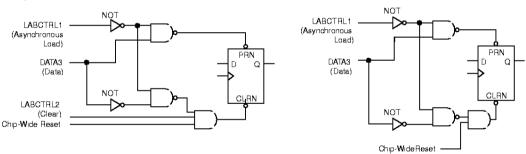
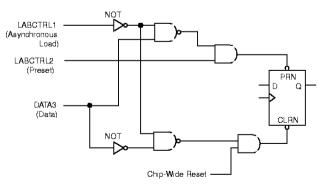

In addition to the six clear and preset modes, FLEX 10KE devices provide a chip-wide reset pin that can reset all registers in the device. Use of this feature is set during design entry. In any of the clear and preset modes, the chip-wide reset overrides all other signals. Registers with asynchronous presets may be preset when the chip-wide reset is asserted. Inversion can be used to implement the asynchronous preset. Figure 11 shows examples of how to enter a design for the desired functionality.

Figure 11. FLEX 10KE LE Clear & Preset Modes



Asynchronous Load with Clear

Asynchronous Load without Clear or Preset

Asynchronous Load with Preset

Asynchronous Clear

The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this mode, the preset signal is tied to VCC to deactivate it.

Asynchronous Preset

An asynchronous preset is implemented as an asynchronous load, or with an asynchronous clear. If DATA3 is tied to VCC, asserting LABCTRL1 asynchronously loads a one into the register. Alternatively, the MAX+PLUS II software can provide preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, if a register is preset by only one of the two LABCTRL signals, the DATA3 input is not needed and can be used for one of the LE operating modes.

Asynchronous Preset & Clear

When implementing asynchronous clear and preset, LABCTRL1 controls the preset and LABCTRL2 controls the clear. DATA3 is tied to VCC, so that asserting LABCTRL1 asynchronously loads a one into the register, effectively presetting the register. Asserting LABCTRL2 clears the register.

Asynchronous Load with Clear

When implementing an asynchronous load in conjunction with the clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LABCTRL2 implements the clear by controlling the register clear; LABCTRL2 does not have to feed the preset circuits.

Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with preset, the MAX+PLUS II software provides preset control by using the clear and inverting the input and output of the register. Asserting LABCTRL2 presets the register, while asserting LABCTRL1 loads the register. The MAX+PLUS II software inverts the signal that drives DATA3 to account for the inversion of the register's output.

Asynchronous Load without Preset or Clear

When implementing an asynchronous load without preset or clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear.

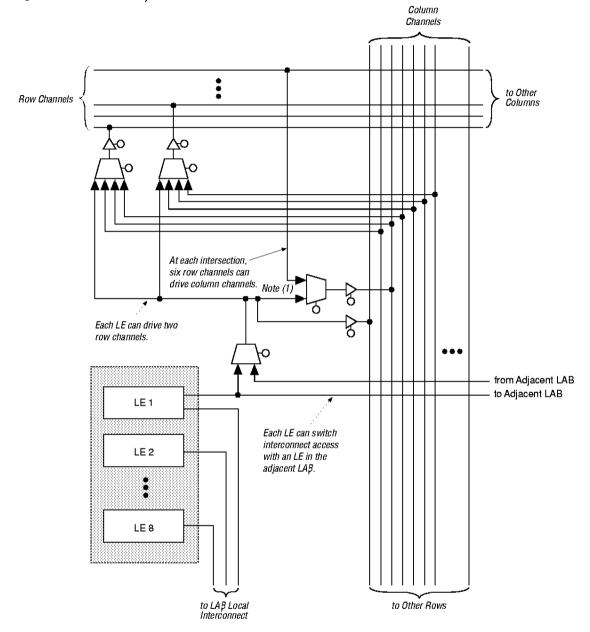


Figure 12. FLEX 10KE LAB Connections to Row & Column Interconnect

Note:

(1) In EPF10K100B devices, four row channels can drive column channels at each intersection.

For improved routing, the row interconnect consists of a combination of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. The EAB can be driven by the half-length channels in the left half of the row and by the full-length channels. The EAB drives out to the full-length channels. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-row channel, thereby saving the other half of the channel for the other half of the row.

Table 7 summarizes the FastTrack Interconnect routing structure resources available in each FLEX 10KE device.

Table 7. FLEX 10KE FastTrack Interconnect Resources						
Device	Rows	Channels per Row	Columns	Channels per Column		
EPF10K30E	6	216	36	24		
EPF10K50E	10	216	36	24		
EPF10K100B EPF10K100E	12	312	52	24		
EPF10K130E	16	312	52	32		
EPF10K200E	24	312	52	48		
EPF10K250E	20	456	76	40		

In addition to general-purpose I/O pins, FLEX 10KE devices have six dedicated input pins that provide low-skew signal distribution across the device. These six inputs can be used for global clock, clear, preset, and peripheral output enable and clock enable control signals. These signals are available as control signals for all LABs and IOEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device.

Figure 13 shows the interconnection of adjacent LABs and EABs, with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3.

Tables 2 and 9 list the sources for each peripheral control signal, and show how the output enable, clock enable, clock, and clear signals share 12 peripheral control signals. The tables also show the rows that can drive global signals.

Peripheral Control Signal	EPF10K30E	EPF10K50E
OE0	Row A	Row A
OE1	Row B	Row B
OE2	Row C	Row D
OE3	Row D	Row F
OE4	Row E	Row H
OE5	Row F	Row J
CLKENA0/CLK0/GLOBAL0	Row A	Row A
CLKENA1/OE6/GLOBAL1	Row B	Row C
CLKENA2/CLR0	Row C	Row E
CLKENA3/OE7/GLOBAL2	Row D	Row G
CLKENA4/CLR1	Row E	Row I
CLKENA5/CLK1/GLOBAL3	Row F	Row J

Column-to-IOE Connections

When an IOE is used as an input, it can drive up to two separate column channels. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the column channels. Two IOEs connect to each side of the column channels. Each IOE can be driven by column channels via a multiplexer. The set of column channels is different for each IOE (see Figure 16).

Figure 16. FLEX 10KE Column-to-IOE Connections

The values for m and n are provided in Table 11.

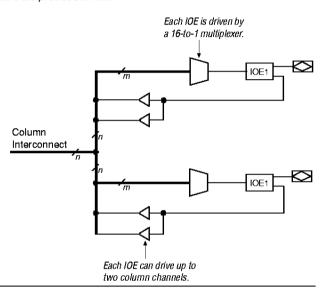
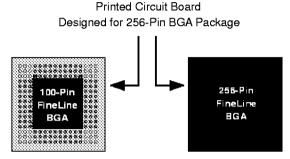


Table 11 lists the FLEX 10KE column-to-IOE interconnect resources.

Table 11. FLEX 10KE Column-to-IOE Interconnect Resources						
Device	Channels per Column (n)	Column Channels per Pin (m)				
EPF10K30E	24	16				
EPF10K50E	24	16				
EPF10K100B EPF10K100E	24	16				
EPF10K130E	32	24				
EPF10K200E	48	40				
EPF10K250E	40	32				

ClockLock & ClockBoost Features

To support high-speed designs, FLEX 10KE devices offer optional ClockLock and ClockBoost circuitry containing a phase-locked loop (PLL) that is used to increase design speed and reduce resource usage. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by resource sharing within the device. ClockBoost allows the designer to distribute a low-speed clock and multiply that clock on-device. Combined, the ClockLock and ClockBoost features provide significant improvements in system performance and bandwidth.


The ClockLock and ClockBoost features in FLEX 10KE devices are enabled through the MAX+PLUS II software. External devices are not required to use these features.

SameFrame Pin-Outs

FLEX 10KE devices support the SameFrame pin-out feature for FineLine BGA packages. SameFrame pin-out is the arrangement of balls on FineLine BGA packages such that the lower-ball-count packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support anything from an EPF10K30E device in a 256-pin FineLine BGA package to an EPF10K250E device in a 672-pin FineLine BGA package.

The MAX+PLUS II software versions 9.1 and higher provide support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use, and MAX+PLUS II software generates pin-outs describing how to lay out a board to take advantage of this migration (see Figure 17).

Figure 17. SameFrame Pin-Out Example

100-Pin FineLine BGA Package (Reduced I/O Count or Logic Requirements) 256-Pin FineLine BGA Package (Increased I/O Count or Logic Requirements)

Output Configuration

This section discusses the peripheral component interconnect (PCI) pull-up clamping diode option, slew-rate control, open-drain output option, and MultiVolt I/O interface for FLEX 10KE devices. The PCI pull-up clamping diode, slew-rate control, and open-drain output options are controlled pin-by-pin via MAX+PLUS II logic options. The MultiVolt I/O interface is controlled by connecting VCCIO to a different voltage. Its effect can be simulated in the MAX+PLUS II software via a Global Project Device Options command (Assign menu).

PCI Pull-up Clamping Diode Option

FLEX 10KE devices have a pull-up clamping diode on every I/O, dedicated input, and dedicated clock pin. PCI clamping diodes clamp the signal to the $V_{\rm CCIO}$ value and are required for 3.3-V PCI compliance. Clamping diodes can also be used to limit overshoot in other systems.

Clamping diodes are controlled pin-by-pin. When $V_{\rm CCIO}$ is 3.3 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When $V_{\rm CCIO}$ is 2.5 V, a pin that has the clamping diode option turned on can be driven by a 2.5-V signal, but not a 3.3-V or 5.0-V signal. Additionally, a clamping diode can be activated for a subset of pins, which would allow a device to bridge between a 3.3-V PCI bus and a 5.0-V device.

TMS

TDI

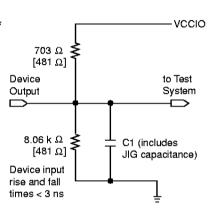
TCK

TDO

Signal to Be Captured
Signal to Be Driven

Figure 18 shows the timing requirements for the JTAG signals.

Table 14 shows the timing parameters and values for FLEX 10KE devices.


10010 1	4. FLEX 10KE JTAG Timing Parameters & Values	<u>'</u>	ı	
Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		35	ns
t _{JSZX}	Update register high-impedance to valid output		35	ns
t _{JSXZ}	Update register valid output to high impedance		35	ns

Generic Testing

Each FLEX 10KE device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for FLEX 10KE devices are made under conditions equivalent to those shown in Figure 19. Multiple test patterns can be used to configure devices during all stages of the production flow.

Figure 19. FLEX 10KE AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V outputs. Numbers without brackets are for 3.3-V outputs.

Operating Conditions

The following tables provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V FLEX 10KE devices.

FLEX 10KE 2.5-V Device Absolute Maximum Ratings Mote (1)

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage	With respect to ground, Note (2)	-0.5	3.6	٧
V _{CCIO}			-0.5	4.6	٧
VI	DC input voltage	1	-2.0	5.7	٧
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	°C
T _{AMB}	Ambient temperature	Under bias	-65	135	°C
TJ	Junction temperature	PQFP, TQFP, and BGA packages, under bias		135	°C
		Ceramic PGA packages, under bias		150	°C

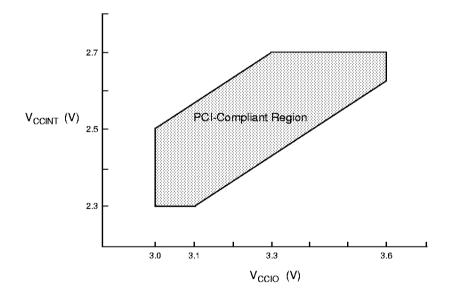
FLEX 10KE 2.5-V Device Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	Notes (3), (4)	2.30 (2.30)	2.70 (2.70)	V
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	Notes (3), (4)	3.00 (3.00)	3.60 (3.60)	٧
	Supply voltage for output buffers, 2.5-V operation	Notes (3), (4)	2.30 (2.30)	2.70 (2.70)	٧
VI	Input voltage	Note (5)	0	5.3	٧
v _o	Output voltage		0	V _{CCIO}	٧
T _A	Ambient temperature	For commercial use	0	70	°C
		For industrial use	-40	85	°C
TJ	Operating temperature	For commercial use	0	85	°C
		For industrial use	-40	100	°C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

FLEX 10KE 2.5-V Device DC Operating Conditions Notes (6), (7)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	High-level input voltage		1.7, 0.5 × V _{CCIO} , Note (8)		5.3	٧
V _{IL}	Low-level input voltage		-0.3		0.8, 0.3 × V _{CCIO} , Note (8)	٧
V _{OH}	3.3-V high-level TTL output voltage	I _{OH} = -4 mA DC, V _{CCIO} = 3.00 V, <i>Note</i> (9)	2.4			٧
	3.3-V high-level CMOS output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 3.00 V, <i>Note</i> (9)	V _{CCIO} - 0.2			٧
	3.3-V high-level PCI output voltage	$I_{OH} = -0.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V},$ Note (3)	0.9 × V _{CCIO}			V
	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V, <i>Note</i> (9)	2.1			٧
		I_{OH} = -1 mA DC, V_{CCIO} = 2.30 V, Note (8)	2.0			>
		I _{OH} = -2 mA DC, V _{CCIO} = 2.30 V, <i>Note</i> (9)	1.7			٧
V _{OL}	3.3-V low-level TTL output voltage	I_{OL} = 4 mA DC, V_{CCIO} = 3.00 V, Note (10)			0.45	٧
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V, <i>Note</i> (10)			0.2	٧
	3.3-V low-level PCI output voltage	I _{OL} = 1.5 mA DC, V _{CCIO} = 3.00 to 3.60 V, Note (10)			0.1 × V _{CCIO}	٧
	2.5-V low-level output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 2.30 V, <i>Nota</i> (10)			0.2	٧
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V, Note (10)			0.4	٧
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V, <i>Note</i> (10)			0.7	٧
l _l	Input pin leakage current	V _I = 5.3 to -0.3	-10		10	μΑ
loz	Tri-stated I/O pin leakage current	$V_{\rm O} = 5.3$ to -0.3	-10		10	μΑ
Icco	V _{CC} supply current (standby)	V_{\parallel} = ground, no load, no toggling inputs, -1 speed grade		10		mA
		V _I = ground, no load, no toggling inputs, -2, -3 speed grades		5		mA
R _{CONF}	Value of I/O pin pull-up resistor	V _{CCIO} = 3.0 V. Nata (11)	20		50	kΩ
	before and during configuration	V _{CCIO} = 2.3 V, Note (11)	30		80	kΩ

Capacitance of FLEX 10KE Devices Note (12)


Symbol	Parameter	Conditions	Min	Max	Unit
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF

Notes to tables:

- (1) See the Operating Enquirements for Altern Devices Data Shert in the 1998 Data Book.
- (2) Minimum DC input is -0.3 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.7 V for periods shorter than 20 ns under no-load conditions.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ V or 3.3 V.
- (7) These values are specified under "FLEX 10KE 2.5-V Device Recommended Operating Conditions" on page 42.
- (8) The FLEX 10KE input buffers are compatible with 2.5-V, 3.3-V LVTTL and LVCMOS, 5.0-V TTL, and CMOS signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 20.
- (9) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (10) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (11) Pin pull-up resistance values will be lower if the pin is driven higher than V_{CCIO} by an external source.
- (12) Capacitance is sample-tested only.

Figure 20 shows the relationship between V_{CCIO} and V_{CCINT} for 3.3-V compliance.

Figure 20. Relationship between V_{CCIO} & V_{CCINT} for 3.3-V PCI Compliance

Table 19. FL	EX 10KE Dev	rice Pin-Outs ((Part 4 of 4)	Note (1)			
Pin Name	144-Pin TQFP EPF10K30E EPF10K50E	208-Pin PQFP EPF10K30E EPF10K50E EPF10K100E EPF10K100B	240-Pin PQFP EPF10K50E EPF10K100E EPF10K100B	240-Pin PQFP EPF10K130E	356-Pin BGA EPF10K100E	599-Pin PGA EPF10K200E EPF10K250E	600-Pin BGA EPF10K200E EPF10K250E
GNDIO	15, 40, 50, 66, 85, 104, 129, 139	20, 32, 48, 59, 72, 91, 124, 130, 152, 171, 188, 201		_		D24, E9, E15, E21, E27, E33, E39, G7, G41, J5, J43, R5, R43, AA5, AA43, AD4, AD44, AG5, AG43, AN5, AN43, AW5, AW43, BA7, BA41, BC9, BC15, BC21, BC27, BC33, BC39, BD24	
Total User I/O Pins (7)	102	147	189	186	274	470	470

- (1) All pins that are not listed are user I/O pins.
- This pin is a dedicated pin; it is not available as a user I/O pin.
- (3) This pin can be used as a user I/O pin if it is not used for its device-wide or configuration function.
 (4) This pin can be used as a user I/O pin after configuration.
- (5) This pin is tri-stated in user mode.
- (6) The optional JTAG pin TRST is not used in the 144-pin TQFP package.
- (7) The user I/O pin count includes dedicated input pins, dedicated clock pins, and all I/O pins.

Pin Name	256-Pin FineLine BGA EPF10K30E	256-Pin FineLine BGA EPF10K50E EPF10K100E EPF10K100B	672-Pin FineLine BGA EPF10K130E	672-Pin FineLine BGA EPF10K200E EPF10K250E
No Connect (N.C.)	D1, E3, E16, G3, H1, H16, J1, K3, K14, K16, L2, L4, M14, M16, N15		A4, A5, A6, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, A22, A23, A24, B4, B5, B6, B7, B8, B9, B10, B11, B12, B13, B16, B19, B20, B21, B22, B23, B24, C1, AE4, AE5, AE6, AE7, AE8, AE9, AE10, AE11, AE12, AE14, AE15, AE16, AE17, AF18, AE19, AE20, AE21, AE22, AE23, AF4, AF5, AF6, AF7, AF8, AF9, AF10, AF12, AF13, AF14, AF15, AF16, AF20, AF21, AF24, AF23	B26, C1, C25, C26 D1, D2, D25, D26, E1, E25, E26, F1, F25, G25, G26, H1 J1, J25, J26, K26, L2, L25, N2, P1, P2, R1, R26, T1, U1, U25, V1, V26, W1, Y26, AA1, AA2, AA25, AB2,

Pin Name	484-Pin	484-Pin	484-Pin	484-Pin
	FineLine BGA	FineLine BGA	FineLine BGA	FineLine BGA
	EPF10K30E	EPF10K50E	EPF10K100E	EPF10K130E
No Connect (N.C.)	A2, A3, A4, A5, A7, A9, A11, A12, A14, A15, A20, A21, B3, B4, B9, B10, B12, B16, B19, B20, C1, C6, C9, C10, C12, C13, C14, C16, C17, C22, D1, D2, D3, D20, D21, D22, E2, E3, E20, E22, F1, F2, F3, F20, F21, F22, G2, G4, G20, G22, H1, H3, H6, H19, H21, H22, J1, J2, J3, J21, J22, K1, K2, K6, K21, K22, L1, L2, L3, L4, L19, L20, L21, L22, M1, M2, M3, M4, M21, M22, N1, N2, N21, N22, N6, N17, N19, P1, P2, P3, P5, P7, P20, P21, P22, R2, R3, R17, R19, R20, R21, T2, T18, T20, T21, U1, U2, U3, U20, U21, U22, V1, V2, V20, V21, W1, W2, W22, Y4, Y9, Y12, Y13, Y16, Y19, Y20, AA2, AA3, AA4, AA9, AA11, AA13, AA15, AA21, AB1, AB2, AB3, AB4, AB5, AB7, AB8, AB9, AB12, AB15, AB17, AB18, AB19, AB20, AB21, AB22	E3, E20, E22, F1, F2, F20, F21, G2, G20, G22, J1, J2, J3, J21, K2, K22, L1, L2, L20, L22, M2, M3, M22, N1, N2, N21, N22, P3, P20, P21, P22, R2, R3, R21, T2, T20, T21, U1, U2, U3, U20, U21, U22, V2, V20, W1, W2, W22, Y4, Y9, Y12, Y13, Y16, Y19, Y20, AA2, AA3, AA4, AA9, AA11, AA13, AA15, AA21, AB1, AB2, AB3, AB4, AB5, AB7, AB8,	A2, A3, A4, A5, B3, B4, B10, C17, F2, J2, K2, L2, N1, P20, P22, R3, T20, T21, U1, W22, Y16, AA15, AB3, AB4, AB5, AB7, AB15, AB17, AB18, AB19, AB20	