
Atmel - ATMEGA169P-15AT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity SPI, UART/USART, USI

Peripherals Brown-out Detect/Reset, LCD, POR, PWM, WDT

Number of I/O 54

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 64-TQFP

Supplier Device Package 64-TQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/atmel/atmega169p-15at

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega169p-15at-4419341
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

9.5 Register Description

9.5.1 MCUSR – MCU Status Register

The MCU status register provides information on which reset source caused an MCU reset.

• Bit 4 – JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG reset register selected by the JTAG instruction
AVR_RESET. This bit is reset by a power-on reset, or by writing a logic zero to the flag.

• Bit 3 – WDRF: Watchdog Reset Flag

This bit is set if a watchdog reset occurs. The bit is reset by a power-on reset, or by writing a logic zero to the flag.

• Bit 2 – BORF: Brown-out Reset Flag

This bit is set if a brown-out reset occurs. The bit is reset by a power-on reset, or by writing a logic zero to the flag.

• Bit 1 – EXTRF: External Reset Flag

This bit is set if an external reset occurs. The bit is reset by a power-on reset, or by writing a logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag

This bit is set if a power-on reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the reset flags to identify a reset condition, the user should read and then reset the MCUSR as early as
possible in the program. If the register is cleared before another reset occurs, the source of the reset can be found by
examining the reset flags.

9.5.2 WDTCR – Watchdog Timer Control Register

• Bits 7:5 – Res: Reserved Bits

These bits are reserved and will always read as zero.

• Bit 4 – WDCE: Watchdog Change Enable

This bit must be set when the WDE bit is written to logic zero. Otherwise, the watchdog will not be disabled. Once written to
one, hardware will clear this bit after four clock cycles. Refer to the description of the WDE bit for a watchdog disable
procedure. This bit must also be set when changing the prescaler bits.
See Section 9.4.1 “Timed Sequences for Changing the Configuration of the Watchdog Timer” on page 44

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) – – – JTRF WDRF BORF EXTRF PORF MCUSR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

Bit 7 6 5 4 3 2 1 0

(0x60) – – – WDCE WDE WDP2 WDP1 WDP0 WDTCR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
45ATmega169P[DATASHEET]
7735C–AVR–05/14

14.3 Accessing 16-bit Registers

The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via the 8-bit data bus.
The 16-bit register must be byte accessed using two read or write operations. Each 16-bit timer has a single 8-bit register for
temporary storing of the high byte of the 16-bit access. The same temporary register is shared between all 16-bit registers
within each 16-bit timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a 16-bit
register is written by the CPU, the high byte stored in the temporary register, and the low byte written are both copied into the
16-bit register in the same clock cycle. When the low byte of a 16-bit register is read by the CPU, the high byte of the 16-bit
register is copied into the temporary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCR1A/B 16-bit registers does not involve
using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low byte must be read before the
high byte.

The following code examples show how to access the 16-bit timer registers assuming that no interrupts updates the
temporary register. The same principle can be used directly for accessing the OCR1A/B and ICR1 registers. Note that when
using “C”, the compiler handles the 16-bit access.

Note: 1. See Section 4. “About Code Examples” on page 8.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt occurs between the two
instructions accessing the 16-bit register, and the interrupt code updates the temporary register by accessing the same or
any other of the 16-bit timer registers, then the result of the access outside the interrupt will be corrupted. Therefore, when
both the main code and the interrupt code update the temporary register, the main code must disable the interrupts during
the 16-bit access.

Assembly Code Examples(1)

...
; Set TCNT1 to 0x01FF
ldi r17,0x01
ldi r16,0xFF
out TCNT1H,r17
out TCNT1L,r16
; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
...

C Code Examples(1)

unsigned int i;
...
/* Set TCNT1 to 0x01FF */
TCNT1 = 0x1FF;
/* Read TCNT1 into i */
i = TCNT1;
...
ATmega169P [DATASHEET]
7735C–AVR–05/14

94

Figure 14-5. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the output compare (OC1x) from the waveform generator if either of the
COM1x1:0 bits are set. However, the OC1x pin direction (input or output) is still controlled by the data direction register
(DDR) for the port pin. The data direction register bit for the OC1x pin (DDR_OC1x) must be set as output before the OC1x
value is visible on the pin. The port override function is generally independent of the waveform generation mode, but there
are some exceptions. Refer to Table 14-2 on page 111, Table 14-3 on page 111 and Table 14-4 on page 112 for details.

The design of the output compare pin logic allows initialization of the OC1x state before the output is enabled. Note that
some COM1x1:0 bit settings are reserved for certain modes of operation.
See Section 14.11 “16-bit Timer/Counter Register Description” on page 111

The COM1x1:0 bits have no effect on the input capture unit.

14.8.1 Compare Output Mode and Waveform Generation

The waveform generator uses the COM1x1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the
COM1x1:0 = 0 tells the waveform generator that no action on the OC1x register is to be performed on the next compare
match. For compare output actions in the non-PWM modes refer to Table 14-2 on page 111. For fast PWM mode refer to
Table 14-3 on page 111, and for phase correct and phase and frequency correct PWM refer to Table 14-4 on page 112.

A change of the COM1x1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM
modes, the action can be forced to have immediate effect by using the FOC1x strobe bits.

14.9 Modes of Operation

The mode of operation, i.e., the behavior of the timer/counter and the output compare pins, is defined by the combination of
the waveform generation mode (WGM13:0) and compare output mode (COM1x1:0) bits. The compare output mode bits do
not affect the counting sequence, while the waveform generation mode bits do. The COM1x1:0 bits control whether the
PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes the COM1x1:0 bits
control whether the output should be set, cleared or toggle at a compare match
(see Section 14.8 “Compare Match Output Unit” on page 101).

For detailed timing information refer to Section 14.10 “Timer/Counter Timing Diagrams” on page 109.

D
AT

A
B

U
S

0

1

QD

COMnx1

COMnx0

FOCn

OCnx

Waveform
Generator

QD

PORT

QD

DDR

OCnx
Pin

clkI/O
ATmega169P [DATASHEET]
7735C–AVR–05/14

102

The extreme values for the OCR1x register represents special cases when generating a PWM waveform output in the phase
and frequency correct PWM mode. If the OCR1x is set equal to BOTTOM the output will be continuously low and if set equal
to TOP the output will be set to high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic
values. If OCR1A is used to define the TOP value (WGM13:0 = 9) and COM1A1:0 = 1, the OC1A output will toggle with a
50% duty cycle.

14.10 Timer/Counter Timing Diagrams

The timer/counter is a synchronous design and the timer clock (clkT1) is therefore shown as a clock enable signal in the
following figures. The figures include information on when interrupt flags are set, and when the OCR1x register is updated
with the OCR1x buffer value (only for modes utilizing double buffering). Figure 14-10 shows a timing diagram for the setting
of OCF1x.

Figure 14-10.Timer/Counter Timing Diagram, Setting of OCF1x, no Prescaling

Figure 14-11 shows the same timing data, but with the prescaler enabled.

Figure 14-11.Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (fclk_I/O/8)

OCRnx - 1

clkI/O

(clkI/O/1)

TCNTn

OCRnx

OCFnx

clkTn

OCRnx

OCRnx Value

OCRnx + 1 OCRnx + 2

OCRnx - 1

clkI/O

(clkI/O/8)

TCNTn

OCRnx

OCFnx

clkTn

OCRnx OCRnx + 1

OCRnx Value

OCRnx + 2
109ATmega169P[DATASHEET]
7735C–AVR–05/14

16.5.1 Compare Output Mode and Waveform Generation

The waveform generator uses the COM2A1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the
COM2A1:0 = 0 tells the waveform generator that no action on the OC2A register is to be performed on the next compare
match. For compare output actions in the non-PWM modes refer to Table 16-3 on page 132. For fast PWM mode, refer to
Table 16-4 on page 132, and for phase correct PWM refer to Table 16-5 on page 133.

A change of the COM2A1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM
modes, the action can be forced to have immediate effect by using the FOC2A strobe bits.

16.6 Modes of Operation

The mode of operation, i.e., the behavior of the timer/counter and the output compare pins, is defined by the combination of
the waveform generation mode (WGM21:0) and compare output mode (COM2A1:0) bits. The compare output mode bits do
not affect the counting sequence, while the waveform generation mode bits do. The COM2A1:0 bits control whether the
PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes the COM2A1:0 bits
control whether the output should be set, cleared, or toggled at a compare match (see Section 16.5 “Compare Match Output
Unit” on page 123).

For detailed timing information refer to Section 16.7 “Timer/Counter Timing Diagrams” on page 128.

16.6.1 Normal Mode

The simplest mode of operation is the normal mode (WGM21:0 = 0). In this mode the counting direction is always up
(incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 8-bit value
(TOP = 0xFF) and then restarts from the bottom (0x00). In normal operation the timer/counter overflow flag (TOV2) will be
set in the same timer clock cycle as the TCNT2 becomes zero. The TOV2 flag in this case behaves like a ninth bit, except
that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the TOV2 flag,
the timer resolution can be increased by software. There are no special cases to consider in the normal mode, a new counter
value can be written anytime.

The output compare unit can be used to generate interrupts at some given time. Using the output compare to generate
waveforms in normal mode is not recommended, since this will occupy too much of the CPU time.

16.6.2 Clear Timer on Compare Match (CTC) Mode

In clear timer on compare or CTC mode (WGM21:0 = 2), the OCR2A register is used to manipulate the counter resolution. In
CTC mode the counter is cleared to zero when the counter value (TCNT2) matches the OCR2A. The OCR2A defines the top
value for the counter, hence also its resolution. This mode allows greater control of the compare match output frequency. It
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 16-5. The counter value (TCNT2) increases until a compare match
occurs between TCNT2 and OCR2A, and then counter (TCNT2) is cleared.

Figure 16-5. CTC Mode, Timing Diagram

1 2

TCNTn

(COMnA1:0 = 1)OCn
(Toggle)

Period
3

OCnx Interrupt Flag Set

4

ATmega169P [DATASHEET]
7735C–AVR–05/14

124

Table 16-5 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to phase correct PWM mode.

• Bit 2:0 – CS22:0: Clock Select

The three clock select bits select the clock source to be used by the timer/counter, see Table 16-6.

16.10.2 TCNT2 – Timer/Counter Register

The timer/counter Register gives direct access, both for read and write operations, to the Timer/Counter unit 8-bit counter.
Writing to the TCNT2 register blocks (removes) the compare match on the following timer clock. Modifying the counter
(TCNT2) while the counter is running, introduces a risk of missing a compare match between TCNT2 and the OCR2A
register.

Table 16-5. Compare Output Mode, Phase Correct PWM Mode(1)

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1 Reserved

1 0
Clear OC2A on compare match when up-counting. Set OC2A on compare match
when downcounting.

1 1
Set OC2A on compare match when up-counting. Clear OC2A on compare match
when downcounting.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 16.6.4 “Phase Correct PWM Mode” on page 126 for
more details.

Table 16-6. Clock Select Bit Description

CS22 CS21 CS20 Description

0 0 0 No clock source (timer/counter stopped).

0 0 1 clkT2S/(no prescaling)

0 1 0 clkT2S/8 (from prescaler)

0 1 1 clkT2S/32 (from prescaler)

1 0 0 clkT2S/64 (from prescaler)

1 0 1 clkT2S/128 (from prescaler)

1 1 0 clkT2S/256 (from prescaler)

1 1 1 clkT2S/1024 (from prescaler)

Bit 7 6 5 4 3 2 1 0

(0xB2) TCNT2[7:0] TCNT2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
133ATmega169P[DATASHEET]
7735C–AVR–05/14

17.3 SS Pin Functionality

17.3.1 Slave Mode

When the SPI is configured as a slave, the slave select (SS) pin is always input. When SS is held low, the SPI is activated,
and MISO becomes an output if configured so by the user. All other pins are inputs. When SS is driven high, all pins are
inputs, and the SPI is passive, which means that it will not receive incoming data. Note that the SPI logic will be reset once
the SS pin is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous with the master clock
generator. When the SS pin is driven high, the SPI slave will immediately reset the send and receive logic, and drop any
partially received data in the shift register.

17.3.2 Master Mode

When the SPI is configured as a master (MSTR in SPCR is set), the user can determine the direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI system. Typically, the pin will be
driving the SS pin of the SPI slave.

If SS is configured as an input, it must be held high to ensure master SPI operation. If the SS pin is driven low by peripheral
circuitry when the SPI is configured as a master with the SS pin defined as an input, the SPI system interprets this as
another master selecting the SPI as a slave and starting to send data to it. To avoid bus contention, the SPI system takes the
following actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a slave. As a result of the SPI becoming a slave,
the MOSI and SCK pins become inputs.

2. The SPIF flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is set, the interrupt routine
will be executed.

Thus, when interrupt-driven SPI transmission is used in master mode, and there exists a possibility that SS is driven low, the
interrupt should always check that the MSTR bit is still set. If the MSTR bit has been cleared by a slave select, it must be set
by the user to re-enable SPI master mode.
ATmega169P [DATASHEET]
7735C–AVR–05/14

140

17.5 Register Description

17.5.1 SPCR – SPI Control Register

• Bit 7 – SPIE: SPI Interrupt Enable

This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR register is set and the if the global interrupt enable bit
in SREG is set.

• Bit 6 – SPE: SPI Enable

When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI operations.

• Bit 5 – DORD: Data Order

When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

• Bit 4 – MSTR: Master/Slave Select

This bit selects master SPI mode when written to one, and slave SPI mode when written logic zero. If SS is configured as an
input and is driven low while MSTR is set, MSTR will be cleared, and SPIF in SPSR will become set. The user will then have
to set MSTR to re-enable SPI master mode.

• Bit 3 – CPOL: Clock Polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low when idle.
Refer to Figure 17-3 and Figure 17-4 for an example. The CPOL functionality is summarized below:

• Bit 2 – CPHA: Clock Phase

The settings of the clock phase bit (CPHA) determine if data is sampled on the leading (first) or trailing (last) edge of SCK.
Refer to Figure 17-3 and Figure 17-4 on page 141 for an example. The CPOL functionality is summarized below:

• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a master. SPR1 and SPR0 have no effect on the slave. The
relationship between SCK and the oscillator clock frequency fosc is shown in the following table:

Bit 7 6 5 4 3 2 1 0

0x2C (0x4C) SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 17-3. CPOL Functionality

CPOL Leading Edge Trailing Edge

0 Rising Falling

1 Falling Rising

Table 17-4. CPHA Functionality

CPHA Leading Edge Trailing Edge

0 Sample Setup

1 Setup Sample
ATmega169P [DATASHEET]
7735C–AVR–05/14

142

The following code demonstrates how to use the USI module as a SPI master with maximum speed (fsck = fck/4):
SPITransfer_Fast:

sts USIDR,r16
ldi r16,(1<<USIWM0)|(0<<USICS0)|(1<<USITC)
ldi r17,(1<<USIWM0)|(0<<USICS0)|(1<<USITC)|(1<<USICLK)

sts USICR,r16 ; MSB
sts USICR,r17
sts USICR,r16
sts USICR,r17
sts USICR,r16
sts USICR,r17
sts USICR,r16
sts USICR,r17
sts USICR,r16
sts USICR,r17
sts USICR,r16
sts USICR,r17
sts USICR,r16
sts USICR,r17
sts USICR,r16 ; LSB
sts USICR,r17

lds r16,USIDR
ret

19.2.3 SPI Slave Operation Example

The following code demonstrates how to use the USI module as a SPI slave:
init:

ldi r16,(1<<USIWM0)|(1<<USICS1)
sts USICR,r16

...
SlaveSPITransfer:

sts USIDR,r16
ldi r16,(1<<USIOIF)
sts USISR,r16

SlaveSPITransfer_loop:
lds r16, USISR
sbrs r16, USIOIF
rjmp SlaveSPITransfer_loop
lds r16,USIDR
ret

The code is size optimized using only eight instructions (+ ret). The code example assumes that the DO is configured as
output and USCK pin is configured as input in the DDR register. The value stored in register r16 prior to the function is called
is transferred to the master device, and when the transfer is completed the data received from the master is stored back into
the r16 register.

Note that the first two instructions is for initialization only and needs only to be executed once.These instructions sets three-
wire mode and positive edge shift register clock. The loop is repeated until the USI counter overflow flag is set.
171ATmega169P[DATASHEET]
7735C–AVR–05/14

22. LCD Controller

22.1 Features
● Display capacity of 25 segments and four common terminals

● Support static, 1/2, 1/3 and 1/4 duty

● Support static, 1/2, 1/3 bias

● On-chip LCD power supply, only one external capacitor needed

● Display possible in power-save mode for low power consumption

● Software selectable low power waveform capability

● Flexible selection of frame frequency

● Software selection between system clock or an external asynchronous clock source

● Equal source and sink capability to maximize LCD life time

● LCD interrupt can be used for display data update or wake-up from sleep mode

● Segment and common pins not needed for driving the display Can be used as Ordinary I/O pins

● Latching of display data gives full freedom in register update

22.2 Overview

The LCD controller/driver is intended for monochrome passive liquid crystal display (LCD) with up to four common terminals
and up to 25 segment terminals.

A simplified block diagram of the LCD controller/driver is shown in Figure 22-1 on page 198. For the actual placement of I/O
pins, see Section 1-1 “Pinout ATmega169P” on page 3.

An LCD consists of several segments (pixels or complete symbols) which can be visible or non visible. A segment has two
electrodes with liquid crystal between them. When a voltage above a threshold voltage is applied across the liquid crystal,
the segment becomes visible.

The voltage must alternate to avoid an electrophoresis effect in the liquid crystal, which degrades the display. Hence the
waveform across a segment must not have a DC-component.

The PRLCD bit in Section 8.9.2 “PRR – Power Reduction Register” on page 38 must be written to zero to enable the LCD
module.

22.2.1 Definitions

Several terms are used when describing LCD. The definitions in Table 22-1 are used throughout this document.

Table 22-1. Definitions

LCD A Passive Display Panel with Terminals Leading Directly to a Segment

Segment The least viewing element (pixel) which can be on or off

Common Denotes how many segments are connected to a segment terminal

Duty 1/(Number of common terminals on a actual LCD display)

Bias 1/(Number of voltage levels used driving a LCD display -1)

Frame rate Number of times the LCD segments is energized per second.
197ATmega169P[DATASHEET]
7735C–AVR–05/14

24. IEEE 1149.1 (JTAG) Boundary-scan

24.1 Features
● JTAG (IEEE std. 1149.1 compliant) interface

● Boundary-scan capabilities according to the JTAG standard

● Full scan of all port functions as well as analog circuitry having off-chip connections

● Supports the optional IDCODE instruction

● Additional public AVR_RESET instruction to reset the AVR

24.2 System Overview

The boundary-scan chain has the capability of driving and observing the logic levels on the digital I/O pins, as well as the
boundary between digital and analog logic for analog circuitry having off-chip connections. At system level, all ICs having
JTAG capabilities are connected serially by the TDI/TDO signals to form a long shift register. An external controller sets up
the devices to drive values at their output pins, and observe the input values received from other devices. The controller
compares the received data with the expected result. In this way, boundary-scan provides a mechanism for testing
interconnections and integrity of components on printed circuits boards by using the four TAP signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAMPLE/PRELOAD, and EXTEST, as well
as the AVR specific public JTAG instruction AVR_RESET can be used for testing the printed circuit board. Initial scanning of
the data register path will show the ID-code of the device, since IDCODE is the default JTAG instruction. It may be desirable
to have the AVR® device in reset during test mode. If not reset, inputs to the device may be determined by the scan
operations, and the internal software may be in an undetermined state when exiting the test mode. Entering reset, the
outputs of any port pin will instantly enter the high impedance state, making the HIGHZ instruction redundant. If needed, the
BYPASS instruction can be issued to make the shortest possible scan chain through the device. The device can be set in the
reset state either by pulling the external RESET pin low, or issuing the AVR_RESET instruction with appropriate setting of
the reset data register.

The EXTEST instruction is used for sampling external pins and loading output pins with data. The data from the output latch
will be driven out on the pins as soon as the EXTEST instruction is loaded into the JTAG IR-register. Therefore, the
SAMPLE/PRELOAD should also be used for setting initial values to the scan ring, to avoid damaging the board when issuing
the EXTEST instruction for the first time. SAMPLE/PRELOAD can also be used for taking a snapshot of the external pins
during normal operation of the part.

The JTAGEN fuse must be programmed and the JTD bit in the I/O register MCUCR must be cleared to enable the JTAG test
access port.

When using the JTAG interface for boundary-scan, using a JTAG TCK clock frequency higher than the internal chip
frequency is possible. The chip clock is not required to run.

24.3 Data Registers

The data registers relevant for boundary-scan operations are:

● Bypass register

● Device identification register

● Reset register

● Boundary-scan chain

24.3.1 Bypass Register

The bypass register consists of a single Shift register stage. When the bypass register is selected as path between TDI and
TDO, the register is reset to 0 when leaving the capture-DR controller state. The bypass register can be used to shorten the
scan chain on a system when the other devices are to be tested.
ATmega169P [DATASHEET]
7735C–AVR–05/14

218

Table 24-1 summarizes the scan registers for the external clock pin XTAL1, oscillators with XTAL1/XTAL2 connections as
well as 32kHz timer oscillator.

24.5.4 Scanning the Analog Comparator

The relevant comparator signals regarding boundary-scan are shown in Figure 24-7. The boundary-scan cell from
Figure 24-8 on page 225 is attached to each of these signals. The signals are described in Table 24-2 on page 225.

The comparator need not be used for pure connectivity testing, since all analog inputs are shared with a digital port pin as
well.

Figure 24-7. Analog Comparator

Table 24-1. Scan Signals for the Oscillator(1)(2)(3)

Enable Signal
Scanned

Clock Line Clock Option
Scanned Clock Line

when not Used

EXTCLKEN EXTCLK (XTAL1) External clock 0

OSCON OSCCK
External crystal

External ceramic resonator
1

OSC32EN OSC32CK Low freq. external crystal 1

Notes: 1. Do not enable more than one clock source as main clock at a time.

2. Scanning an oscillator output gives unpredictable results as there is a frequency drift between the internal
oscillator and the JTAG TCK clock. If possible, scanning an external clock is preferred.

3. The clock configuration is programmed by fuses. As a fuse is not changed run-time, the clock configuration is
considered fixed for a given application. The user is advised to scan the same clock option as to be used in
the final system. The enable signals are supported in the scan chain because the system logic can disable
clock options in sleep modes, thereby disconnecting the oscillator pins from the scan path if not provided.

Bandgap
Reference

AIN0

VCC

ADC Multiplexer
Output

ACBG

ACME
ADCEN

ACD

ACO

AC_IDLE

+

-

AIN1
ATmega169P [DATASHEET]
7735C–AVR–05/14

224

Figure 24-8. General Boundary-scan cell Used for Signals for Comparator and ADC

Table 24-2. Boundary-scan Signals for the Analog Comparator

Signal
Name

Direction as Seen
from the

Comparator Description
Recommended Input
when Not in Use

Output Values when
Recommended Inputs are
Used

AC_IDLE input
Turns off analog
comparator when true

1
Depends upon µC code being
executed

ACO output Analog comparator output
Will become input to
µC code being
executed

0

ACME input
Uses output signal from
ADC mux when true

0
Depends upon µC code being
executed

ACBG input Bandgap reference enable 0
Depends upon µC code being
executed

From Digital Logic/
From Analog Circuitry To Analog Circuitry/

To Digital Logic

From
Previous

Cell

ClockDR UpdateDR

To next CellShiftDr EXTEST

0

1

D
0

1
Q D

G

Q

225ATmega169P[DATASHEET]
7735C–AVR–05/14

When reading the extended fuse byte, load 0x0002 in the Z-pointer. When an LPM instruction is executed within three cycles
after the BLBSET and SPMEN bits are set in the SPMCSR, the value of the extended fuse byte (EFB) will be loaded in the
destination register as shown below. Refer to Table 26-3 on page 251 for detailed description and mapping of the extended
fuse byte.

Fuse and lock bits that are programmed, will be read as zero. Fuse and lock bits that are unprogrammed, will be read as
one.

25.8.10 Preventing Flash Corruption

During periods of low VCC, the flash program can be corrupted because the supply voltage is too low for the CPU and the
flash to operate properly. These issues are the same as for board level systems using the flash, and the same design
solutions should be applied.

A flash program corruption can be caused by two situations when the voltage is too low. First, a regular write sequence to
the flash requires a minimum voltage to operate correctly. Secondly, the CPU itself can execute instructions incorrectly, if the
supply voltage for executing instructions is too low.

Flash corruption can easily be avoided by following these design recommendations (one is sufficient):

1. If there is no need for a boot loader update in the system, program the boot loader lock bits to prevent any boot
loader software updates.

2. Keep the AVR® RESET active (low) during periods of insufficient power supply voltage. This can be done by
enabling the internal brown-out detector (BOD) if the operating voltage matches the detection level. If not, an
external low VCC reset protection circuit can be used. If a reset occurs while a write operation is in progress, the
write operation will be completed provided that the power supply voltage is sufficient.

3. Keep the AVR core in power-down sleep mode during periods of low VCC. This will prevent the CPU from attempt-
ing to decode and execute instructions, effectively protecting the SPMCSR register and thus the flash from
unintentional writes.

25.8.11 Programming Time for Flash when Using SPM

The calibrated RC oscillator is used to time flash accesses. Table 25-5 shows the typical programming time for flash
accesses from the CPU.

Bit 7 6 5 4 3 2 1 0

Rd – – – – EFB3 EFB2 EFB1 EFB0

Table 25-5. SPM Programming Time

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page Write, and write
Lock bits by SPM)

3.7ms 4.5ms
245ATmega169P[DATASHEET]
7735C–AVR–05/14

If the LSB in RDY/BSY data byte out is ‘1’, a programming operation is still pending. Wait until this bit returns ‘0’ before the
next instruction is carried out.

Within the same page, the low data byte must be loaded prior to the high data byte.

After data is loaded to the page buffer, program the EEPROM page, see Figure 26-12 on page 268.

Write Instructions(6)

Write program memory page $4C adr MSB adr LSB $00

Write EEPROM memory $C0 0000 00aa aaaa aaaa data byte in

Write EEPROM memory page (Page
access)

$C2 0000 00aa aaaa aa00 $00

Write lock bits $AC $E0 $00 data byte in

Write fuse bits $AC $A0 $00 data byte in

Write fuse high bits $AC $A8 $00 data byte in

Write extended fuse bits $AC $A4 $00 data byte in

Table 26-16. Serial Programming Instruction Set (Continued)

Instruction/Operation

Instruction Format

Byte 1 Byte 2 Byte 3 Byte4

Note: 1. Not all instructions are applicable for all parts

2. a = address

3. Bits are programmed ‘0’, unprogrammed ‘1’.

4. To ensure future compatibility, unused fuses and lock bits should be unprogrammed (‘1’).

5. Refer to the correspondig section for fuse and lock bits, calibration and signature bytes and page size.

6. Instructions accessing program memory use a word address. This address may be random within the page
range.

7. See htt://www.atmel.com/avr for Application Notes regarding programming and programmers.
267ATmega169P[DATASHEET]
7735C–AVR–05/14

26.9.1 Programming Specific JTAG Instructions

The instruction register is 4-bit wide, supporting up to 16 instructions. The JTAG instructions useful for programming are
listed below.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text describes which data
register is selected as path between TDI and TDO for each instruction.

The run-test/idle state of the TAP controller is used to generate internal clocks. It can also be used as an idle state between
JTAG sequences. The state machine sequence for changing the instruction word is shown in Figure 26-13.

Figure 26-13. State Machine Sequence for Changing the Instruction Word

26.9.2 AVR_RESET (0xC)

The AVR® specific public JTAG instruction for setting the AVR device in the reset mode or taking the device out from the
reset mode. The TAP controller is not reset by this instruction. The one bit reset register is selected as data register. Note
that the reset will be active as long as there is a logic “one” in the reset chain. The output from this chain is not latched.

The active states are:

● Shift-DR: The reset register is shifted by the TCK input.

Test-logic-reset

Run-test/Idle Select-IR ScanSelect-DR Scan

Capture-IRCapture-DR

0

0 0

0 0

0 0

Shift-IRShift-DR

1 1

Exit1-IRExit1-DR

Exit2-IRExit2-DR

0 0

Pause-IRPause-DR

1 1

Update-IRUpdate-DR

1

1 0 1 0

1

1

0 0

0
1

1

0

1

0

1 1

1 1
269ATmega169P[DATASHEET]
7735C–AVR–05/14

Figure 26-17. Flash Data Byte Register

The state machine controlling the flash data byte register is clocked by TCK. During normal operation in which eight bits are
shifted for each flash byte, the clock cycles needed to navigate through the TAP controller automatically feeds the state
machine for the flash data byte register with sufficient number of clock pulses to complete its operation transparently for the
user. However, if too few bits are shifted between each update-DR state during page load, the TAP controller should stay in
the run-test/idle state for some TCK cycles to ensure that there are at least 11 TCK cycles between each update-DR state.

26.9.12 Programming Algorithm

All references below of type “1a”, “1b”, and so on, refer to Table 26-17 on page 272.

26.9.13 Entering Programming Mode

1. Enter JTAG instruction AVR_RESET and shift 1 in the reset register.

2. Enter instruction PROG_ENABLE and shift 0b1010_0011_0111_0000 in the programming enable register.

26.9.14 Leaving Programming Mode

1. Enter JTAG instruction PROG_COMMANDS.

2. Disable all programming instructions by using no operation instruction 11a.

3. Enter instruction PROG_ENABLE and shift 0b0000_0000_0000_0000 in the programming enable register.

4. Enter JTAG instruction AVR_RESET and shift 0 in the reset register.

26.9.15 Performing Chip Erase

1. Enter JTAG instruction PROG_COMMANDS.

2. Start chip erase using programming instruction 1a.

3. Poll for chip erase complete using programming instruction 1b, or wait for tWLRH_CE

(refer to Table 26-13 on page 263).

Flash
EEPROM

Fuses
Lock Bits

D
A
T
A

TDI

State
Machine

STROBES

ADDRESS

TDO
277ATmega169P[DATASHEET]
7735C–AVR–05/14

Figure 27-4. SPI Interface Timing Requirements (Slave Mode)

9

MSB

SS

SCK
(CPOL = 0)

SCK
(CPOL = 1)

MOSI
(Data Input)

MISO
(Data Output)

MSB LSB X

LSB...

...

13 14

1715

10 16

11 11

12

27.7 ADC Characteristics

Parameter Condition Symbol Min Typ Max Unit

Resolution Single ended conversion 10 Bits

Absolute accuracy
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

TUE 2.0 4.0 LSB

Integral non linearity
VREF = 4V, VCC = 4V,
ADC clock = 200KHz

INL 0.5 1.5 LSB

Differential non linearity
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

DNL 0.25 0.7 LSB

Gain error
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

–4.0 –2.0 +4.0 LSB

Offset error
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

–4.0 +2.0 +4.0 LSB

Conversion time Free running conversion 65 260 µs

Clock frequency Single ended conversion 50 200 kHz

Analog supply voltage AVCC VCC – 0.3 VCC + 0.3 V

Reference voltage Single ended conversion VREF 1.0 AVCC V

Pin input voltage Single ended channels VIN GND VREF V

Internal voltage reference VINT 1.0 1.1 1.2 V

Reference input resistance RREF 32 k

Analog input resistance RAIN 100 M

27.8 LCD Controller Characteristics

Parameter Condition Symbol Min Typ Max Unit

SEG driver output impedance VLCD = 5.0V Load = 100µA RSEG 7 12 k

COM driver output impedance VLCD = 5.0V Load = 100µA RCOM 1.2 2 k
ATmega169P [DATASHEET]
7735C–AVR–05/14

286

28. Typical Characteristics

The following charts show typical behavior. These figures are not tested during manufacturing. All current consumption
measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. A sine wave generator
with rail-to-rail output is used as clock source.

All active and Idle current consumption measurements are done with all bits in the PRR register set and thus, the
corresponding I/O modules are turned off. Also the Analog Comparator is disabled during these measurements. Table 28-1
shows the additional current consumption compared to ICC Active and ICC Idle for every I/O module controlled by the Power
Reduction Register. See Section 8.7 “Power Reduction Register” on page 35 for details.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating frequency, loading of I/O pins,
switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and
frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as CLVCCf where CL = load capacitance,
VCC = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to function properly at
frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with watchdog timer enabled and power-down mode with
watchdog timer disabled represents the differential current drawn by the watchdog timer.

28.1 Active Supply Current

Figure 28-1. Active Supply Current versus Frequency (0.1 - 1.0MHz)

Figure 28-2. Active Supply Current versus Frequency (1 - 16MHz)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

1.4

1.2

1.0

2

1.8

1.6

0.8

0.6

0.4

0.2

0

I C
C
 (m

A
)

6.0

5.5

5.0

3.6

3.3

3.0

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

15

10

5

30

25

20

0

I C
C
 (m

A
)

6.0

5.5

5.0

3.6

3.3

3.0
287ATmega169P[DATASHEET]
7735C–AVR–05/14

Figure 28-20. Output Low Voltage Port B - VCC = 5V

Figure 28-21. Output Low Voltage Port B - VCC = 3V

Figure 28-22. Output High Voltage Ports A, C, D, E, F, G - VCC = 5V

0 2 64 8 10 12 14 16 18 20

IOL (mA)

0.6

0.5

0.8

0.7

0.4

0.3

0.2

0.1

0

V O
L

(V
)

125

85

25

-45

0 2 64 8 10 12 14 16 18 20

IOL (mA)

1.2

1

0.8

0.6

0.4

0.2

0

V O
L

(V
)

125

85

25

-45

0 1 32 4 5 6 7 8 9 10

IOH (mA)

4.85

4.8

4.75

4.7

5.05

5

4.95

4.9

4.65

4.6

4.55

V O
H
 (V

)

125

85

25

-45
295ATmega169P[DATASHEET]
7735C–AVR–05/14

