Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. ## **Applications of Embedded - CPLDs** | Details | | |---------------------------------|---| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 10 ns | | Voltage Supply - Internal | 3V ~ 3.6V | | Number of Logic Elements/Blocks | 8 | | Number of Macrocells | 128 | | Number of Gates | 2500 | | Number of I/O | 96 | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 144-LQFP | | Supplier Device Package | 144-TQFP (20x20) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm3128ati144-10aa | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## ...and More Features - PCI compatible - Bus-friendly architecture including programmable slew-rate control - Open–drain output option - Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls - Programmable power-saving mode for a power reduction of over 50% in each macrocell - Configurable expander product-term distribution, allowing up to 32 product terms per macrocell - Programmable security bit for protection of proprietary designs - Enhanced architectural features, including: - 6 or 10 pin- or logic-driven output enable signals - Two global clock signals with optional inversion - Enhanced interconnect resources for improved routability - Programmable output slew-rate control - Software design support and automatic place-and-route provided by Altera's development systems for Windows-based PCs and Sun SPARCstations, and HP 9000 Series 700/800 workstations - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from third-party manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and VeriBest - Programming support with the Altera master programming unit (MPU), MasterBlaster™ communications cable, ByteBlasterMV™ parallel port download cable, BitBlaster™ serial download cable as well as programming hardware from third-party manufacturers and any in-circuit tester that supports Jam™ Standard Test and Programming Language (STAPL) Files (.jam), Jam STAPL Byte-Code Files (.jbc), or Serial Vector Format Files (.svf) # General Description MAX 3000A devices are low–cost, high–performance devices based on the Altera MAX architecture. Fabricated with advanced CMOS technology, the EEPROM–based MAX 3000A devices operate with a 3.3-V supply voltage and provide 600 to 10,000 usable gates, ISP, pin-to-pin delays as fast as 4.5 ns, and counter speeds of up to 227.3 MHz. MAX 3000A devices in the -4, -5, -6, -7, and -10 speed grades are compatible with the timing requirements of the PCI Special Interest Group (PCI SIG) **PCI Local Bus Specification, Revision 2.2.** See Table 2. MAX 3000A devices contain 32 to 512 macrocells, combined into groups of 16 macrocells called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with shareable expander and high-speed parallel expander product terms to provide up to 32 product terms per macrocell. MAX 3000A devices provide programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 3000A devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 3000A devices can be set for 2.5 V or 3.3 V, and all input pins are 2.5-V, 3.3-V, and 5.0-V tolerant, allowing MAX 3000A devices to be used in mixed-voltage systems. MAX 3000A devices are supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry–standard PC– and UNIX–workstation–based EDA tools. The software runs on Windows–based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations. For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet. # Functional Description The MAX 3000A architecture includes the following elements: - Logic array blocks (LABs) - Macrocells - Expander product terms (shareable and parallel) - Programmable interconnect array (PIA) - I/O control blocks The MAX 3000A architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of MAX 3000A devices. ### Shareable Expanders Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. Shareable expanders incur a small delay (t_{SEXP}) . Figure 3 shows how shareable expanders can feed multiple macrocells. Shareable expanders can be shared by any or all macrocells in an LAB. Macrocell Product-Term Logic Product-Term Select Matrix Macrocell Product-Term Logic Macrocell Product-Term Logic Figure 3. MAX 3000A Shareable Expanders ## Parallel Expanders Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB. Figure 6. I/O Control Block of MAX 3000A Devices #### Note: EPM3032A, EPM3064A, EPM3128A, and EPM3256A devices have six output enables. EPM3512A devices have 10 output enables. When the tri–state buffer control is connected to ground, the output is tri-stated (high impedance), and the I/O pin can be used as a dedicated input. When the tri–state buffer control is connected to $V_{CC},$ the output is enabled. The MAX 3000A architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic. # In-System Programmability MAX 3000A devices can be programmed in–system via an industry–standard four–pin IEEE Std. 1149.1-1990 (JTAG) interface. In-system programmability (ISP) offers quick, efficient iterations during design development and debugging cycles. The MAX 3000A architecture internally generates the high programming voltages required to program its EEPROM cells, allowing in–system programming with only a single 3.3–V power supply. During in–system programming, the I/O pins are tri–stated and weakly pulled–up to eliminate board conflicts. The pull–up value is nominally 50 k Ω . MAX 3000A devices have an enhanced ISP algorithm for faster programming. These devices also offer an ISP_Done bit that ensures safe operation when in-system programming is interrupted. This ISP_Done bit, which is the last bit programmed, prevents all I/O pins from driving until the bit is programmed. ISP simplifies the manufacturing flow by allowing devices to be mounted on a printed circuit board (PCB) with standard pick-and-place equipment before they are programmed. MAX 3000A devices can be programmed by downloading the information via in-circuit testers, embedded processors, the MasterBlaster communications cable, the ByteBlasterMV parallel port download cable, and the BitBlaster serial download cable. Programming the devices after they are placed on the board eliminates lead damage on high-pin-count packages (e.g., QFP packages) due to device handling. MAX 3000A devices can be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem. The Jam STAPL programming and test language can be used to program MAX 3000A devices with in–circuit testers, PCs, or embedded processors. For more information on using the Jam STAPL programming and test language, see *Application Note 88 (Using the Jam Language for ISP & ICR via an Embedded Processor)*, *Application Note 122 (Using Jam STAPL for ISP & ICR via an Embedded Processor)* and *AN 111 (Embedded Programming Using the 8051 and Jam Byte-Code)*. The ISP circuitry in MAX 3000A devices is compliant with the IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors. By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device. ## Programming a Single MAX 3000A Device The time required to program a single MAX 3000A device in-system can be calculated from the following formula: $$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$ where: t_{PROG} = Programming time t_{PPULSE} = Sum of the fixed times to erase, program, and verify the EEPROM cells Cycle_{PTCK} = Number of TCK cycles to program a device = TCK frequency The ISP times for a stand-alone verification of a single MAX 3000A device can be calculated from the following formula: $$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$ where: t_{VER} = Verify time t_{VPULSE} = Sum of the fixed times to verify the EEPROM cells $Cycle_{VTCK}$ = Number of TCK cycles to verify a device The programming times described in Tables 4 through 6 are associated with the worst-case method using the enhanced ISP algorithm. | Table 4. MAX 3000A t _{PULSE} & Cycle _{TCK} Values | | | | | | | | | |---|-------------------------|-----------------------|--------------------------|-----------------------|--|--|--|--| | Device | Progra | mming | Stand-Alone Verification | | | | | | | | t _{PPULSE} (s) | Cycle _{PTCK} | t _{VPULSE} (s) | Cycle _{VTCK} | | | | | | EPM3032A | 2.00 | 55,000 | 0.002 | 18,000 | | | | | | EPM3064A | 2.00 | 105,000 | 0.002 | 35,000 | | | | | | EPM3128A | 2.00 | 205,000 | 0.002 | 68,000 | | | | | | EPM3256A | 2.00 | 447,000 | 0.002 | 149,000 | | | | | | EPM3512A | 2.00 | 890,000 | 0.002 | 297,000 | | | | | Tables 5 and 6 show the in-system programming and stand alone verification times for several common test clock frequencies. | Table 5. MAX 3000A In-System Programming Times for Different Test Clock Frequencies | | | | | | | | | | |---|--------|-----------|-------|-------|---------|---------|---------|--------|---| | Device | | f_{TCK} | | | | | | | | | | 10 MHz | 5 MHz | 2 MHz | 1 MHz | 500 kHz | 200 kHz | 100 kHz | 50 kHz | | | EPM3032A | 2.01 | 2.01 | 2.03 | 2.06 | 2.11 | 2.28 | 2.55 | 3.10 | S | | EPM3064A | 2.01 | 2.02 | 2.05 | 2.11 | 2.21 | 2.53 | 3.05 | 4.10 | s | | EPM3128A | 2.02 | 2.04 | 2.10 | 2.21 | 2.41 | 3.03 | 4.05 | 6.10 | S | | EPM3256A | 2.05 | 2.09 | 2.23 | 2.45 | 2.90 | 4.24 | 6.47 | 10.94 | S | | EPM3512A | 2.09 | 2.18 | 2.45 | 2.89 | 3.78 | 6.45 | 10.90 | 19.80 | S | | Table 6. MAX 3000A Stand-Alone Verification Times for Different Test Clock Frequencies | | | | | | | | | | |--|--------|-------|-------|-------|---------|---------|---------|--------|-------| | Device | | | | f | TCK | | | | Units | | | 10 MHz | 5 MHz | 2 MHz | 1 MHz | 500 kHz | 200 kHz | 100 kHz | 50 kHz | | | EPM3032A | 0.00 | 0.01 | 0.01 | 0.02 | 0.04 | 0.09 | 0.18 | 0.36 | s | | EPM3064A | 0.01 | 0.01 | 0.02 | 0.04 | 0.07 | 0.18 | 0.35 | 0.70 | S | | EPM3128A | 0.01 | 0.02 | 0.04 | 0.07 | 0.14 | 0.34 | 0.68 | 1.36 | S | | EPM3256A | 0.02 | 0.03 | 0.08 | 0.15 | 0.30 | 0.75 | 1.49 | 2.98 | S | | EPM3512A | 0.03 | 0.06 | 0.15 | 0.30 | 0.60 | 1.49 | 2.97 | 5.94 | s | # Programming with External Hardware MAX 3000A devices can be programmed on Windows-based PCs with an Altera Logic Programmer card, MPU, and the appropriate device adapter. The MPU performs continuity checking to ensure adequate electrical contact between the adapter and the device. For more information, see the Altera Programming Hardware Data Sheet. The Altera software can use text—or waveform—format test vectors created with the Altera Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional device behavior with the results of simulation. Data I/O, BP Microsystems, and other programming hardware manufacturers also provide programming support for Altera devices. For more information, see Programming Hardware Manufacturers. # IEEE Std. 1149.1 (JTAG) Boundary–Scan Support MAX 3000A devices include the JTAG BST circuitry defined by IEEE Std. 1149.1–1990. Table 7 describes the JTAG instructions supported by MAX 3000A devices. The pin-out tables found on the Altera web site (http://www.altera.com) or the *Altera Digital Library* show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins. | Table 7. MAX 3000A | Table 7. MAX 3000A JTAG Instructions | | | | | | | |--------------------|---|--|--|--|--|--|--| | JTAG Instruction | Description | | | | | | | | SAMPLE/PRELOAD | Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins | | | | | | | | EXTEST | Allows the external circuitry and board–level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins | | | | | | | | BYPASS | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation | | | | | | | | IDCODE | Selects the IDCODE register and places it between the TDI and TDO pins, allowing the IDCODE to be serially shifted out of TDO | | | | | | | | USERCODE | Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE value to be shifted out of TDO | | | | | | | | ISP Instructions | These instructions are used when programming MAX 3000A devices via the JTAG ports with the MasterBlaster, ByteBlasterMV, or BitBlaster cable, or when using a Jam STAPL file, JBC file, or SVF file via an embedded processor or test equipment | | | | | | | The instruction register length of MAX 3000A devices is 10 bits. The IDCODE and USERCODE register length is 32 bits. Tables 8 and 9 show the boundary–scan register length and device IDCODE information for MAX 3000A devices. | Table 8. MAX 3000A Boundary–Scan Register Length | | | | | | | |--|-------------------------------|--|--|--|--|--| | Device | Boundary-Scan Register Length | | | | | | | EPM3032A | 96 | | | | | | | EPM3064A | 192 | | | | | | | EPM3128A | 288 | | | | | | | EPM3256A | 480 | | | | | | | EPM3512A | 624 | | | | | | | Table 9. 32–Bit MAX 3000A Device IDCODE Value Note (1) | | | | | | | | | | |--|---------------------|-----------------------|--------------------------------------|------------------|--|--|--|--|--| | Device | | IDCODE (32 bits) | | | | | | | | | | Version
(4 Bits) | Part Number (16 Bits) | Manufacturer's
Identity (11 Bits) | 1 (1 Bit)
(2) | | | | | | | EPM3032A | 0001 | 0111 0000 0011 0010 | 00001101110 | 1 | | | | | | | EPM3064A | 0001 | 0111 0000 0110 0100 | 00001101110 | 1 | | | | | | | EPM3128A | 0001 | 0111 0001 0010 1000 | 00001101110 | 1 | | | | | | | EPM3256A | 0001 | 0111 0010 0101 0110 | 00001101110 | 1 | | | | | | | EPM3512A | 0001 | 0111 0101 0001 0010 | 00001101110 | 1 | | | | | | #### Notes: - (1) The most significant bit (MSB) is on the left. - (2) The least significant bit (LSB) for all JTAG IDCODEs is 1. See Application Note 39 (IEEE 1149.1 (JTAG) Boundary–Scan Testing in Altera Devices) for more information on JTAG BST. #### Figure 8. MAX 3000A AC Test Conditions Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fastground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V outputs. Numbers without brackets are for 3.3-V devices or outputs. # Operating Conditions Tables 12 through 15 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for MAX 3000A devices. | Table 1 | Table 12. MAX 3000A Device Absolute Maximum Ratings Note (1) | | | | | | | | | | | |------------------|--|------------------------------------|------|------|------|--|--|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | | | V _{CC} | Supply voltage | With respect to ground (2) | -0.5 | 4.6 | V | | | | | | | | V _I | DC input voltage | | -2.0 | 5.75 | V | | | | | | | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | | | | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | °C | | | | | | | | T _A | Ambient temperature | Under bias | -65 | 135 | °C | | | | | | | | TJ | Junction temperature | PQFP and TQFP packages, under bias | | 135 | °C | | | | | | | 3.3 V 150 I_{OL} 100 Typical I_O $V_{CCINT} = 3.3 V$ Output $V_{CCIO} = 3.3 V$ Current (mA) Temperature = 25 °C 50 I_{OH} VO Output Voltage (V) 2.5 V 150 I_{OL} 100 Typical IO $V_{CCINT} = 3.3 V$ Output $V_{CCIO} = 2.5 V$ Current (mA) Temperature = 25 °C 50 I_{OH} 0 2 VO Output Voltage (V) Figure 9. Output Drive Characteristics of MAX 3000A Devices # Power Sequencing & Hot-Socketing Because MAX 3000A devices can be used in a mixed–voltage environment, they have been designed specifically to tolerate any possible power–up sequence. The V_{CCIO} and V_{CCINT} power planes can be powered in any order. Signals can be driven into MAX 3000A devices before and during power-up without damaging the device. In addition, MAX 3000A devices do not drive out during power-up. Once operating conditions are reached, MAX 3000A devices operate as specified by the user. Figure 11. MAX 3000A Switching Waveforms t_{SU} t_{RD} t_H ← t_{PIA} – $-t_{OD}$ $\leftarrow t_{CLR}, t_{PRE} \rightarrow$ $-t_{PIA}$ $\leftarrow t_{OD} \rightarrow$ Clock at Register Data from Logic Array Register to PIA to Logic Array Register Output to Pin # Tables 16 through 23 show EPM3032A, EPM3064A, EPM3128A, EPM3256A, and EPM3512A timing information. | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|--|-------------------|-------|-----|-------|-------|-------|-----|------| | - | | | | -4 | | -7 | | -10 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-
registered output | C1 = 35 pF
(2) | | 4.5 | | 7.5 | | 10 | ns | | t _{PD2} | I/O input to non–
registered output | C1 = 35 pF
(2) | | 4.5 | | 7.5 | | 10 | ns | | t _{SU} | Global clock setup time | (2) | 2.9 | | 4.7 | | 6.3 | | ns | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 3.0 | 1.0 | 5.0 | 1.0 | 6.7 | ns | | t _{CH} | Global clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | (2) | 1.6 | | 2.5 | | 3.6 | | ns | | t _{AH} | Array clock hold time | (2) | 0.3 | | 0.5 | | 0.5 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF
(2) | 1.0 | 4.3 | 1.0 | 7.2 | 1.0 | 9.4 | ns | | t _{ACH} | Array clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CNT} | Minimum global clock period | (2) | | 4.4 | | 7.2 | | 9.7 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (4) | 227.3 | | 138.9 | | 103.1 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 4.4 | | 7.2 | | 9.7 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (4) | 227.3 | | 138.9 | | 103.1 | | MHz | | Table 17 | Table 17. EPM3032A Internal Timing Parameters (Part 2 of 2) Note (1) | | | | | | | | | |-----------|--|------------|------------------|-----|-----|-----|-----|------|----| | Symbol | Parameter | Conditions | ns Speed Grade U | | | | | Unit | | | | | | -4 | | -7 | | -10 | | | | | | | Min | Max | Min | Max | Min | Max | | | t_{LPA} | Low-power adder | (5) | | 2.5 | | 4.0 | | 5.0 | ns | | Table 18 | 8. EPM3064A External Timin | g Parameters | Note (| 1) | | | | | | |-------------------|--|----------------|--------|-----|-------|-------|-------|------|------| | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | | | | | _ | -4 | | -7 | | -10 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF (2) | | 4.5 | | 7.5 | | 10.0 | ns | | t _{PD2} | I/O input to non–registered output | C1 = 35 pF (2) | | 4.5 | | 7.5 | | 10.0 | ns | | t _{SU} | Global clock setup time | (2) | 2.8 | | 4.7 | | 6.2 | | ns | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 3.1 | 1.0 | 5.1 | 1.0 | 7.0 | ns | | t _{CH} | Global clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | (2) | 1.6 | | 2.6 | | 3.6 | | ns | | t _{AH} | Array clock hold time | (2) | 0.3 | | 0.4 | | 0.6 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF (2) | 1.0 | 4.3 | 1.0 | 7.2 | 1.0 | 9.6 | ns | | t _{ACH} | Array clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CNT} | Minimum global clock period | (2) | | 4.5 | | 7.4 | | 10.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (4) | 222.2 | | 135.1 | | 100.0 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 4.5 | | 7.4 | | 10.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (4) | 222.2 | | 135.1 | | 100.0 | | MHz | | Table 20 | Table 20. EPM3128A External Timing Parameters Note (1) | | | | | | | | | |-------------------|--|------------|------------|-----|-----------|-------|------|-----|------| | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | | | | | - 5 | | -7 | | -10 | | | | | | | Min | Max | Min | Max | Min | Max | | | f _{ACNT} | Maximum internal array clock frequency | (2), (4) | 192.3 | | 129.9 | | 98.0 | | MHz | | Table 21. EPM3128A Internal Timing Parameters (Part 1 of 2) Note (1) | | | | | | | | | | |--|---|------------|-------------|-----|-----|-----|-----|------|----| | Symbol | Parameter | Conditions | Speed Grade | | | | | Unit | | | | | | -5 | | _ | -7 | _ | -10 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.7 | | 1.0 | | 1.4 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.7 | | 1.0 | | 1.4 | ns | | t _{SEXP} | Shared expander delay | | | 2.0 | | 2.9 | | 3.8 | ns | | t _{PEXP} | Parallel expander delay | | | 0.4 | | 0.7 | | 0.9 | ns | | t_{LAD} | Logic array delay | | | 1.6 | | 2.4 | | 3.1 | ns | | t _{LAC} | Logic control array delay | | | 0.7 | | 1.0 | | 1.3 | ns | | t _{IOE} | Internal output enable delay | | | 0.0 | | 0.0 | | 0.0 | ns | | t _{OD1} | Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 0.8 | | 1.2 | | 1.6 | ns | | t _{OD2} | Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF | | 1.3 | | 1.7 | | 2.1 | ns | | t _{OD3} | Output buffer and pad delay, slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.8 | | 6.2 | | 6.6 | ns | | t _{ZX1} | Output buffer enable delay, slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | ns | | t_{ZX2} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF | | 4.5 | | 4.5 | | 5.5 | ns | | t_{ZX3} | Output buffer enable delay, slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 9.0 | | 9.0 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 5.0 | ns | | Symbol | Parameter | Conditions | Speed Grade | | | | | |-------------------|---|------------|-------------|-----|------|------|-----| | | | | _ | 7 | -10 | | - | | | | | Min | Max | Min | Max | | | t _{CNT} | Minimum global clock period | (2) | | 7.9 | | 10.5 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (4) | 126.6 | | 95.2 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 7.9 | | 10.5 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (4) | 126.6 | | 95.2 | | MHz | | Table 23. EPM3256A Internal Timing Parameters (Part 1 of 2) Note (1) | | | | | | | | |--|---|------------|-----|------|-----|-----|----| | Symbol | Parameter | Conditions | | Unit | | | | | | | | -7 | | -10 | | | | | | | Min | Max | Min | Max | | | t_{IN} | Input pad and buffer delay | | | 0.9 | | 1.2 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.9 | | 1.2 | ns | | t _{SEXP} | Shared expander delay | | | 2.8 | | 3.7 | ns | | t _{PEXP} | Parallel expander delay | | | 0.5 | | 0.6 | ns | | t_{LAD} | Logic array delay | | | 2.2 | | 2.8 | ns | | t _{LAC} | Logic control array delay | | | 1.0 | | 1.3 | ns | | t _{IOE} | Internal output enable delay | | | 0.0 | | 0.0 | ns | | t _{OD1} | Output buffer and pad delay, slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 1.2 | | 1.6 | ns | | t _{OD2} | Output buffer and pad delay, slow slew rate = off V _{CCIO} = 2.5 V | C1 = 35 pF | | 1.7 | | 2.1 | ns | | t _{OD3} | Output buffer and pad delay,
slow slew rate = on
V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 6.2 | | 6.6 | ns | | t _{ZX1} | Output buffer enable delay, slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 4.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF | | 4.5 | | 5.5 | ns | $$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$ The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices).* The I_{CCINT} value depends on the switching frequency and the application logic. The I_{CCINT} value is calculated with the following equation: $I_{CCINT} =$ $$(A \times MC_{TON}) + [B \times (MC_{DEV} - MC_{TON})] + (C \times MC_{USED} \times f_{MAX} \times tog_{LC})$$ The parameters in the I_{CCINT} equation are: MC_{TON} = Number of macrocells with the Turbo BitTM option turned on, as reported in the Quartus II or MAX+PLUS II Report File (.rpt) MC_{DEV} = Number of macrocells in the device MC_{USED} = Total number of macrocells in the design, as reported in the RPT File **f**_{MAX} = Highest clock frequency to the device tog_{LC} = Average percentage of logic cells toggling at each clock (typically 12.5%) A, B, C = Constants (shown in Table 26) | Table 26. MAX 3000A I _{CC} Equation Constants | | | | | | | |--|------|------|-------|--|--|--| | Device | Α | В | С | | | | | EPM3032A | 0.71 | 0.30 | 0.014 | | | | | EPM3064A | 0.71 | 0.30 | 0.014 | | | | | EPM3128A | 0.71 | 0.30 | 0.014 | | | | | EPM3256A | 0.71 | 0.30 | 0.014 | | | | | EPM3512A | 0.71 | 0.30 | 0.014 | | | | The I_{CCINT} calculation provides an I_{CC} estimate based on typical conditions using a pattern of a 16-bit, loadable, enabled, up/down counter in each LAB with no output load. Actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions. Figures 12 and 13 show the typical supply current versus frequency for MAX 3000A devices. Figure 13. I_{CC} vs. Frequency for MAX 3000A Devices # Device Pin-Outs See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin–out information. Figures 14 through 18 show the package pin-out diagrams for MAX 3000A devices. Figure 14. 44-Pin PLCC/TQFP Package Pin-Out Diagram Package outlines not drawn to scale. Figure 18. 256-Pin FineLine BGA Package Pin-Out Diagram Package outline not drawn to scale. ## Revision History The information contained in the *MAX 3000A Programmable Logic Device Data Sheet* version 3.4 supersedes information published in previous versions. The following changes were made in the *MAX 3000A Programmable Logic Device Data Sheet* version 3.4: #### Version 3.4 The following changes were made in the MAX 3000A Programmable Logic Device Data Sheet version 3.4: Updated Table 1. #### Version 3.3 The following changes were made in the MAX 3000A Programmable Logic Device Data Sheet version 3.3: - Updated Tables 3, 13, and 26. - Added Tables 4 through 6. - Updated Figures 12 and 13. - Added "Programming Sequence" on page 13 and "Programming Times" on page 13