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Cyclone devices are available in quad flat pack (QFP) and space-saving 
FineLine® BGA packages (see Tables 1–2 through 1–3).

Vertical migration means you can migrate a design from one device to 
another that has the same dedicated pins, JTAG pins, and power pins, and 
are subsets or supersets for a given package across device densities. The 
largest density in any package has the  highest number of power pins; you 
must use the layout for the largest planned density in a package to 
provide the necessary power pins for migration.

For I/O pin migration across densities, cross-reference the available I/O 
pins using the device pin-outs for all planned densities of a given package 
type to identify which I/O pins can be migrated. The Quartus® II 
software can automatically cross-reference and place all pins for you 
when given a device migration list. If one device has power or ground 
pins, but these same pins are user I/O on a different device that is in the 
migration path,the Quartus II software ensures the pins are not used as 
user I/O in the Quartus II software. Ensure that these pins are connected 

Total RAM bits 59,904 78,336 92,160 239,616 294,912

PLLs 1 2 2 2 2

Maximum user I/O pins (1) 104 301 185 249 301

Note to Table 1–1:
(1) This parameter includes global clock pins.

Table 1–1. Cyclone Device Features  (Part 2 of 2)

Feature EP1C3 EP1C4 EP1C6 EP1C12 EP1C20

Table 1–2. Cyclone Package Options and I/O Pin Counts

Device 100-Pin TQFP 
(1)

144-Pin TQFP 
(1), (2)

240-Pin PQFP 
(1)

256-Pin 
FineLine BGA

324-Pin 
FineLine BGA

400-Pin 
FineLine BGA

EP1C3 65 104 — — — —

EP1C4 — — — — 249 301

EP1C6 — 98 185 185 — —

EP1C12 — — 173 185 249 —

EP1C20 — — — — 233 301

Notes to Table 1–2:
(1) TQFP: thin quad flat pack.

PQFP: plastic quad flat pack.
(2) Cyclone devices support vertical migration within the same package (i.e., designers can migrate between the 

EP1C3 device in the 144-pin TQFP package and the EP1C6 device in the same package).
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Logic Elements

Dynamic Arithmetic Mode

The dynamic arithmetic mode is ideal for implementing adders, counters, 
accumulators, wide parity functions, and comparators. An LE in dynamic 
arithmetic mode uses four 2-input LUTs configurable as a dynamic 
adder/subtractor. The first two 2-input LUTs compute two summations 
based on a possible carry-in of 1 or 0; the other two LUTs generate carry 
outputs for the two chains of the carry select circuitry. As shown in 
Figure 2–7, the LAB carry-in signal selects either the carry-in0 or 
carry-in1 chain. The selected chain's logic level in turn determines 
which parallel sum is generated as a combinatorial or registered output. 
For example, when implementing an adder, the sum output is the 
selection of two possible calculated sums:

data1 + data2 + carry-in0

or

data1 + data2 + carry-in1

The other two LUTs use the data1 and data2 signals to generate two 
possible carry-out signals⎯one for a carry of 1 and the other for a carry of 
0. The carry-in0 signal acts as the carry select for the carry-out0 
output and carry-in1 acts as the carry select for the carry-out1 
output. LEs in arithmetic mode can drive out registered and unregistered 
versions of the LUT output.

The dynamic arithmetic mode also offers clock enable, counter enable, 
synchronous up/down control, synchronous clear, synchronous load, 
and dynamic adder/subtractor options. The LAB local interconnect data 
inputs generate the counter enable and synchronous up/down control 
signals. The synchronous clear and synchronous load options are 
LAB-wide signals that affect all registers in the LAB. The Quartus II 
software automatically places any registers that are not used by the 
counter into other LABs. The addnsub LAB-wide signal controls 
whether the LE acts as an adder or subtractor.
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Figure 2–8 shows the carry-select circuitry in a LAB for a 10-bit full adder. 
One portion of the LUT generates the sum of two bits using the input 
signals and the appropriate carry-in bit; the sum is routed to the output 
of the LE. The register can be bypassed for simple adders or used for 
accumulator functions. Another portion of the LUT generates carry-out 
bits. A LAB-wide carry-in bit selects which chain is used for the addition 
of given inputs. The carry-in signal for each chain, carry-in0 or 
carry-in1, selects the carry-out to carry forward to the carry-in signal 
of the next-higher-order bit. The final carry-out signal is routed to an LE, 
where it is fed to local, row, or column interconnects. 

Figure 2–8. Carry Select Chain
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MultiTrack Interconnect

migrating through different device densities. Dedicated row 
interconnects route signals to and from LABs, PLLs, and M4K memory 
blocks within the same row. These row resources include:

■ Direct link interconnects between LABs and adjacent blocks
■ R4 interconnects traversing four blocks to the right or left

The direct link interconnect allows a LAB or M4K memory block to drive 
into the local interconnect of its left and right neighbors. Only one side of 
a PLL block interfaces with direct link and row interconnects. The direct 
link interconnect provides fast communication between adjacent LABs 
and/or blocks without using row interconnect resources.

The R4 interconnects span four LABs, or two LABs and one M4K RAM 
block. These resources are used for fast row connections in a four-LAB 
region. Every LAB has its own set of R4 interconnects to drive either left 
or right. Figure 2–9 shows R4 interconnect connections from a LAB. R4 
interconnects can drive and be driven by M4K memory blocks, PLLs, and 
row IOEs. For LAB interfacing, a primary LAB or LAB neighbor can drive 
a given R4 interconnect. For R4 interconnects that drive to the right, the 
primary LAB and right neighbor can drive on to the interconnect. For R4 
interconnects that drive to the left, the primary LAB and its left neighbor 
can drive on to the interconnect. R4 interconnects can drive other R4 
interconnects to extend the range of LABs they can drive. R4 
interconnects can also drive C4 interconnects for connections from one 
row to another. 
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Embedded Memory

register outputs (number of taps n × width w) must be less than the 
maximum data width of the M4K RAM block (×36). To create larger shift 
registers, multiple memory blocks are cascaded together.

Data is written into each address location at the falling edge of the clock 
and read from the address at the rising edge of the clock. The shift register 
mode logic automatically controls the positive and negative edge 
clocking to shift the data in one clock cycle. Figure 2–14 shows the M4K 
memory block in the shift register mode.

Figure 2–14. Shift Register Memory Configuration

Memory Configuration Sizes

The memory address depths and output widths can be configured as 
4,096 × 1, 2,048 × 2, 1,024 × 4, 512 × 8 (or 512 × 9 bits), 256 × 16 (or 256 × 18 
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Global Clock Network and Phase-Locked Loops

Single-Port Mode

The M4K memory blocks also support single-port mode, used when 
simultaneous reads and writes are not required. See Figure 2–21. A single 
M4K memory block can support up to two single-port mode RAM blocks 
if each RAM block is less than or equal to 2K bits in size.

Figure 2–21. Single-Port Mode Note (1)

Note to Figure 2–21:
(1) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both 

read and write operations.

Global Clock 
Network and 
Phase-Locked 
Loops

Cyclone devices provide a global clock network and up to two PLLs for a 
complete clock management solution.

Global Clock Network

There are four dedicated clock pins (CLK[3..0], two pins on the left side 
and two pins on the right side) that drive the global clock network, as 
shown in Figure 2–22. PLL outputs, logic array, and dual-purpose clock 
(DPCLK[7..0]) pins can also drive the global clock network.
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Global Clock Network and Phase-Locked Loops

Table 2–6 shows the PLL features in Cyclone devices. Figure 2–25 shows 
a Cyclone PLL.

Figure 2–25. Cyclone PLL Note (1)

Notes to Figure 2–25:
(1) The EP1C3 device in the 100-pin TQFP package does not support external outputs or LVDS inputs. The EP1C6 

device in the 144-pin TQFP package does not support external output from PLL2.
(2) LVDS input is supported via the secondary function of the dedicated clock pins. For PLL 1, the CLK0 pin’s secondary 

function is LVDSCLK1p and the CLK1 pin’s secondary function is LVDSCLK1n. For PLL 2, the CLK2 pin’s secondary 
function is LVDSCLK2p and the CLK3 pin’s secondary function is LVDSCLK2n.

(3) PFD: phase frequency detector.

Table 2–6. Cyclone PLL Features

Feature PLL Support

Clock multiplication and division m/(n × post-scale counter) (1)

Phase shift Down to 125-ps increments (2), (3)

Programmable duty cycle Yes

Number of internal clock outputs 2

Number of external clock outputs One differential or one single-ended (4)

Notes to Table 2–6:
(1) The m counter ranges from 2 to 32. The n counter and the post-scale counters 

range from 1 to 32.
(2) The smallest phase shift is determined by the voltage-controlled oscillator (VCO) 

period divided by 8.
(3) For degree increments, Cyclone devices can shift all output frequencies in 

increments of 45°. Smaller degree increments are possible depending on the 
frequency and divide parameters.

(4) The EP1C3 device in the 100-pin TQFP package does not support external clock 
output. The EP1C6 device in the 144-pin TQFP package does not support external 
clock output from PLL2.
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Global Clock Network and Phase-Locked Loops

Clock Multiplication and Division

Cyclone PLLs provide clock synthesis for PLL output ports using 
m/(n × post scale counter) scaling factors. The input clock is divided by 
a pre-scale divider, n, and is then multiplied by the m feedback factor. The 
control loop drives the VCO to match fIN  × (m/n). Each output port has 
a unique post-scale counter to divide down the high-frequency VCO. For 
multiple PLL outputs with different frequencies, the VCO is set to the 
least-common multiple of the output frequencies that meets its frequency 
specifications. Then, the post-scale dividers scale down the output 
frequency for each output port. For example, if the output frequencies 
required from one PLL are 33 and 66 MHz, the VCO is set to 330 MHz (the 
least-common multiple in the VCO's range).

Each PLL has one pre-scale divider, n, that can range in value from 1 to 
32. Each PLL also has one multiply divider, m, that can range in value 
from 2 to 32. Global clock outputs have two post scale G dividers for 
global clock outputs, and external clock outputs have an E divider for 
external clock output, both ranging from 1 to 32. The Quartus II software 
automatically chooses the appropriate scaling factors according to the 
input frequency, multiplication, and division values entered.

Dual-Purpose 
Clock Pins

DPCLK0 (3) — — — v — — — —

DPCLK1 (3) — — v — — — — —

DPCLK2 v — — — — — — —

DPCLK3 — — — — v — — —

DPCLK4 — — — — — — v —

DPCLK5 (3) — — — — — — — v

DPCLK6 — — — — — v — —

DPCLK7 — v — — — — — —

Notes to Table 2–7:
(1) EP1C3 devices only have one PLL (PLL 1).
(2) EP1C3 devices in the 100-pin TQFP package do not have dedicated clock pins CLK1 and CLK3.
(3) EP1C3 devices in the 100-pin TQFP package do not have the DPCLK0, DPCLK1, or DPCLK5 pins.

Table 2–7. Global Clock Network Sources  (Part 2 of 2)

Source GCLK0 GCLK1 GCLK2 GCLK3 GCLK4 GCLK5 GCLK6 GCLK7
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I/O Structure

The pin's datain signals can drive the logic array. The logic array drives 
the control and data signals, providing a flexible routing resource. The 
row or column IOE clocks, io_clk[5..0], provide a dedicated routing 
resource for low-skew, high-speed clocks. The global clock network 
generates the IOE clocks that feed the row or column I/O regions (see 
“Global Clock Network and Phase-Locked Loops” on page 2–29). 
Figure 2–30 illustrates the signal paths through the I/O block.

Figure 2–30. Signal Path through the I/O Block

Each IOE contains its own control signal selection for the following 
control signals: oe, ce_in, ce_out, aclr/preset, sclr/preset, 
clk_in, and clk_out. Figure 2–31 illustrates the control signal 
selection.
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I/O Structure

Slew-Rate Control

The output buffer for each Cyclone device I/O pin has a programmable 
output slew-rate control that can be configured for low noise or 
high-speed performance. A faster slew rate provides high-speed 
transitions for high-performance systems. However, these fast transitions 
may introduce noise transients into the system. A slow slew rate reduces 
system noise, but adds a nominal delay to rising and falling edges. Each 
I/O pin has an individual slew-rate control, allowing the designer to 
specify the slew rate on a pin-by-pin basis. The slew-rate control affects 
both the rising and falling edges.

Bus Hold

Each Cyclone device I/O pin provides an optional bus-hold feature. The 
bus-hold circuitry can hold the signal on an I/O pin at its last-driven 
state. Since the bus-hold feature holds the last-driven state of the pin until 
the next input signal is present, an external pull-up or pull-down resistor 
is not necessary to hold a signal level when the bus is tri-stated. 

The bus-hold circuitry also pulls undriven pins away from the input 
threshold voltage where noise can cause unintended high-frequency 
switching. The designer can select this feature individually for each I/O 
pin. The bus-hold output will drive no higher than VCCIO to prevent 
overdriving signals. If the bus-hold feature is enabled, the device cannot 
use the programmable pull-up option. Disable the bus-hold feature when 
the I/O pin is configured for differential signals.

The bus-hold circuitry uses a resistor with a nominal resistance (RBH) of 
approximately 7 kΩ to pull the signal level to the last-driven state. 
Table 4–15 on page 4–6 gives the specific sustaining current for each 
VCCIO voltage level driven through this resistor and overdrive current 
used to identify the next-driven input level. 

The bus-hold circuitry is only active after configuration. When going into 
user mode, the bus-hold circuit captures the value on the pin present at 
the end of configuration.

Programmable Pull-Up Resistor

Each Cyclone device I/O pin provides an optional programmable 
pull-up resistor during user mode. If the designer enables this feature for 
an I/O pin, the pull-up resistor (typically 25 kΩ) holds the output to the 
VCCIO level of the output pin's bank. Dedicated clock pins do not have the 
optional programmable pull-up resistor.
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In the Quartus II software, there is an Auto Usercode feature where you 
can choose to use the checksum value of a programming file as the JTAG 
user code. If selected, the checksum is automatically loaded to the 
USERCODE register. Choose Assignments > Device > Device and Pin 
Options > General. Turn on Auto Usercode.

USERCODE 00 0000 0111 Selects the 32-bit USERCODE register and places it between the 
TDI and TDO pins, allowing the USERCODE to be serially shifted 
out of TDO.

IDCODE 00 0000 0110 Selects the IDCODE register and places it between TDI and TDO, 
allowing the IDCODE to be serially shifted out of TDO.

HIGHZ (1) 00 0000 1011 Places the 1-bit bypass register between the TDI and TDO pins, 
which allows the BST data to pass synchronously through selected 
devices to adjacent devices during normal device operation, while 
tri-stating all of the I/O pins.

CLAMP (1) 00 0000 1010 Places the 1-bit bypass register between the TDI and TDO pins, 
which allows the BST data to pass synchronously through selected 
devices to adjacent devices during normal device operation while 
holding I/O pins to a state defined by the data in the boundary-scan 
register.

ICR instructions — Used when configuring a Cyclone device via the JTAG port with a 
MasterBlasterTM or ByteBlasterMVTM download cable, or when 
using a Jam File or Jam Byte-Code File via an embedded 
processor.

PULSE_NCONFIG 00 0000 0001 Emulates pulsing the nCONFIG pin low to trigger reconfiguration 
even though the physical pin is unaffected.

CONFIG_IO 00 0000 1101 Allows configuration of I/O standards through the JTAG chain for 
JTAG testing. Can be executed before, after, or during 
configuration. Stops configuration if executed during configuration. 
Once issued, the CONFIG_IO instruction will hold nSTATUS low 
to reset the configuration device. nSTATUS is held low until the 
device is reconfigured.

SignalTap II 
instructions

— Monitors internal device operation with the SignalTap II embedded 
logic analyzer.

Note to Table 3–1:
(1) Bus hold and weak pull-up resistor features override the high-impedance state of HIGHZ, CLAMP, and EXTEST.

Table 3–1. Cyclone JTAG Instructions  (Part 2 of 2)

JTAG Instruction Instruction Code Description
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Figure 3–1 shows the timing requirements for the JTAG signals.

Figure 3–1. Cyclone JTAG Waveforms

Table 3–4 shows the JTAG timing parameters and values for Cyclone 
devices.

Table 3–4. Cyclone JTAG Timing Parameters and Values

Symbol Parameter Min Max Unit

tJ C P TCK clock period  100 — ns

tJ C H TCK clock high time 50 — ns

tJ C L TCK clock low time 50 — ns

tJ P S U JTAG port setup time 20 — ns

tJ P H JTAG port hold time 45 — ns

tJ P CO JTAG port clock to output — 25 ns

tJ P Z X JTAG port high impedance to valid output — 25 ns

tJ P X Z JTAG port valid output to high impedance — 25 ns

tJ S S U Capture register setup time 20 — ns

tJ S H Capture register hold time 45 — ns

tJ S CO Update register clock to output — 35 ns

tJ S Z X Update register high impedance to valid output — 35 ns

tJ S X Z Update register valid output to high impedance — 35 ns
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Referenced Documents

Multiple Cyclone devices can be configured in any of the three 
configuration schemes by connecting the configuration enable (nCE) and 
configuration enable output (nCEO) pins on each device.

Referenced 
Documents

This chapter references the following document:

■ AN 39: IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices
■ Jam Programming & Test Language Specification

Document 
Revision History

Table 3–6 shows the revision history for this chapter.

Table 3–5. Data Sources for Configuration

Configuration Scheme Data Source

Active serial Low-cost serial configuration device

Passive serial (PS) Enhanced or EPC2 configuration device, 
MasterBlaster or ByteBlasterMV download cable, 
or serial data source

JTAG MasterBlaster or ByteBlasterMV download cable 
or a microprocessor with a Jam or JBC file

Table 3–6. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

May 2008
v1.4

Minor textual and style changes. Added “Referenced 
Documents” section.

—

January 2007 
v1.3

● Added document revision history.
● Updated handpara note below Table 3–4.

—

August 2005 
V1.2

Minor updates. —

February 2005 
V1.1

Updated JTAG chain limits. Added information concerning test 
vectors.

—

May 2003 v1.0 Added document to Cyclone Device Handbook. —

http://www.altera.com/literature/an/an039.pdf
http://www.jedec.org/download/search/jesd71.pdf
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4. DC and Switching
Characteristics

Operating 
Conditions

Cyclone® devices are offered in both commercial, industrial, and 
extended temperature grades. However, industrial-grade and extended-
temperature-grade devices may have limited speed-grade availability.

Tables 4–1 through 4–16 provide information on absolute maximum 
ratings, recommended operating conditions, DC operating conditions, 
and capacitance for Cyclone devices.

Table 4–1. Cyclone Device Absolute Maximum Ratings Notes (1), (2)

Symbol Parameter Conditions Minimum Maximum Unit

VCCINT Supply voltage With respect to ground (3) –0.5 2.4 V

VCCIO –0.5 4.6 V

VCCA Supply voltage With respect to ground (3) –0.5 2.4 V

VI DC input voltage –0.5 4.6 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 °C

TAMB Ambient temperature Under bias –65 135 °C

TJ Junction temperature BGA packages under bias — 135 °C

Table 4–2. Cyclone Device Recommended Operating Conditions  (Part 1 of 2)

Symbol Parameter Conditions Minimum  Maximum Unit

VCCINT Supply voltage for internal logic 
and input buffers

(4) 1.425 1.575 V

VCCIO Supply voltage for output buffers, 
3.3-V operation

(4) 3.00 3.60 V

Supply voltage for output buffers, 
2.5-V operation

(4) 2.375 2.625 V

Supply voltage for output buffers, 
1.8-V operation

(4) 1.71 1.89 V

Supply voltage for output buffers, 
1.5-V operation

(4) 1.4 1.6 V

VI Input voltage (3), (5) –0.5 4.1 V

C51004-1.7



4–4  Altera Corporation
Preliminary May 2008

Cyclone Device Handbook, Volume 1

Table 4–8. 1.5-V I/O Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage — 1.4 1.6 V

VI H High-level input voltage — 0.65 ×  
VCCIO

VCCIO + 0.3
(12)

V

VIL Low-level input voltage — –0.3 0.35 ×  
VCCIO

V

VOH High-level output voltage IOH = –2 mA (11) 0.75 ×  
VCCIO

— V

VOL Low-level output voltage IOL = 2 mA (11) — 0.25 ×  
VCCIO

V

Table 4–9. 2.5-V LVDS I/O Specifications Note (13)

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO I/O supply voltage — 2.375 2.5 2.625 V

VOD Differential output voltage RL = 100 Ω 250 — 550 mV

Δ VOD Change in VOD between 
high and low

RL = 100 Ω — — 50 mV

VOS Output offset voltage RL = 100 Ω 1.125 1.25 1.375 V

Δ VOS Change in VOS between 
high and low

RL = 100 Ω — — 50 mV

VTH Differential input threshold VCM = 1.2 V –100 — 100 mV

VIN Receiver input voltage 
range

— 0.0 — 2.4 V

RL Receiver differential input 
resistor

— 90 100 110 Ω

Table 4–10. 3.3-V PCI Specifications  (Part 1 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage — 3.0 3.3 3.6 V

VIH High-level input voltage — 0.5 ×  
VCCIO

— VCCIO + 
0.5

V

VIL Low-level input voltage — –0.5 — 0.3 ×  
VCCIO

V
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VOH High-level output voltage IOUT = –500 μA 0.9 ×  
VCCIO

— — V

VOL Low-level output voltage IOUT = 1,500 μA — — 0.1 ×  
VCCIO

V

Table 4–11. SSTL-2 Class I Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage — 2.375 2.5 2.625 V

VTT Termination voltage — VR E F – 0.04 VR E F VR E F + 0.04 V

VREF Reference voltage — 1.15 1.25 1.35 V

VIH High-level input voltage — VR E F + 0.18 — 3.0 V

VIL Low-level input voltage — –0.3 — VR E F – 0.18 V

VOH High-level output voltage IOH = –8.1 mA 
(11)

VTT + 0.57 — — V

VOL Low-level output voltage IOL = 8.1 mA (11) — — VT T – 0.57 V

Table 4–12. SSTL-2 Class II Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage — 2.3 2.5 2.7 V

VTT Termination voltage — VR E F – 0.04 VR E F VR E F + 0.04 V

VREF Reference voltage — 1.15 1.25 1.35 V

VIH High-level input voltage — VR E F + 0.18 — VCCIO + 0.3 V

VIL Low-level input voltage — –0.3 — VR E F – 0.18 V

VOH High-level output voltage IOH = –16.4 mA 
(11)

VTT + 0.76 — — V

VOL Low-level output voltage IOL = 16.4 mA 
(11)

— — VT T – 0.76 V

Table 4–13. SSTL-3 Class I Specifications  (Part 1 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage — 3.0 3.3 3.6 V

VTT Termination voltage — VR E F – 0.05 VR E F VR E F + 0.05 V

Table 4–10. 3.3-V PCI Specifications  (Part 2 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit
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VREF Reference voltage — 1.3 1.5 1.7 V

VIH High-level input voltage — VR E F + 0.2 — VCCIO + 0.3 V

VIL Low-level input voltage — –0.3 — VR E F – 0.2 V

VOH High-level output voltage IOH = –8 mA (11) VTT + 0.6 — — V

VOL Low-level output voltage IOL = 8 mA (11) — — VT T – 0.6 V

Table 4–14. SSTL-3 Class II Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage — 3.0 3.3 3.6 V

VTT Termination voltage — VR E F – 0.05 VR E F VR E F + 0.05 V

VREF Reference voltage — 1.3 1.5 1.7 V

VIH High-level input voltage — VR E F + 0.2 — VCCIO + 0.3 V

VIL Low-level input voltage — –0.3 — VR E F – 0.2 V

VOH High-level output voltage IOH = –16 mA 
(11)

VT T + 0.8 — — V

VOL Low-level output voltage IOL = 16 mA (11) — — VTT – 0.8 V

Table 4–15. Bus Hold Parameters

Parameter Conditions

VC C I O  Level

Unit1.5 V 1.8 V 2.5 V 3.3 V

Min Max Min Max Min Max Min Max

Low sustaining 
current

VIN > VIL 
(maximum)

— — 30 — 50 — 70 — μA

High sustaining 
current

VIN < VIH 
(minimum)

— — –30 — –50 — –70 — μA

Low overdrive 
current

0 V < VIN < 
VCCIO

— — — 200 — 300 — 500 μA

High overdrive 
current

0 V < VIN < 
VCCIO

— — — –200 — –300 — –500 μA

Table 4–13. SSTL-3 Class I Specifications  (Part 2 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit
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Table 4–22. IOE Internal Timing Microparameter Descriptions

Symbol Parameter

tSU IOE input and output register setup time before clock

tH IOE input and output register hold time after clock

tCO IOE input and output register clock-to-output delay

tPIN2COMBOUT_R Row input pin to IOE combinatorial output

tPIN2COMBOUT_C Column input pin to IOE combinatorial output

tCOMBIN2PIN_R Row IOE data input to combinatorial output pin

tCOMBIN2PIN_C Column IOE data input to combinatorial output pin

tCLR Minimum clear pulse width

tPRE Minimum preset pulse width

tCLKHL Minimum clock high or low time

Table 4–23. M4K Block Internal Timing Microparameter Descriptions

Symbol Parameter

tM4KRC Synchronous read cycle time

tM4KWC Synchronous write cycle time

tM4KWERESU Write or read enable setup time before clock

tM4KWEREH Write or read enable hold time after clock

tM4KBESU Byte enable setup time before clock

tM4KBEH Byte enable hold time after clock

tM4KDATAASU A port data setup time before clock

tM4KDATAAH A port data hold time after clock

tM4KADDRASU A port address setup time before clock

tM4KADDRAH A port address hold time after clock

tM4KDATABSU B port data setup time before clock

tM4KDATABH B port data hold time after clock

tM4KADDRBSU B port address setup time before clock

tM4KADDRBH B port address hold time after clock

tM4KDATACO1 Clock-to-output delay when using output registers

tM4KDATACO2 Clock-to-output delay without output registers

tM4KCLKHL Minimum clock high or low time

tM4KCLR Minimum clear pulse width
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Tables 4–50 and 4–51 show the maximum output clock rate for column 
and row pins in Cyclone devices.

Table 4–49. Cyclone Maximum Input Clock Rate for Row Pins

I/O Standard -6 Speed 
Grade

-7 Speed 
Grade

-8 Speed 
Grade Unit

LVTTL 464 428 387 MHz

2.5 V 392 302 207 MHz

1.8 V 387 311 252 MHz

1.5 V 387 320 243 MHz

LVCMOS 405 374 333 MHz

SSTL-3 class I 405 356 293 MHz

SSTL-3 class II 414 365 302 MHz

SSTL-2 class I 464 428 396 MHz

SSTL-2 class II 473 432 396 MHz

3.3-V PCI (1) 464 428 387 MHz

LVDS 567 549 531 MHz

Note to Tables 4–48 through 4–49:
(1) EP1C3 devices do not support the PCI I/O standard. These parameters are only 

available on row I/O pins.

Table 4–50. Cyclone Maximum Output Clock Rate for Column Pins

I/O Standard -6 Speed 
Grade

-7 Speed 
Grade

-8 Speed 
Grade Unit

LVTTL 304 304 304 MHz

2.5 V 220 220 220 MHz

1.8 V 213 213 213 MHz

1.5 V 166 166 166 MHz

LVCMOS 304 304 304 MHz

SSTL-3 class I 100 100 100 MHz

SSTL-3 class II 100 100 100 MHz

SSTL-2 class I 134 134 134 MHz

SSTL-2 class II 134 134 134 MHz

LVDS 320 320 275 MHz

Note to Table 4–50:
(1) EP1C3 devices do not support the PCI I/O standard. 
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5. Reference and Ordering
Information

Software Cyclone® devices are supported by the Altera® Quartus® II design 
software, which provides a comprehensive environment for system-on-a-
programmable-chip (SOPC) design. The Quartus II software includes 
HDL and schematic design entry, compilation and logic synthesis, full 
simulation and advanced timing analysis, SignalTap® II logic analysis, 
and device configuration. 

f For more information about the Quartus II software features, refer to the 
Quartus II Handbook.

The Quartus II software supports the Windows 2000/NT/98, Sun Solaris, 
Linux Red Hat v7.1 and HP-UX operating systems. It also supports 
seamless integration with industry-leading EDA tools through the 
NativeLink® interface.

Device Pin-Outs Device pin-outs for Cyclone devices are available on the Altera website 
(www.altera.com) and in the Cyclone Device Handbook.

Ordering 
Information

Figure 5–1 describes the ordering codes for Cyclone devices. For more 
information about a specific package, refer to the Package Information for 
Cyclone Devices chapter in the Cyclone Device Handbook.
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