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Cyclone devices are available in quad flat pack (QFP) and space-saving 
FineLine® BGA packages (see Tables 1–2 through 1–3).

Vertical migration means you can migrate a design from one device to 
another that has the same dedicated pins, JTAG pins, and power pins, and 
are subsets or supersets for a given package across device densities. The 
largest density in any package has the  highest number of power pins; you 
must use the layout for the largest planned density in a package to 
provide the necessary power pins for migration.

For I/O pin migration across densities, cross-reference the available I/O 
pins using the device pin-outs for all planned densities of a given package 
type to identify which I/O pins can be migrated. The Quartus® II 
software can automatically cross-reference and place all pins for you 
when given a device migration list. If one device has power or ground 
pins, but these same pins are user I/O on a different device that is in the 
migration path,the Quartus II software ensures the pins are not used as 
user I/O in the Quartus II software. Ensure that these pins are connected 

Total RAM bits 59,904 78,336 92,160 239,616 294,912

PLLs 1 2 2 2 2

Maximum user I/O pins (1) 104 301 185 249 301

Note to Table 1–1:
(1) This parameter includes global clock pins.

Table 1–1. Cyclone Device Features  (Part 2 of 2)

Feature EP1C3 EP1C4 EP1C6 EP1C12 EP1C20

Table 1–2. Cyclone Package Options and I/O Pin Counts

Device 100-Pin TQFP 
(1)

144-Pin TQFP 
(1), (2)

240-Pin PQFP 
(1)

256-Pin 
FineLine BGA

324-Pin 
FineLine BGA

400-Pin 
FineLine BGA

EP1C3 65 104 — — — —

EP1C4 — — — — 249 301

EP1C6 — 98 185 185 — —

EP1C12 — — 173 185 249 —

EP1C20 — — — — 233 301

Notes to Table 1–2:
(1) TQFP: thin quad flat pack.

PQFP: plastic quad flat pack.
(2) Cyclone devices support vertical migration within the same package (i.e., designers can migrate between the 

EP1C3 device in the 144-pin TQFP package and the EP1C6 device in the same package).
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preset/load, synchronous clear, synchronous load, and clock enable 
control for the register. These LAB-wide signals are available in all LE 
modes. The addnsub control signal is allowed in arithmetic mode. 

The Quartus II software, in conjunction with parameterized functions 
such as library of parameterized modules (LPM) functions, automatically 
chooses the appropriate mode for common functions such as counters, 
adders, subtractors, and arithmetic functions. If required, you can also 
create special-purpose functions that specify which LE operating mode to 
use for optimal performance.

Normal Mode

The normal mode is suitable for general logic applications and 
combinatorial functions. In normal mode, four data inputs from the LAB 
local interconnect are inputs to a four-input LUT (see Figure 2–6). The 
Quartus II Compiler automatically selects the carry-in or the data3 
signal as one of the inputs to the LUT. Each LE can use LUT chain 
connections to drive its combinatorial output directly to the next LE in the 
LAB. Asynchronous load data for the register comes from the data3 
input of the LE. LEs in normal mode support packed registers.

Figure 2–6. LE in Normal Mode

Note to Figure 2–6:
(1) This signal is only allowed in normal mode if the LE is at the end of an adder/subtractor chain.
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is not available in the true dual-port mode. Mixed-width configurations 
are also possible, allowing different read and write widths. Tables 2–3 
and 2–4 summarize the possible M4K RAM block configurations.

When the M4K RAM block is configured as a shift register block, you can 
create a shift register up to 4,608 bits (w × m × n).

Table 2–3. M4K RAM Block Configurations (Simple Dual-Port)

Read Port
Write Port

4K × 1 2K × 2 1K × 4 512 × 8 256 × 16 128 × 32 512 × 9 256 × 18 128 × 36

4K × 1 v v v v v v — — —

2K × 2 v v v v v v — — —

1K × 4 v v v v v v — — —

512 × 8 v v v v v v — — —

256 × 16 v v v v v v — — —

128 × 32 v v v v v v — — —

512 × 9 — — — — — — v v v

256 × 18 — — — — — — v v v

128 × 36 — — — — — — v v v

Table 2–4. M4K RAM Block Configurations (True Dual-Port)

Port A
Port B

4K × 1 2K × 2 1K × 4 512 × 8 256 × 16 512 × 9 256 × 18

4K × 1 v v v v v — —

2K × 2 v v v v v — —

1K × 4 v v v v v — —

512 × 8 v v v v v — —

256 × 16 v v v v v — —

512 × 9 — — — — — v v

256 × 18 — — — — — v v
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Single-Port Mode

The M4K memory blocks also support single-port mode, used when 
simultaneous reads and writes are not required. See Figure 2–21. A single 
M4K memory block can support up to two single-port mode RAM blocks 
if each RAM block is less than or equal to 2K bits in size.

Figure 2–21. Single-Port Mode Note (1)

Note to Figure 2–21:
(1) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both 

read and write operations.

Global Clock 
Network and 
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Loops

Cyclone devices provide a global clock network and up to two PLLs for a 
complete clock management solution.

Global Clock Network

There are four dedicated clock pins (CLK[3..0], two pins on the left side 
and two pins on the right side) that drive the global clock network, as 
shown in Figure 2–22. PLL outputs, logic array, and dual-purpose clock 
(DPCLK[7..0]) pins can also drive the global clock network.
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Dual-Purpose Clock Pins

Each Cyclone device except the EP1C3 device has eight dual-purpose 
clock pins, DPCLK[7..0] (two on each I/O bank). EP1C3 devices have 
five DPCLK pins in the 100-pin TQFP package. These dual-purpose pins 
can connect to the global clock network (see Figure 2–22) for high-fanout 
control signals such as clocks, asynchronous clears, presets, and clock 
enables, or protocol control signals such as TRDY and IRDY for PCI, or 
DQS signals for external memory interfaces.

Combined Resources

Each Cyclone device contains eight distinct dedicated clocking resources. 
The device uses multiplexers with these clocks to form six-bit buses to 
drive LAB row clocks, column IOE clocks, or row IOE clocks. See 
Figure 2–23. Another multiplexer at the LAB level selects two of the six 
LAB row clocks to feed the LE registers within the LAB.

Figure 2–23. Global Clock Network Multiplexers

IOE clocks have row and column block regions. Six of the eight global 
clock resources feed to these row and column regions. Figure 2–24 shows 
the I/O clock regions.
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Clock Multiplication and Division

Cyclone PLLs provide clock synthesis for PLL output ports using 
m/(n × post scale counter) scaling factors. The input clock is divided by 
a pre-scale divider, n, and is then multiplied by the m feedback factor. The 
control loop drives the VCO to match fIN  × (m/n). Each output port has 
a unique post-scale counter to divide down the high-frequency VCO. For 
multiple PLL outputs with different frequencies, the VCO is set to the 
least-common multiple of the output frequencies that meets its frequency 
specifications. Then, the post-scale dividers scale down the output 
frequency for each output port. For example, if the output frequencies 
required from one PLL are 33 and 66 MHz, the VCO is set to 330 MHz (the 
least-common multiple in the VCO's range).

Each PLL has one pre-scale divider, n, that can range in value from 1 to 
32. Each PLL also has one multiply divider, m, that can range in value 
from 2 to 32. Global clock outputs have two post scale G dividers for 
global clock outputs, and external clock outputs have an E divider for 
external clock output, both ranging from 1 to 32. The Quartus II software 
automatically chooses the appropriate scaling factors according to the 
input frequency, multiplication, and division values entered.

Dual-Purpose 
Clock Pins

DPCLK0 (3) — — — v — — — —

DPCLK1 (3) — — v — — — — —

DPCLK2 v — — — — — — —

DPCLK3 — — — — v — — —

DPCLK4 — — — — — — v —

DPCLK5 (3) — — — — — — — v

DPCLK6 — — — — — v — —

DPCLK7 — v — — — — — —

Notes to Table 2–7:
(1) EP1C3 devices only have one PLL (PLL 1).
(2) EP1C3 devices in the 100-pin TQFP package do not have dedicated clock pins CLK1 and CLK3.
(3) EP1C3 devices in the 100-pin TQFP package do not have the DPCLK0, DPCLK1, or DPCLK5 pins.

Table 2–7. Global Clock Network Sources  (Part 2 of 2)

Source GCLK0 GCLK1 GCLK2 GCLK3 GCLK4 GCLK5 GCLK6 GCLK7
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I/O Structure IOEs support many features, including:

■ Differential and single-ended I/O standards
■ 3.3-V, 64- and 32-bit, 66- and 33-MHz PCI compliance
■ Joint Test Action Group (JTAG) boundary-scan test (BST) support
■ Output drive strength control
■ Weak pull-up resistors during configuration
■ Slew-rate control
■ Tri-state buffers
■ Bus-hold circuitry
■ Programmable pull-up resistors in user mode
■ Programmable input and output delays
■ Open-drain outputs
■ DQ and DQS I/O pins

Cyclone device IOEs contain a bidirectional I/O buffer and three registers 
for complete embedded bidirectional single data rate transfer. 
Figure 2–27 shows the Cyclone IOE structure. The IOE contains one input 
register, one output register, and one output enable register. You can use 
the input registers for fast setup times and output registers for fast 
clock-to-output times. Additionally, you can use the output enable (OE) 
register for fast clock-to-output enable timing. The Quartus II software 
automatically duplicates a single OE register that controls multiple 
output or bidirectional pins. IOEs can be used as input, output, or 
bidirectional pins.
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I/O Structure

Figure 2–34. DDR SDRAM and FCRAM Interfacing

Programmable Drive Strength

The output buffer for each Cyclone device I/O pin has a programmable 
drive strength control for certain I/O standards. The LVTTL and 
LVCMOS standards have several levels of drive strength that the designer 
can control. SSTL-3 class I and II, and SSTL-2 class I and II support a 
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of the standard. Using minimum settings provides signal slew rate 
control to reduce system noise and signal overshoot. Table 2–11 shows the 
possible settings for the I/O standards with drive strength control.

Open-Drain Output

Cyclone devices provide an optional open-drain (equivalent to an 
open-collector) output for each I/O pin. This open-drain output enables 
the device to provide system-level control signals (e.g., interrupt and 
write-enable signals) that can be asserted by any of several devices.

Table 2–11. Programmable Drive Strength Note (1)

I/O Standard IOH/IOL Current Strength Setting (mA)

LVTTL (3.3 V) 4

8

12

16

24(2)

LVCMOS (3.3 V) 2

4

8

12(2)

LVTTL (2.5 V) 2

8

12

16(2)

LVTTL (1.8 V) 2

8

12(2)

LVCMOS (1.5 V) 2

4

8(2)

Notes to Table 2–11:
(1) SSTL-3 class I and II, SSTL-2 class I and II, and 3.3-V PCI I/O Standards do not 

support programmable drive strength.
(2) This is the default current strength setting in the Quartus II software.
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Referenced Documents

Multiple Cyclone devices can be configured in any of the three 
configuration schemes by connecting the configuration enable (nCE) and 
configuration enable output (nCEO) pins on each device.

Referenced 
Documents

This chapter references the following document:

■ AN 39: IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices
■ Jam Programming & Test Language Specification

Document 
Revision History

Table 3–6 shows the revision history for this chapter.

Table 3–5. Data Sources for Configuration

Configuration Scheme Data Source

Active serial Low-cost serial configuration device

Passive serial (PS) Enhanced or EPC2 configuration device, 
MasterBlaster or ByteBlasterMV download cable, 
or serial data source

JTAG MasterBlaster or ByteBlasterMV download cable 
or a microprocessor with a Jam or JBC file

Table 3–6. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

May 2008
v1.4

Minor textual and style changes. Added “Referenced 
Documents” section.

—

January 2007 
v1.3

● Added document revision history.
● Updated handpara note below Table 3–4.

—

August 2005 
V1.2

Minor updates. —

February 2005 
V1.1

Updated JTAG chain limits. Added information concerning test 
vectors.

—

May 2003 v1.0 Added document to Cyclone Device Handbook. —

http://www.altera.com/literature/an/an039.pdf
http://www.jedec.org/download/search/jesd71.pdf


Altera Corporation  4–3
May 2008 Preliminary

Operating Conditions

Table 4–5. LVCMOS Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage — 3.0 3.6 V

VIH High-level input voltage — 1.7 4.1 V

VIL Low-level input voltage — –0.5 0.7 V

VOH High-level output voltage VCCIO = 3.0, 
IOH = –0.1 mA

VCCIO – 0.2 — V

VOL Low-level output voltage VCCIO = 3.0,
IOL = 0.1 mA

— 0.2 V

Table 4–6. 2.5-V I/O Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage — 2.375 2.625 V

VIH High-level input voltage — 1.7 4.1 V

VIL Low-level input voltage — –0.5 0.7 V

VOH High-level output voltage IOH = –0.1 mA 2.1 — V

IOH = –1 mA 2.0 — V

IOH = –2 to –16 mA (11) 1.7 — V

VOL Low-level output voltage IOL = 0.1 mA — 0.2 V

IOH = 1 mA — 0.4 V

IOH = 2 to 16 mA (11) — 0.7 V

Table 4–7. 1.8-V I/O Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage — 1.65 1.95 V

VI H High-level input voltage — 0.65 ×  
VCCIO

2.25 (12) V

VIL Low-level input voltage — –0.3 0.35 ×  
VCCIO 

V

VOH High-level output voltage IOH = –2 to –8 mA (11) VCCIO – 0.45 — V

VOL Low-level output voltage IOL = 2 to 8 mA (11) — 0.45 V
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VREF Reference voltage — 1.3 1.5 1.7 V

VIH High-level input voltage — VR E F + 0.2 — VCCIO + 0.3 V

VIL Low-level input voltage — –0.3 — VR E F – 0.2 V

VOH High-level output voltage IOH = –8 mA (11) VTT + 0.6 — — V

VOL Low-level output voltage IOL = 8 mA (11) — — VT T – 0.6 V

Table 4–14. SSTL-3 Class II Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage — 3.0 3.3 3.6 V

VTT Termination voltage — VR E F – 0.05 VR E F VR E F + 0.05 V

VREF Reference voltage — 1.3 1.5 1.7 V

VIH High-level input voltage — VR E F + 0.2 — VCCIO + 0.3 V

VIL Low-level input voltage — –0.3 — VR E F – 0.2 V

VOH High-level output voltage IOH = –16 mA 
(11)

VT T + 0.8 — — V

VOL Low-level output voltage IOL = 16 mA (11) — — VTT – 0.8 V

Table 4–15. Bus Hold Parameters

Parameter Conditions

VC C I O  Level

Unit1.5 V 1.8 V 2.5 V 3.3 V

Min Max Min Max Min Max Min Max

Low sustaining 
current

VIN > VIL 
(maximum)

— — 30 — 50 — 70 — μA

High sustaining 
current

VIN < VIH 
(minimum)

— — –30 — –50 — –70 — μA

Low overdrive 
current

0 V < VIN < 
VCCIO

— — — 200 — 300 — 500 μA

High overdrive 
current

0 V < VIN < 
VCCIO

— — — –200 — –300 — –500 μA

Table 4–13. SSTL-3 Class I Specifications  (Part 2 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit
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Performance

The maximum internal logic array clock tree frequency is limited to the 
specifications shown in Table 4–19.

Table 4–20 shows the Cyclone device performance for some common 
designs. All performance values were obtained with the Quartus II 
software compilation of library of parameterized modules (LPM) 
functions or megafunctions. These performance values are based on 
EP1C6 devices in 144-pin TQFP packages.

Table 4–19. Clock Tree Maximum Performance Specification

Parameter Definition
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Units
Min Typ Max Min Typ Max Min Typ Max

Clock tree 
fM A X

Maximum frequency 
that the clock tree 
can support for 
clocking registered 
logic

— — 405 — — 320 — — 275 MHz

Table 4–20. Cyclone Device Performance

Resource 
Used

Design Size and 
Function Mode

Resources Used Performance

LEs
M4K 

Memory 
Bits

M4K 
Memory 
Blocks

-6 Speed 
Grade 
(MHz)

-7 Speed 
Grade 
(MHz)

-8 Speed 
Grade 
(MHz)

LE 16-to-1 
multiplexer

— 21 — — 405.00 320.00 275.00

32-to-1 
multiplexer

— 44 — — 317.36 284.98 260.15

16-bit counter — 16 — — 405.00 320.00 275.00

64-bit counter (1) — 66 — — 208.99 181.98 160.75
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Table 4–22. IOE Internal Timing Microparameter Descriptions

Symbol Parameter

tSU IOE input and output register setup time before clock

tH IOE input and output register hold time after clock

tCO IOE input and output register clock-to-output delay

tPIN2COMBOUT_R Row input pin to IOE combinatorial output

tPIN2COMBOUT_C Column input pin to IOE combinatorial output

tCOMBIN2PIN_R Row IOE data input to combinatorial output pin

tCOMBIN2PIN_C Column IOE data input to combinatorial output pin

tCLR Minimum clear pulse width

tPRE Minimum preset pulse width

tCLKHL Minimum clock high or low time

Table 4–23. M4K Block Internal Timing Microparameter Descriptions

Symbol Parameter

tM4KRC Synchronous read cycle time

tM4KWC Synchronous write cycle time

tM4KWERESU Write or read enable setup time before clock

tM4KWEREH Write or read enable hold time after clock

tM4KBESU Byte enable setup time before clock

tM4KBEH Byte enable hold time after clock

tM4KDATAASU A port data setup time before clock

tM4KDATAAH A port data hold time after clock

tM4KADDRASU A port address setup time before clock

tM4KADDRAH A port address hold time after clock

tM4KDATABSU B port data setup time before clock

tM4KDATABH B port data hold time after clock

tM4KADDRBSU B port address setup time before clock

tM4KADDRBH B port address hold time after clock

tM4KDATACO1 Clock-to-output delay when using output registers

tM4KDATACO2 Clock-to-output delay without output registers

tM4KCLKHL Minimum clock high or low time

tM4KCLR Minimum clear pulse width
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Tables 4–32 through 4–33 show the external timing parameters on column 
and row pins for EP1C4 devices.

Table 4–32. EP1C4 Column Pin Global Clock External I/O Timing 
Parameters Note (1)

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 2.471 — 2.841 — 3.210 — ns

tI N H 0.000 — 0.000 — 0.000 — ns

tO U T C O 2.000 3.937 2.000 4.526 2.000 5.119 ns

tI N S UP L L 1.471 — 1.690 — 1.910 — ns

tI N H P L L 0.000 — 0.000 — 0.000 — ns

tO U T C O P L L 0.500 2.080 0.500 2.392 0.500 2.705 ns

Table 4–33. EP1C4 Row Pin Global Clock External I/O Timing 
Parameters Note (1)

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 2.600 — 2.990 — 3.379 — ns

tI N H 0.000 — 0.000 — 0.000 — ns

tO U T C O 2.000 3.991 2.000 4.388 2.000 5.189 ns

tI N S UP L L 1.300 — 1.494 — 1.689 — ns

tI N H P L L 0.000 — 0.000 — 0.000 — ns

tO U T C O P L L 0.500 2.234 0.500 2.569 0.500 2.905 ns

Note to Tables 4–32 and 4–33:
(1) Contact Altera Applications for EP1C4 device timing parameters.
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SSTL-2 class II –278 — –320 — –362 ps

LVDS –261 — –301 — –340 ps

Table 4–41. Cyclone I/O Standard Row Pin Input Delay Adders

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS — 0 — 0 — 0 ps

3.3-V LVTTL — 0 — 0 — 0 ps

2.5-V LVTTL — 27 — 31 — 35 ps

1.8-V LVTTL — 182 — 209 — 236 ps

1.5-V LVTTL — 278 — 319 — 361 ps

3.3-V PCI (1) — 0 — 0 — 0 ps

SSTL-3 class I — –250 — –288 — –325 ps

SSTL-3 class II — –250 — –288 — –325 ps

SSTL-2 class I — –278 — –320 — –362 ps

SSTL-2 class II — –278 — –320 — –362 ps

LVDS — –261 — –301 — –340 ps

Table 4–42. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Column Pins  (Part 1 of 2)

Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS 2 mA — 0 — 0 — 0 ps

4 mA — –489 — –563 — –636 ps

8 mA — –855 — –984 — –1,112 ps

12 mA — –993 — –1,142 — –1,291 ps

3.3-V LVTTL 4 mA — 0 — 0 — 0 ps

8 mA — –347 — –400 — –452 ps

12 mA — –858 — –987 — –1,116 ps

16 mA — –819 — –942 — –1,065 ps

24 mA — –993 — –1,142 — –1,291 ps

Table 4–40. Cyclone I/O Standard Column Pin Input Delay Adders  (Part 2 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max
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1.8-V LVTTL 2 mA — 1,290 — 1,483 — 1,677 ps

8 mA — 4 — 4 — 5 ps

12 mA — –208 — –240 — –271 ps

1.5-V LVTTL 2 mA — 2,288 — 2,631 — 2,974 ps

4 mA — 608 — 699 — 790 ps

8 mA — 292 — 335 — 379 ps

3.3-V PCI (1) — –877 — –1,009 — –1,141 ps

SSTL-3 class I — –410 — –472 — –533 ps

SSTL-3 class II — –811 — –933 — –1,055 ps

SSTL-2 class I — –485 — –558 — –631 ps

SSTL-2 class II — –758 — –872 — –986 ps

LVDS — –998 — –1,148 — –1,298 ps

Table 4–44. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Column Pins  (Part 1 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS 2 mA — 1,800 — 2,070 — 2,340 ps

4 mA — 1,311 — 1,507 — 1,704 ps

8 mA — 945 — 1,086 — 1,228 ps

12 mA — 807 — 928 — 1,049 ps

3.3-V LVTTL 4 mA — 1,831 — 2,105 — 2,380 ps

8 mA — 1,484 — 1,705 — 1,928 ps

12 mA — 973 — 1,118 — 1,264 ps

16 mA — 1,012 — 1,163 — 1,315 ps

24 mA — 838 — 963 — 1,089 ps

2.5-V LVTTL 2 mA — 2,747 — 3,158 — 3,570 ps

8 mA — 1,757 — 2,019 — 2,283 ps

12 mA — 1,763 — 2,026 — 2,291 ps

16 mA — 1,623 — 1,865 — 2,109 ps

1.8-V LVTTL 2 mA — 5,506 — 6,331 — 7,157 ps

8 mA — 4,220 — 4,852 — 5,485 ps

12 mA — 4,008 — 4,608 — 5,209 ps

Table 4–43. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Row Pins  (Part 2 of 2)

Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max
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Tables 4–46 through 4–47 show the adder delays for the IOE 
programmable delays. These delays are controlled with the Quartus II 
software options listed in the Parameter column.

SSTL-3 class I — 1,390 — 1,598 — 1,807 ps

SSTL-3 class II — 989 — 1,137 — 1,285 ps

SSTL-2 class I — 1,965 — 2,259 — 2,554 ps

SSTL-2 class II — 1,692 — 1,945 — 2,199 ps

LVDS — 802 — 922 — 1,042 ps

Note to Tables 4–40 through 4–45:
(1) EP1C3 devices do not support the PCI I/O standard.

Table 4–45. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Row Pins  (Part 2 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

Table 4–46. Cyclone IOE Programmable Delays on Column Pins

Parameter Setting
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

Decrease input delay to 
internal cells

Off — 155 — 178 — 201 ps

Small — 2,122 — 2,543 — 2,875 ps

Medium — 2,639 — 3,034 — 3,430 ps

Large — 3,057 — 3,515 — 3,974 ps

On — 155 — 178 — 201 ps

Decrease input delay to 
input register

Off — 0 — 0 — 0 ps

On — 3,057 — 3,515 — 3,974 ps

Increase delay to output 
pin

Off — 0 — 0 — 0 ps

On — 552 — 634 — 717 ps
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5. Reference and Ordering
Information

Software Cyclone® devices are supported by the Altera® Quartus® II design 
software, which provides a comprehensive environment for system-on-a-
programmable-chip (SOPC) design. The Quartus II software includes 
HDL and schematic design entry, compilation and logic synthesis, full 
simulation and advanced timing analysis, SignalTap® II logic analysis, 
and device configuration. 

f For more information about the Quartus II software features, refer to the 
Quartus II Handbook.

The Quartus II software supports the Windows 2000/NT/98, Sun Solaris, 
Linux Red Hat v7.1 and HP-UX operating systems. It also supports 
seamless integration with industry-leading EDA tools through the 
NativeLink® interface.

Device Pin-Outs Device pin-outs for Cyclone devices are available on the Altera website 
(www.altera.com) and in the Cyclone Device Handbook.

Ordering 
Information

Figure 5–1 describes the ordering codes for Cyclone devices. For more 
information about a specific package, refer to the Package Information for 
Cyclone Devices chapter in the Cyclone Device Handbook.

C51005-1.4

http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/hb/cyc/cyc_c52006.pdf
http://www.altera.com/literature/hb/cyc/cyc_c52006.pdf
http://www.altera.com
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