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Document Revision History

to the appropriate plane on the board. The Quartus II software reserves 
I/O pins as power pins as necessary for layout with the larger densities 
in the same package having more power pins.

Document 
Revision History

Table 1–4 shows the revision history for this document.

Table 1–3. Cyclone QFP and FineLine BGA Package Sizes

Dimension 100-Pin 
TQFP

144-Pin 
TQFP

240-Pin 
PQFP

256-Pin 
FineLine 

BGA

324-Pin 
FineLine 

BGA

400-Pin 
FineLine 

BGA

Pitch (mm) 0.5 0.5 0.5 1.0 1.0 1.0

Area (mm2) 256 484 1,024 289 361 441

Length × width 
(mm × mm)

16×16 22×22 34.6×34.6 17×17 19×19 21×21

Table 1–4. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

May 2008
v1.5

Minor textual and style changes. —

January 2007 
v1.4

Added document revision history. —

August 2005 
v1.3

Minor updates. —

October 2003 
v1.2

Added 64-bit PCI support information. —

September 
2003 v1.1

● Updated LVDS data rates to 640 Mbps from 311 Mbps.
● Updated RSDS feature information.

—

May 2003 v1.0 Added document to Cyclone Device Handbook. —
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Figure 2–1. Cyclone EP1C12 Device Block Diagram

The number of M4K RAM blocks, PLLs, rows, and columns vary per 
device. Table 2–1 lists the resources available in each Cyclone device.

Logic Array

PLL

IOEs

M4K Blocks

EP1C12 Device

Table 2–1. Cyclone Device Resources

Device
M4K RAM

PLLs LAB Columns LAB Rows
Columns Blocks

EP1C3 1 13 1 24 13

EP1C4 1 17 2 26 17

EP1C6 1 20 2 32 20

EP1C12 2 52 2 48 26

EP1C20 2 64 2 64 32
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Logic Elements

With the LAB-wide addnsub control signal, a single LE can implement a 
one-bit adder and subtractor. This saves LE resources and improves 
performance for logic functions such as DSP correlators and signed 
multipliers that alternate between addition and subtraction depending 
on data.

The LAB row clocks [5..0] and LAB local interconnect generate the 
LAB-wide control signals. The MultiTrackTM interconnect's inherent low 
skew allows clock and control signal distribution in addition to data. 
Figure 2–4 shows the LAB control signal generation circuit.

Figure 2–4. LAB-Wide Control Signals

Logic Elements The smallest unit of logic in the Cyclone architecture, the LE, is compact 
and provides advanced features with efficient logic utilization. Each LE 
contains a four-input LUT, which is a function generator that can 
implement any function of four variables. In addition, each LE contains a 
programmable register and carry chain with carry select capability. A 
single LE also supports dynamic single bit addition or subtraction mode 
selectable by a LAB-wide control signal. Each LE drives all types of 
interconnects: local, row, column, LUT chain, register chain, and direct 
link interconnects. See Figure 2–5.
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Logic Elements

Dynamic Arithmetic Mode

The dynamic arithmetic mode is ideal for implementing adders, counters, 
accumulators, wide parity functions, and comparators. An LE in dynamic 
arithmetic mode uses four 2-input LUTs configurable as a dynamic 
adder/subtractor. The first two 2-input LUTs compute two summations 
based on a possible carry-in of 1 or 0; the other two LUTs generate carry 
outputs for the two chains of the carry select circuitry. As shown in 
Figure 2–7, the LAB carry-in signal selects either the carry-in0 or 
carry-in1 chain. The selected chain's logic level in turn determines 
which parallel sum is generated as a combinatorial or registered output. 
For example, when implementing an adder, the sum output is the 
selection of two possible calculated sums:

data1 + data2 + carry-in0

or

data1 + data2 + carry-in1

The other two LUTs use the data1 and data2 signals to generate two 
possible carry-out signals⎯one for a carry of 1 and the other for a carry of 
0. The carry-in0 signal acts as the carry select for the carry-out0 
output and carry-in1 acts as the carry select for the carry-out1 
output. LEs in arithmetic mode can drive out registered and unregistered 
versions of the LUT output.

The dynamic arithmetic mode also offers clock enable, counter enable, 
synchronous up/down control, synchronous clear, synchronous load, 
and dynamic adder/subtractor options. The LAB local interconnect data 
inputs generate the counter enable and synchronous up/down control 
signals. The synchronous clear and synchronous load options are 
LAB-wide signals that affect all registers in the LAB. The Quartus II 
software automatically places any registers that are not used by the 
counter into other LABs. The addnsub LAB-wide signal controls 
whether the LE acts as an adder or subtractor.
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Embedded 
Memory

The Cyclone embedded memory consists of columns of M4K memory 
blocks. EP1C3 and EP1C6 devices have one column of M4K blocks, while 
EP1C12 and EP1C20 devices have two columns (refer to Table 1–1 on 
page 1–1 for total RAM bits per density). Each M4K block can implement 
various types of memory with or without parity, including true dual-port, 
simple dual-port, and single-port RAM, ROM, and FIFO buffers. The 
M4K blocks support the following features:

■ 4,608 RAM bits
■ 250 MHz performance
■ True dual-port memory
■ Simple dual-port memory
■ Single-port memory
■ Byte enable
■ Parity bits
■ Shift register
■ FIFO buffer
■ ROM
■ Mixed clock mode

1 Violating the setup or hold time on the address registers could 
corrupt the memory contents. This applies to both read and 
write operations.

Memory Modes

The M4K memory blocks include input registers that synchronize writes 
and output registers to pipeline designs and improve system 
performance. M4K blocks offer a true dual-port mode to support any 
combination of two-port operations: two reads, two writes, or one read 
and one write at two different clock frequencies. Figure 2–12 shows true 
dual-port memory.

Figure 2–12. True Dual-Port Memory Configuration
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Embedded Memory

In addition to true dual-port memory, the M4K memory blocks support 
simple dual-port and single-port RAM. Simple dual-port memory 
supports a simultaneous read and write. Single-port memory supports 
non-simultaneous reads and writes. Figure 2–13 shows these different 
M4K RAM memory port configurations.

Figure 2–13. Simple Dual-Port and Single-Port Memory Configurations

Note to Figure 2–13:
(1) Two single-port memory blocks can be implemented in a single M4K block as long 

as each of the two independent block sizes is equal to or less than half of the M4K 
block size.

The memory blocks also enable mixed-width data ports for reading and 
writing to the RAM ports in dual-port RAM configuration. For example, 
the memory block can be written in ×1 mode at port A and read out in ×16 
mode from port B.

The Cyclone memory architecture can implement fully synchronous 
RAM by registering both the input and output signals to the M4K RAM 
block. All M4K memory block inputs are registered, providing 
synchronous write cycles. In synchronous operation, the memory block 
generates its own self-timed strobe write enable (wren) signal derived 
from a global clock. In contrast, a circuit using asynchronous RAM must 
generate the RAM wren signal while ensuring its data and address 
signals meet setup and hold time specifications relative to the wren 
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signal. The output registers can be bypassed. Pseudo-asynchronous 
reading is possible in the simple dual-port mode of M4K blocks by 
clocking the read enable and read address registers on the negative clock 
edge and bypassing the output registers.

When configured as RAM or ROM, you can use an initialization file to 
pre-load the memory contents.

Two single-port memory blocks can be implemented in a single M4K 
block as long as each of the two independent block sizes is equal to or less 
than half of the M4K block size.

The Quartus II software automatically implements larger memory by 
combining multiple M4K memory blocks. For example, two 256×16-bit 
RAM blocks can be combined to form a 256×32-bit RAM block. Memory 
performance does not degrade for memory blocks using the maximum 
number of words allowed. Logical memory blocks using less than the 
maximum number of words use physical blocks in parallel, eliminating 
any external control logic that would increase delays. To create a larger 
high-speed memory block, the Quartus II software automatically 
combines memory blocks with LE control logic.

Parity Bit Support

The M4K blocks support a parity bit for each byte. The parity bit, along 
with internal LE logic, can implement parity checking for error detection 
to ensure data integrity. You can also use parity-size data words to store 
user-specified control bits. Byte enables are also available for data input 
masking during write operations.

Shift Register Support

You can configure M4K memory blocks to implement shift registers for 
DSP applications such as pseudo-random number generators, 
multi-channel filtering, auto-correlation, and cross-correlation functions. 
These and other DSP applications require local data storage, traditionally 
implemented with standard flip-flops, which can quickly consume many 
logic cells and routing resources for large shift registers. A more efficient 
alternative is to use embedded memory as a shift register block, which 
saves logic cell and routing resources and provides a more efficient 
implementation with the dedicated circuitry.

The size of a w × m × n shift register is determined by the input data width 
(w), the length of the taps (m), and the number of taps (n). The size of a 
w × m × n shift register must be less than or equal to the maximum number 
of memory bits in the M4K block (4,608 bits). The total number of shift 
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Byte Enables

M4K blocks support byte writes when the write port has a data width of 
16, 18, 32, or 36 bits. The byte enables allow the input data to be masked 
so the device can write to specific bytes. The unwritten bytes retain the 
previous written value. Table 2–5 summarizes the byte selection. 

Control Signals and M4K Interface

The M4K blocks allow for different clocks on their inputs and outputs. 
Either of the two clocks feeding the block can clock M4K block registers 
(renwe, address, byte enable, datain, and output registers). Only the 
output register can be bypassed. The six labclk signals or local 
interconnects can drive the control signals for the A and B ports of the 
M4K block. LEs can also control the clock_a, clock_b, renwe_a, 
renwe_b, clr_a, clr_b, clocken_a, and clocken_b signals, as 
shown in Figure 2–15.

The R4, C4, and direct link interconnects from adjacent LABs drive the 
M4K block local interconnect. The M4K blocks can communicate with 
LABs on either the left or right side through these row resources or with 
LAB columns on either the right or left with the column resources. Up to 
10 direct link input connections to the M4K block are possible from the 
left adjacent LABs and another 10 possible from the right adjacent LAB. 
M4K block outputs can also connect to left and right LABs through 10 
direct link interconnects each. Figure 2–16 shows the M4K block to logic 
array interface.

Table 2–5. Byte Enable for M4K Blocks Notes (1), (2)

byteena[3..0] datain ×18 datain ×36

[0] = 1 [8..0] [8..0]

[1] = 1 [17..9] [17..9]

[2] = 1 — [26..18]

[3] = 1 — [35..27]

Notes to Table 2–5:
(1) Any combination of byte enables is possible.
(2) Byte enables can be used in the same manner with 8-bit words, i.e., in ×16 and ×32 

modes.
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Global Clock Network and Phase-Locked Loops

Single-Port Mode

The M4K memory blocks also support single-port mode, used when 
simultaneous reads and writes are not required. See Figure 2–21. A single 
M4K memory block can support up to two single-port mode RAM blocks 
if each RAM block is less than or equal to 2K bits in size.

Figure 2–21. Single-Port Mode Note (1)

Note to Figure 2–21:
(1) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both 

read and write operations.

Global Clock 
Network and 
Phase-Locked 
Loops

Cyclone devices provide a global clock network and up to two PLLs for a 
complete clock management solution.

Global Clock Network

There are four dedicated clock pins (CLK[3..0], two pins on the left side 
and two pins on the right side) that drive the global clock network, as 
shown in Figure 2–22. PLL outputs, logic array, and dual-purpose clock 
(DPCLK[7..0]) pins can also drive the global clock network.
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Figure 2–24. I/O Clock Regions

PLLs
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Figure 2–31. Control Signal Selection per IOE

In normal bidirectional operation, you can use the input register for input 
data requiring fast setup times. The input register can have its own clock 
input and clock enable separate from the OE and output registers. The 
output register can be used for data requiring fast clock-to-output 
performance. The OE register is available for fast clock-to-output enable 
timing. The OE and output register share the same clock source and the 
same clock enable source from the local interconnect in the associated 
LAB, dedicated I/O clocks, or the column and row interconnects. 
Figure 2–32 shows the IOE in bidirectional configuration.
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I/O Structure

output pins (nSTATUS and CONF_DONE) and all the JTAG pins in I/O 
bank 3 must operate at 2.5 V because the VCCIO level of SSTL-2 is 2.5 V. 
I/O banks 1, 2, 3, and 4 support DQS signals with DQ bus modes of  × 8.

For  × 8 mode, there are up to eight groups of programmable DQS and DQ 
pins, I/O banks 1, 2, 3, and 4 each have two groups in the 324-pin and 
400-pin FineLine BGA packages. Each group consists of one DQS pin, a 
set of eight DQ pins, and one DM pin (see Figure 2–33). Each DQS pin 
drives the set of eight DQ pins within that group.

Figure 2–33. Cyclone Device DQ and DQS Groups in ×8 Mode Note (1)

Note to Figure 2–33:
(1) Each DQ group consists of one DQS pin, eight DQ pins, and one DM pin.

Table 2–10 shows the number of DQ pin groups per device.

DQ Pins DQS Pin DM Pin

Top, Bottom, Left, or Right I/O Bank

Table 2–10. DQ Pin Groups  (Part 1 of 2)

Device Package Number of  × 8 DQ 
Pin Groups

Total DQ Pin 
Count

EP1C3 100-pin TQFP (1) 3 24

144-pin TQFP 4 32

EP1C4 324-pin FineLine BGA 8 64

400-pin FineLine BGA 8 64
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Slew-Rate Control

The output buffer for each Cyclone device I/O pin has a programmable 
output slew-rate control that can be configured for low noise or 
high-speed performance. A faster slew rate provides high-speed 
transitions for high-performance systems. However, these fast transitions 
may introduce noise transients into the system. A slow slew rate reduces 
system noise, but adds a nominal delay to rising and falling edges. Each 
I/O pin has an individual slew-rate control, allowing the designer to 
specify the slew rate on a pin-by-pin basis. The slew-rate control affects 
both the rising and falling edges.

Bus Hold

Each Cyclone device I/O pin provides an optional bus-hold feature. The 
bus-hold circuitry can hold the signal on an I/O pin at its last-driven 
state. Since the bus-hold feature holds the last-driven state of the pin until 
the next input signal is present, an external pull-up or pull-down resistor 
is not necessary to hold a signal level when the bus is tri-stated. 

The bus-hold circuitry also pulls undriven pins away from the input 
threshold voltage where noise can cause unintended high-frequency 
switching. The designer can select this feature individually for each I/O 
pin. The bus-hold output will drive no higher than VCCIO to prevent 
overdriving signals. If the bus-hold feature is enabled, the device cannot 
use the programmable pull-up option. Disable the bus-hold feature when 
the I/O pin is configured for differential signals.

The bus-hold circuitry uses a resistor with a nominal resistance (RBH) of 
approximately 7 kΩ to pull the signal level to the last-driven state. 
Table 4–15 on page 4–6 gives the specific sustaining current for each 
VCCIO voltage level driven through this resistor and overdrive current 
used to identify the next-driven input level. 

The bus-hold circuitry is only active after configuration. When going into 
user mode, the bus-hold circuit captures the value on the pin present at 
the end of configuration.

Programmable Pull-Up Resistor

Each Cyclone device I/O pin provides an optional programmable 
pull-up resistor during user mode. If the designer enables this feature for 
an I/O pin, the pull-up resistor (typically 25 kΩ) holds the output to the 
VCCIO level of the output pin's bank. Dedicated clock pins do not have the 
optional programmable pull-up resistor.
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IEEE Std. 1149.1 (JTAG) Boundary Scan Support

The Cyclone device instruction register length is 10 bits and the 
USERCODE register length is 32 bits. Tables 3–2 and 3–3 show the 
boundary-scan register length and device IDCODE information for 
Cyclone devices.

Table 3–2. Cyclone Boundary-Scan Register Length

Device Boundary-Scan Register Length

EP1C3 339

EP1C4 930

EP1C6 582

EP1C12 774

EP1C20 930

Table 3–3. 32-Bit Cyclone Device IDCODE

Device

IDCODE (32 bits) (1)

Version (4 Bits) Part Number (16 Bits) Manufacturer Identity 
(11 Bits) LSB (1 Bit) (2)

EP1C3 0000 0010 0000 1000 0001 000 0110 1110 1

EP1C4 0000 0010 0000 1000 0101 000 0110 1110 1

EP1C6 0000 0010 0000 1000 0010 000 0110 1110 1

EP1C12 0000 0010 0000 1000 0011 000 0110 1110 1

EP1C20 0000 0010 0000 1000 0100 000 0110 1110 1

Notes to Table 3–3:
(1) The most significant bit (MSB) is on the left.
(2) The IDCODE’s least significant bit (LSB) is always 1.
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Referenced Documents

Multiple Cyclone devices can be configured in any of the three 
configuration schemes by connecting the configuration enable (nCE) and 
configuration enable output (nCEO) pins on each device.

Referenced 
Documents

This chapter references the following document:

■ AN 39: IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices
■ Jam Programming & Test Language Specification

Document 
Revision History

Table 3–6 shows the revision history for this chapter.

Table 3–5. Data Sources for Configuration

Configuration Scheme Data Source

Active serial Low-cost serial configuration device

Passive serial (PS) Enhanced or EPC2 configuration device, 
MasterBlaster or ByteBlasterMV download cable, 
or serial data source

JTAG MasterBlaster or ByteBlasterMV download cable 
or a microprocessor with a Jam or JBC file

Table 3–6. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

May 2008
v1.4

Minor textual and style changes. Added “Referenced 
Documents” section.

—

January 2007 
v1.3

● Added document revision history.
● Updated handpara note below Table 3–4.

—

August 2005 
V1.2

Minor updates. —

February 2005 
V1.1

Updated JTAG chain limits. Added information concerning test 
vectors.

—

May 2003 v1.0 Added document to Cyclone Device Handbook. —

http://www.altera.com/literature/an/an039.pdf
http://www.jedec.org/download/search/jesd71.pdf
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Timing Model

Figure 4–1 shows the memory waveforms for the M4K timing parameters 
shown in Table 4–23.

Figure 4–1. Dual-Port RAM Timing Microparameter Waveform

Table 4–24. Routing Delay Internal Timing Microparameter Descriptions

Symbol Parameter

tR4 Delay for an R4 line with average loading; covers a distance 
of four LAB columns

tC4 Delay for an C4 line with average loading; covers a distance 
of four LAB rows

tLOCAL Local interconnect delay
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Figure 4–2. External Timing in Cyclone Devices

All external I/O timing parameters shown are for 3.3-V LVTTL I/O 
standard with the maximum current strength and fast slew rate. For 
external I/O timing using standards other than LVTTL or for different 
current strengths, use the I/O standard input and output delay adders in 
Tables 4–40 through 4–44.

Table 4–29 shows the external I/O timing parameters when using global 
clock networks.
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Table 4–29. Cyclone Global Clock External I/O Timing Parameters Notes (1), (2)  (Part 1 of 2)

Symbol Parameter Conditions

tI N S U Setup time for input or bidirectional pin using IOE input 
register with global clock fed by CLK pin

—

tI N H Hold time for input or bidirectional pin using IOE input 
register with global clock fed by CLK pin

—

tO U T C O Clock-to-output delay output or bidirectional pin using IOE 
output register with global clock fed by CLK pin

CLOAD = 10 pF

tI N S U P L L Setup time for input or bidirectional pin using IOE input 
register with global clock fed by Enhanced PLL with default 
phase setting

—

tI N H P L L Hold time for input or bidirectional pin using IOE input 
register with global clock fed by enhanced PLL with default 
phase setting

—
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External I/O Delay Parameters

External I/O delay timing parameters for I/O standard input and output 
adders and programmable input and output delays are specified by 
speed grade independent of device density. 

Tables 4–40 through 4–45 show the adder delays associated with column 
and row I/O pins for all packages. If an I/O standard is selected other 
than LVTTL 4 mA with a fast slew rate, add the selected delay to the 
external tCO and tSU I/O parameters shown in Tables 4–25 through 
4–28.

Table 4–39. EP1C20 Row Pin Global Clock External I/O Timing Parameters

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 2.417 — 2.779 — 3.140 — ns

tI N H 0.000 — 0.000 — 0.000 — ns

tO U T C O 2.000 3.724 2.000 4.282 2.000 4.843 ns

tX Z — 3.645 — 4.191 — 4.740 ns

tZ X — 3.645 — 4.191 — 4.740 ns

tI N S UP L L 1.417 — 1.629 — 1.840 — ns

tI N H P L L 0.000 — 0.000 — 0.000 — ns

tO U T C O P L L 0.500 1.667 0.500 1.917 0.500 2.169 ns

tX Z P L L — 1.588 — 1.826 — 2.066 ns

tZ X P L L — 1.588 — 1.826 — 2.066 ns

Table 4–40. Cyclone I/O Standard Column Pin Input Delay Adders  (Part 1 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS — 0 — 0 — 0 ps

3.3-V LVTTL — 0 — 0 — 0 ps

2.5-V LVTTL — 27 — 31 — 35 ps

1.8-V LVTTL — 182 — 209 — 236 ps

1.5-V LVTTL — 278 — 319 — 361 ps

SSTL-3 class I — –250 — –288 — –325 ps

SSTL-3 class II — –250 — –288 — –325 ps

SSTL-2 class I — –278 — –320 — –362 ps
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fOUT (to global clock) PLL output frequency 
(-6 speed grade)

15.625 405 MHz

PLL output frequency 
(-7 speed grade)

15.625 320 MHz

PLL output frequency 
(-8 speed grade)

15.625 275 MHz

tOUT DUTY Duty cycle for external clock 
output (when set to 50%)

45.00 55 %

tJITTER (1) Period jitter for external clock 
output

— ±300 (2) ps

tLOCK (3) Time required to lock from end 
of device configuration 

10.00 100 μs

fVCO PLL internal VCO operating 
range

500.00 1,000 MHz

- Minimum areset time 10 — ns

N, G0, G1, E Counter values 1 32 integer

Notes to Table 4–52:
(1) The tJITTER specification for the PLL[2..1]_OUT pins are dependent on the I/O pins in its VCCIO bank, how many 

of them are switching outputs, how much they toggle, and whether or not they use programmable current strength 
or slow slew rate.

(2) fOUT ≥ 100 MHz. When the PLL external clock output frequency (fOUT) is smaller than 100 MHz, the jitter 
specification is 60 mUI.

(3) fIN/N must be greater than 200 MHz to ensure correct lock detect circuit operation below –20 C. Otherwise, the PLL 
operates with the specified parameters under the specified conditions.

Table 4–52. Cyclone PLL Specifications  (Part 2 of 2)

Symbol Parameter Min Max Unit
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