Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 1206 | | Number of Logic Elements/Cells | 12060 | | Total RAM Bits | 239616 | | Number of I/O | 249 | | Number of Gates | - | | Voltage - Supply | 1.425V ~ 1.575V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 324-BGA | | Supplier Device Package | 324-FBGA (19x19) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep1c12f324c7n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## 1. Introduction C51001-1.5 ## Introduction The Cyclone® field programmable gate array family is based on a 1.5-V, 0.13-µm, all-layer copper SRAM process, with densities up to 20,060 logic elements (LEs) and up to 288 Kbits of RAM. With features like phase-locked loops (PLLs) for clocking and a dedicated double data rate (DDR) interface to meet DDR SDRAM and fast cycle RAM (FCRAM) memory requirements, Cyclone devices are a cost-effective solution for data-path applications. Cyclone devices support various I/O standards, including LVDS at data rates up to 640 megabits per second (Mbps), and 66- and 33-MHz, 64- and 32-bit peripheral component interconnect (PCI), for interfacing with and supporting ASSP and ASIC devices. Altera also offers new low-cost serial configuration devices to configure Cyclone devices. ## **Features** The Cyclone device family offers the following features: - 2,910 to 20,060 LEs, see Table 1–1 - Up to 294,912 RAM bits (36,864 bytes) - Supports configuration through low-cost serial configuration device - Support for LVTTL, LVCMOS, SSTL-2, and SSTL-3 I/O standards - Support for 66- and 33-MHz, 64- and 32-bit PCI standard - High-speed (640 Mbps) LVDS I/O support - Low-speed (311 Mbps) LVDS I/O support - 311-Mbps RSDS I/O support - Up to two PLLs per device provide clock multiplication and phase shifting - Up to eight global clock lines with six clock resources available per logic array block (LAB) row - Support for external memory, including DDR SDRAM (133 MHz), FCRAM, and single data rate (SDR) SDRAM - Support for multiple intellectual property (IP) cores, including Altera® MegaCore® functions and Altera Megafunctions Partners Program (AMPPSM) megafunctions. | Table 1–1. Cyclone Device Features (Part 1 of 2) | | | | | | | | | |--|-------|-------|-------|--------|--------|--|--|--| | Feature | EP1C3 | EP1C4 | EP1C6 | EP1C12 | EP1C20 | | | | | LEs | 2,910 | 4,000 | 5,980 | 12,060 | 20,060 | | | | | M4K RAM blocks (128 × 36 bits) | 13 | 17 | 20 | 52 | 64 | | | | | Table 1–1. Cyclone Device Features (Part 2 of 2) | | | | | | | | | | |--|--------|--------|--------|---------|---------|--|--|--|--| | Feature | EP1C3 | EP1C4 | EP1C6 | EP1C12 | EP1C20 | | | | | | Total RAM bits | 59,904 | 78,336 | 92,160 | 239,616 | 294,912 | | | | | | PLLs | 1 | 2 | 2 | 2 | 2 | | | | | | Maximum user I/O pins (1) | 104 | 301 | 185 | 249 | 301 | | | | | Note to Table 1–1: (1) This parameter includes global clock pins. Cyclone devices are available in quad flat pack (QFP) and space-saving FineLine[®] BGA packages (see Tables 1–2 through 1–3). | Table 1–2. Cyclone Package Options and I/O Pin Counts | | | | | | | | | | |---|-------------------------|------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--|--|--| | Device | 100-Pin TQFP (1) | 144-Pin TQFP (1), (2) | 240-Pin PQFP (1) | 256-Pin
FineLine BGA | 324-Pin
FineLine BGA | 400-Pin
FineLine BGA | | | | | EP1C3 | 65 | 104 | _ | _ | _ | _ | | | | | EP1C4 | _ | _ | _ | _ | 249 | 301 | | | | | EP1C6 | _ | 98 | 185 | 185 | _ | _ | | | | | EP1C12 | _ | _ | 173 | 185 | 249 | _ | | | | | EP1C20 | _ | _ | _ | _ | 233 | 301 | | | | #### *Notes to Table 1–2:* - (1) TQFP: thin quad flat pack. PQFP: plastic quad flat pack. - (2) Cyclone devices support vertical migration within the same package (i.e., designers can migrate between the EP1C3 device in the 144-pin TQFP package and the EP1C6 device in the same package). Vertical migration means you can migrate a design from one device to another that has the same dedicated pins, JTAG pins, and power pins, and are subsets or supersets for a given package across device densities. The largest density in any package has the highest number of power pins; you must use the layout for the largest planned density in a package to provide the necessary power pins for migration. For I/O pin migration across densities, cross-reference the available I/O pins using the device pin-outs for all planned densities of a given package type to identify which I/O pins can be migrated. The Quartus® II software can automatically cross-reference and place all pins for you when given a device migration list. If one device has power or ground pins, but these same pins are user I/O on a different device that is in the migration path,the Quartus II software ensures the pins are not used as user I/O in the Quartus II software. Ensure that these pins are connected # 2. Cyclone Architecture C51002-1.6 # Functional Description Cyclone® devices contain a two-dimensional row- and column-based architecture to implement custom logic. Column and row interconnects of varying speeds provide signal interconnects between LABs and embedded memory blocks. The logic array consists of LABs, with 10 LEs in each LAB. An LE is a small unit of logic providing efficient implementation of user logic functions. LABs are grouped into rows and columns across the device. Cyclone devices range between 2,910 to 20,060 LEs. M4K RAM blocks are true dual-port memory blocks with 4K bits of memory plus parity (4,608 bits). These blocks provide dedicated true dual-port, simple dual-port, or single-port memory up to 36-bits wide at up to 250 MHz. These blocks are grouped into columns across the device in between certain LABs. Cyclone devices offer between 60 to 288 Kbits of embedded RAM. Each Cyclone device I/O pin is fed by an I/O element (IOE) located at the ends of LAB rows and columns around the periphery of the device. I/O pins support various single-ended and differential I/O standards, such as the 66- and 33-MHz, 64- and 32-bit PCI standard and the LVDS I/O standard at up to 640 Mbps. Each IOE contains a bidirectional I/O buffer and three registers for registering input, output, and output-enable signals. Dual-purpose DQS, DQ, and DM pins along with delay chains (used to phase-align DDR signals) provide interface support with external memory devices such as DDR SDRAM, and FCRAM devices at up to 133 MHz (266 Mbps). Cyclone devices provide a global clock network and up to two PLLs. The global clock network consists of eight global clock lines that drive throughout the entire device. The global clock network can provide clocks for all resources within the device, such as IOEs, LEs, and memory blocks. The global clock lines can also be used for control signals. Cyclone PLLs provide general-purpose clocking with clock multiplication and phase shifting as well as external outputs for high-speed differential I/O support. Figure 2–1 shows a diagram of the Cyclone EP1C12 device. # Logic Array Blocks Each LAB consists of 10 LEs, LE carry chains, LAB control signals, a local interconnect, look-up table (LUT) chain, and register chain connection lines. The local interconnect transfers signals between LEs in the same LAB. LUT chain connections transfer the output of one LE's LUT to the adjacent LE for fast sequential LUT connections within the same LAB. Register chain connections transfer the output of one LE's register to the adjacent LE's register within a LAB. The Quartus® II Compiler places associated logic within a LAB or adjacent LABs, allowing the use of local, LUT chain, and register chain connections for performance and area efficiency. Figure 2–2 details the Cyclone LAB. Row Interconnect Column Interconnect Direct link interconnect from Direct link adjacent block interconnect from adjacent block Direct link Direct link interconnect to interconnect to adjacent block adjacent block LÄB Local Interconnect Figure 2-2. Cyclone LAB Structure #### LAB Interconnects The LAB local interconnect can drive LEs within the same LAB. The LAB local interconnect is driven by column and row interconnects and LE outputs within the same LAB. Neighboring LABs, PLLs, and M4K RAM blocks from the left and right can also drive a LAB's local interconnect through the direct link connection. The direct link connection feature minimizes the use of row and column interconnects, providing higher Figure 2-5. Cyclone LE Each LE's programmable register can be configured for D, T, JK, or SR operation. Each register has data, true asynchronous load data, clock, clock enable, clear, and asynchronous load/preset inputs. Global signals, general-purpose I/O pins, or any internal logic can drive the register's clock and clear control signals. Either general-purpose I/O pins or internal logic can drive the clock enable, preset, asynchronous load, and asynchronous data. The asynchronous load data input comes from the data3 input of the LE. For combinatorial functions, the LUT output bypasses the register and drives directly to the LE outputs. Each LE has three outputs that drive the local, row, and column routing resources. The LUT or register output can drive these three outputs independently. Two LE outputs drive column or row and direct link routing connections and one drives local interconnect resources. This allows the LUT to drive one output while the register drives another output. This feature, called register packing, improves device utilization because the device can use the register and the LUT for unrelated The Quartus II Compiler automatically creates carry chain logic during design processing, or you can create it manually during design entry. Parameterized functions such as LPM functions automatically take advantage of carry chains for the appropriate functions. The Quartus II Compiler creates carry chains longer than 10 LEs by linking LABs together automatically. For enhanced fitting, a long carry chain runs vertically allowing fast horizontal connections to M4K memory blocks. A carry chain can continue as far as a full column. #### Clear and Preset Logic Control LAB-wide signals control the logic for the register's clear and preset signals. The LE directly supports an asynchronous clear and preset function. The register preset is achieved through the asynchronous load of a logic high. The direct asynchronous preset does not require a NOT-gate push-back technique. Cyclone devices support simultaneous preset/asynchronous load and clear signals. An asynchronous clear signal takes precedence if both signals are asserted simultaneously. Each LAB supports up to two clears and one preset signal. In addition to the clear and preset ports, Cyclone devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. An option set before compilation in the Quartus II software controls this pin. This chip-wide reset overrides all other control signals. # MultiTrack Interconnect In the Cyclone architecture, connections between LEs, M4K memory blocks, and device I/O pins are provided by the MultiTrack interconnect structure with DirectDriveTM technology. The MultiTrack interconnect consists of continuous, performance-optimized routing lines of different speeds used for inter- and intra-design block connectivity. The Quartus II Compiler automatically places critical design paths on faster interconnects to improve design performance. DirectDrive technology is a deterministic routing technology that ensures identical routing resource usage for any function regardless of placement within the device. The MultiTrack interconnect and DirectDrive technology simplify the integration stage of block-based designing by eliminating the re-optimization cycles that typically follow design changes and additions. The MultiTrack interconnect consists of row and column interconnects that span fixed distances. A routing structure with fixed length resources for all devices allows predictable and repeatable performance when The pin's datain signals can drive the logic array. The logic array drives the control and data signals, providing a flexible routing resource. The row or column IOE clocks, io_clk[5..0], provide a dedicated routing resource for low-skew, high-speed clocks. The global clock network generates the IOE clocks that feed the row or column I/O regions (see "Global Clock Network and Phase-Locked Loops" on page 2–29). Figure 2–30 illustrates the signal paths through the I/O block. Figure 2-30. Signal Path through the I/O Block Each IOE contains its own control signal selection for the following control signals: oe, ce_in, ce_out, aclr/preset, sclr/preset, clk_in, and clk_out. Figure 2–31 illustrates the control signal selection. Figure 2-31. Control Signal Selection per IOE In normal bidirectional operation, you can use the input register for input data requiring fast setup times. The input register can have its own clock input and clock enable separate from the OE and output registers. The output register can be used for data requiring fast clock-to-output performance. The OE register is available for fast clock-to-output enable timing. The OE and output register share the same clock source and the same clock enable source from the local interconnect in the associated LAB, dedicated I/O clocks, or the column and row interconnects. Figure 2–32 shows the IOE in bidirectional configuration. to automatically minimize setup time while providing a zero hold time. Programmable delays can increase the register-to-pin delays for output registers. Table 2–9 shows the programmable delays for Cyclone devices. | Table 2–9. Cyclone Programmable Delay Chain | | | | | | |---|---|--|--|--|--| | Programmable Delays | Quartus II Logic Option | | | | | | Input pin to logic array delay | Decrease input delay to internal cells | | | | | | Input pin to input register delay | Decrease input delay to input registers | | | | | | Output pin delay | Increase delay to output pin | | | | | There are two paths in the IOE for a combinatorial input to reach the logic array. Each of the two paths can have a different delay. This allows you adjust delays from the pin to internal LE registers that reside in two different areas of the device. The designer sets the two combinatorial input delays by selecting different delays for two different paths under the **Decrease input delay to internal cells** logic option in the Quartus II software. When the input signal requires two different delays for the combinatorial input, the input register in the IOE is no longer available. The IOE registers in Cyclone devices share the same source for clear or preset. The designer can program preset or clear for each individual IOE. The designer can also program the registers to power up high or low after configuration is complete. If programmed to power up low, an asynchronous clear can control the registers. If programmed to power up high, an asynchronous preset can control the registers. This feature prevents the inadvertent activation of another device's active-low input upon power up. If one register in an IOE uses a preset or clear signal then all registers in the IOE must use that same signal if they require preset or clear. Additionally a synchronous reset signal is available to the designer for the IOE registers. ## **External RAM Interfacing** Cyclone devices support DDR SDRAM and FCRAM interfaces at up to 133 MHz through dedicated circuitry. #### DDR SDRAM and FCRAM Cyclone devices have dedicated circuitry for interfacing with DDR SDRAM. All I/O banks support DDR SDRAM and FCRAM I/O pins. However, the configuration input pins in bank 1 must operate at 2.5 V because the SSTL-2 $\rm V_{CCIO}$ level is 2.5 V. Additionally, the configuration and DM pins to support a DDR SDRAM or FCRAM interface. I/O bank 1 can also support a DDR SDRAM or FCRAM interface, however, the configuration input pins in I/O bank 1 must operate at 2.5 V. I/O bank 3 can also support a DDR SDRAM or FCRAM interface, however, all the JTAG pins in I/O bank 3 must operate at 2.5 V. **Figure 2–35. Cyclone I/O Banks** Notes (1), (2) I/O Bank 4 #### *Notes to Figure 2–35:* - (1) Figure 2–35 is a top view of the silicon die. - (2) Figure 2–35 is a graphic representation only. Refer to the pin list and the Quartus II software for exact pin locations. Each I/O bank has its own VCCIO pins. A single device can support 1.5-V, 1.8-V, 2.5-V, and 3.3-V interfaces; each individual bank can support a different standard with different I/O voltages. Each bank also has dual-purpose VREF pins to support any one of the voltage-referenced standards (e.g., SSTL-3) independently. If an I/O bank does not use voltage-referenced standards, the $V_{\rm REF}$ pins are available as user I/O pins. # 3. Configuration and Testing C51003-1.4 # IEEE Std. 1149.1 (JTAG) Boundary Scan Support All Cyclone[®] devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1a-1990 specification. JTAG boundary-scan testing can be performed either before or after, but not during configuration. Cyclone devices can also use the JTAG port for configuration together with either the Quartus[®] II software or hardware using either Jam Files (.jam) or Jam Byte-Code Files (.jbc). Cyclone devices support reconfiguring the I/O standard settings on the IOE through the JTAG BST chain. The JTAG chain can update the I/O standard for all input and output pins any time before or during user mode. Designers can use this ability for JTAG testing before configuration when some of the Cyclone pins drive or receive from other devices on the board using voltage-referenced standards. Since the Cyclone device might not be configured before JTAG testing, the I/O pins might not be configured for appropriate electrical standards for chip-to-chip communication. Programming those I/O standards via JTAG allows designers to fully test I/O connection to other devices. The JTAG pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O standards. The TDO pin voltage is determined by the $V_{\rm CCIO}$ of the bank where it resides. The bank $V_{\rm CCIO}$ selects whether the JTAG inputs are 1.5-V, 1.8-V, 2.5-V, or 3.3-V compatible. Cyclone devices also use the JTAG port to monitor the operation of the device with the SignalTap® II embedded logic analyzer. Cyclone devices support the JTAG instructions shown in Table 3–1. | Table 3–1. Cyclone JTAG Instructions (Part 1 of 2) | | | | | | | | |--|------------------|---|--|--|--|--|--| | JTAG Instruction | Instruction Code | Description | | | | | | | SAMPLE/PRELOAD | 00 0000 0101 | Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap II embedded logic analyzer. | | | | | | | EXTEST (1) | 00 0000 0000 | Allows the external circuitry and board-level interconnects to be tested by forcing a test pattern at the output pins and capturing test results at the input pins. | | | | | | | BYPASS | 11 1111 1111 | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation. | | | | | | Cyclone devices must be within the first 8 devices in a JTAG chain. All of these devices have the same JTAG controller. If any of the Cyclone devices are in the 9th or after they will fail configuration. This does not affect the SignalTap® II logic analyzer. For more information on JTAG, refer to the following documents: - AN 39: IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices - Jam Programming & Test Language Specification # SignalTap II Embedded Logic Analyzer Cyclone devices feature the SignalTap II embedded logic analyzer, which monitors design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry. A designer can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages, such as FineLine BGA packages, because it can be difficult to add a connection to a pin during the debugging process after a board is designed and manufactured. ## Configuration The logic, circuitry, and interconnects in the Cyclone architecture are configured with CMOS SRAM elements. Altera FPGAs are reconfigurable and every device is tested with a high coverage production test program so the designer does not have to perform fault testing and can instead focus on simulation and design verification. Cyclone devices are configured at system power-up with data stored in an Altera configuration device or provided by a system controller. The Cyclone device's optimized interface allows the device to act as controller in an active serial configuration scheme with the new low-cost serial configuration device. Cyclone devices can be configured in under 120 ms using serial data at 20 MHz. The serial configuration device can be programmed via the ByteBlaster II download cable, the Altera Programming Unit (APU), or third-party programmers. In addition to the new low-cost serial configuration device, Altera offers in-system programmability (ISP)-capable configuration devices that can configure Cyclone devices via a serial data stream. The interface also enables microprocessors to treat Cyclone devices as memory and configure them by writing to a virtual memory location, making reconfiguration easy. After a Cyclone device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Real-time changes can be made during system operation, enabling innovative reconfigurable computing applications. #### **Performance** The maximum internal logic array clock tree frequency is limited to the specifications shown in Table 4–19. | Table 4–19. Clock Tree Maximum Performance Specification | | | | | | | | | | | | |--|---|----------------|-----|----------------|-----|----------------|-----|-----|-------|-----|--------| | Parameter | Definition | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | | Units | | | | | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | UIIITS | | Clock tree f _{MAX} | Maximum frequency
that the clock tree
can support for
clocking registered
logic | | _ | 405 | _ | _ | 320 | | _ | 275 | MHz | Table 4–20 shows the Cyclone device performance for some common designs. All performance values were obtained with the Quartus II software compilation of library of parameterized modules (LPM) functions or megafunctions. These performance values are based on EP1C6 devices in 144-pin TQFP packages. | Table 4–20. Cyclone Device Performance | | | | | | | | | | | |--|-----------------------------|------|-----|-----------------------|-------------------------|----------------------------|----------------------------|----------------------------|--|--| | | | | R | esources U | sed | Performance | | | | | | Resource
Used | Design Size and
Function | Mode | LEs | M4K
Memory
Bits | M4K
Memory
Blocks | -6 Speed
Grade
(MHz) | -7 Speed
Grade
(MHz) | -8 Speed
Grade
(MHz) | | | | LE | 16-to-1
multiplexer | _ | 21 | _ | _ | 405.00 | 320.00 | 275.00 | | | | | 32-to-1
multiplexer | _ | 44 | _ | _ | 317.36 | 284.98 | 260.15 | | | | | 16-bit counter | _ | 16 | _ | _ | 405.00 | 320.00 | 275.00 | | | | | 64-bit counter (1) | _ | 66 | _ | _ | 208.99 | 181.98 | 160.75 | | | | | | | R | esources U | sed | Performance | | | |------------------|-----------------------------|-----------------------------|-----|-----------------------|-------------------------|----------------------------|----------------------------|----------------------------| | Resource
Used | Design Size and
Function | Mode | LEs | M4K
Memory
Bits | M4K
Memory
Blocks | -6 Speed
Grade
(MHz) | -7 Speed
Grade
(MHz) | -8 Speed
Grade
(MHz) | | M4K | RAM 128 × 36 bit | Single port | _ | 4,608 | 1 | 256.00 | 222.67 | 197.01 | | memory
block | RAM 128 × 36 bit | Simple
dual-port
mode | _ | 4,608 | 1 | 255.95 | 222.67 | 196.97 | | | RAM 256 × 18 bit | True dual-
port mode | _ | 4,608 | 1 | 255.95 | 222.67 | 196.97 | | | FIFO 128 × 36 bit | _ | 40 | 4,608 | 1 | 256.02 | 222.67 | 197.01 | | | Shift register 9 × 4 × 128 | Shift register | 11 | 4,536 | 1 | 255.95 | 222.67 | 196.97 | Note to Table 4-20: ## **Internal Timing Parameters** Internal timing parameters are specified on a speed grade basis independent of device density. Tables 4–21 through 4–24 describe the Cyclone device internal timing microparameters for LEs, IOEs, M4K memory structures, and MultiTrack interconnects. | Table 4–21. LE Internal Timing Microparameter Descriptions | | | | | | | |--|--|--|--|--|--|--| | Symbol | Parameter | | | | | | | t _{SU} | LE register setup time before clock | | | | | | | t _H | LE register hold time after clock | | | | | | | t _{CO} | LE register clock-to-output delay | | | | | | | t _{LUT} | LE combinatorial LUT delay for data-in to data-out | | | | | | | t _{CLR} | Minimum clear pulse width | | | | | | | t _{PRE} | Minimum preset pulse width | | | | | | | t _{CLKHL} | Minimum clock high or low time | | | | | | ⁽¹⁾ The performance numbers for this function are from an EP1C6 device in a 240-pin PQFP package. | Table 4–29. C | yclone Global Clock External I/O Timing Parameters No | tes (1), (2) (Part 2 of 2) | |---------------|---|-----------------------------------| | Symbol | Parameter | Conditions | | toutcople | Clock-to-output delay output or bidirectional pin using IOE output register with global clock enhanced PLL with default phase setting | C _{LOAD} = 10 pF | #### Notes to Table 4-29: - (1) These timing parameters are sample-tested only. - (2) These timing parameters are for IOE pins using a 3.3-V LVTTL, 24-mA setting. Designers should use the Quartus II software to verify the external timing for any pin. Tables 4–30 through 4–31 show the external timing parameters on column and row pins for EP1C3 devices. | Table 4–30. EP1C3 Column Pin Global Clock External I/O Timing
Parameters | | | | | | | | | | |---|---------|---------|---------|---------|---------|-------|------|--|--| | Symbol | -6 Spee | d Grade | -7 Spee | d Grade | -8 Spee | | | | | | | Min | Max | Min | Max | Min | Max | Unit | | | | t _{INSU} | 3.085 | _ | 3.547 | _ | 4.009 | _ | ns | | | | t _{INH} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | toutco | 2.000 | 4.073 | 2.000 | 4.682 | 2.000 | 5.295 | ns | | | | t _{INSUPLL} | 1.795 | _ | 2.063 | _ | 2.332 | _ | ns | | | | t _{INHPLL} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | toutcople | 0.500 | 2.306 | 0.500 | 2.651 | 0.500 | 2.998 | ns | | | | Table 4–31. EP1C3 Row Pin Global Clock External I/O Timing Parameters | | | | | | | | | | | | |---|---------|---------|---------|---------|---------|-------|------|--|--|--|--| | Cumbal | -6 Spee | d Grade | -7 Spee | d Grade | -8 Spee | 11:4 | | | | | | | Symbol | Min | Max | Min | Max | Min | Max | Unit | | | | | | t _{INSU} | 3.157 | _ | 3.630 | _ | 4.103 | _ | ns | | | | | | t _{INH} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | | | t _{outco} | 2.000 | 3.984 | 2.000 | 4.580 | 2.000 | 5.180 | ns | | | | | | t _{INSUPLL} | 1.867 | _ | 2.146 | _ | 2.426 | _ | ns | | | | | | t _{INHPLL} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | | | toutcople | 0.500 | 2.217 | 0.500 | 2.549 | 0.500 | 2.883 | ns | | | | | Tables 4–32 through 4–33 show the external timing parameters on column and row pins for EP1C4 devices. Table 4–32. EP1C4 Column Pin Global Clock External I/O Timing Parameters Note (1) | Symbol | -6 Spee | d Grade | -7 Spee | d Grade | -8 Spee | Unit | | |----------------------|---------|---------|---------|---------|---------|-------|-------| | | Min | Max | Min | Max | Min | Max | UIIIL | | t _{INSU} | 2.471 | _ | 2.841 | _ | 3.210 | _ | ns | | t _{INH} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | toutco | 2.000 | 3.937 | 2.000 | 4.526 | 2.000 | 5.119 | ns | | t _{INSUPLL} | 1.471 | _ | 1.690 | _ | 1.910 | _ | ns | | t _{INHPLL} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | toutcople | 0.500 | 2.080 | 0.500 | 2.392 | 0.500 | 2.705 | ns | Table 4–33. EP1C4 Row Pin Global Clock External I/O Timing Parameters Note (1) | Symbol | -6 Speed Grade | | -7 Spee | d Grade | -8 Spee | d Grade | Unit | |----------------------|----------------|-------|---------|---------|---------|---------|-------| | | Min | Max | Min | Max | Min | Max | UIIIL | | t _{INSU} | 2.600 | _ | 2.990 | _ | 3.379 | _ | ns | | t _{INH} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | t _{outco} | 2.000 | 3.991 | 2.000 | 4.388 | 2.000 | 5.189 | ns | | t _{INSUPLL} | 1.300 | _ | 1.494 | _ | 1.689 | _ | ns | | t _{INHPLL} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | toutcople | 0.500 | 2.234 | 0.500 | 2.569 | 0.500 | 2.905 | ns | *Note to Tables 4–32 and 4–33:* ⁽¹⁾ Contact Altera Applications for EP1C4 device timing parameters. | | Table 4–36. EP1C12 Column Pin Global Clock External I/O Timing
Parameters (Part 2 of 2) | | | | | | | | | | | |--------|--|-------------------------|---------|---------|---------|---------|------|--|--|--|--| | Oh a l | -6 Spee | d Grade | -7 Spee | d Grade | -8 Spee | d Grade | Unit | | | | | | Symbol | Min | Min Max Min Max Min Max | | | | | | | | | | 0.000 0.500 1.913 0.000 0.500 ns ns 2.164 0.000 0.500 1.663 tinhpll t_{OUTCOPLL} | Table 4–37. EP1C12 Row Pin Global Clock External I/O Timing Parameters | | | | | | | | | | | | |--|---------|---------|---------|---------|---------|-------|------|--|--|--|--| | Cumbal | -6 Spee | d Grade | -7 Spee | d Grade | -8 Spee | Hait | | | | | | | Symbol | Min | Max | Min | Max | Min | Max | Unit | | | | | | t _{INSU} | 2.620 | _ | 3.012 | _ | 3.404 | _ | ns | | | | | | t _{INH} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | | | toutco | 2.000 | 3.671 | 2.000 | 4.221 | 2.000 | 4.774 | ns | | | | | | t _{INSUPLL} | 1.698 | _ | 1.951 | _ | 2.206 | _ | ns | | | | | | t _{INHPLL} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | | | toutcople | 0.500 | 1.536 | 0.500 | 1.767 | 0.500 | 1.998 | ns | | | | | Tables 4–38 through 4–39 show the external timing parameters on column and row pins for EP1C20 devices. | Table 4–38. EP1C20 Column Pin Global Clock External I/O Timing
Parameters | | | | | | | | | | | | |--|---------|---------|---------|---------|---------|-------|------|--|--|--|--| | Cumbal | -6 Spee | d Grade | -7 Spee | d Grade | -8 Spee | | | | | | | | Symbol | Min | Max | Min | Max | Min | Max | Unit | | | | | | t _{INSU} | 2.417 | _ | 2.779 | _ | 3.140 | _ | ns | | | | | | t _{INH} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | | | t _{outco} | 2.000 | 3.724 | 2.000 | 4.282 | 2.000 | 4.843 | ns | | | | | | t _{INSUPLL} | 1.417 | _ | 1.629 | _ | 1.840 | _ | ns | | | | | | t _{INHPLL} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | | | toutcople | 0.500 | 1.667 | 0.500 | 1.917 | 0.500 | 2.169 | ns | | | | | | Table 4–43. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Row Pins (Part 2 of 2) | | | | | | | | | | | |---|-------|---------|----------|---------|----------|---------|--------|------|--|--| | a | | -6 Spee | ed Grade | -7 Spec | ed Grade | -8 Spee | Unit | | | | | Stand | aru | Min | Max | Min | Max | Min | Max | Unit | | | | 1.8-V LVTTL | 2 mA | _ | 1,290 | _ | 1,483 | _ | 1,677 | ps | | | | | 8 mA | _ | 4 | _ | 4 | _ | 5 | ps | | | | | 12 mA | _ | -208 | _ | -240 | _ | -271 | ps | | | | 1.5-V LVTTL | 2 mA | _ | 2,288 | _ | 2,631 | _ | 2,974 | ps | | | | | 4 mA | _ | 608 | _ | 699 | _ | 790 | ps | | | | | 8 mA | _ | 292 | _ | 335 | _ | 379 | ps | | | | 3.3-V PCI (1) | | _ | -877 | _ | -1,009 | _ | -1,141 | ps | | | | SSTL-3 class I | | _ | -410 | _ | -472 | _ | -533 | ps | | | | SSTL-3 class I | I | _ | -811 | _ | -933 | _ | -1,055 | ps | | | | SSTL-2 class I | | _ | -485 | _ | -558 | _ | -631 | ps | | | | SSTL-2 class II | | _ | -758 | _ | -872 | _ | -986 | ps | | | | LVDS | | _ | -998 | _ | -1,148 | _ | -1,298 | ps | | | | Table 4–44. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Column Pins (Part 1 of 2) | | | | | | | | | | | | |--|-------|----------------|-------|----------------|-------|----------------|-------|---------|--|--|--| | I/O Standard | | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | l l mid | | | | | 1/U Sta | nuaru | Min | Max | Min | Max | Min | Max | Unit | | | | | LVCMOS | 2 mA | _ | 1,800 | _ | 2,070 | _ | 2,340 | ps | | | | | | 4 mA | _ | 1,311 | _ | 1,507 | _ | 1,704 | ps | | | | | | 8 mA | _ | 945 | _ | 1,086 | _ | 1,228 | ps | | | | | | 12 mA | _ | 807 | _ | 928 | _ | 1,049 | ps | | | | | 3.3-V LVTTL | 4 mA | _ | 1,831 | _ | 2,105 | _ | 2,380 | ps | | | | | | 8 mA | _ | 1,484 | _ | 1,705 | _ | 1,928 | ps | | | | | | 12 mA | _ | 973 | _ | 1,118 | _ | 1,264 | ps | | | | | | 16 mA | _ | 1,012 | _ | 1,163 | _ | 1,315 | ps | | | | | | 24 mA | _ | 838 | _ | 963 | _ | 1,089 | ps | | | | | 2.5-V LVTTL | 2 mA | _ | 2,747 | _ | 3,158 | _ | 3,570 | ps | | | | | | 8 mA | _ | 1,757 | _ | 2,019 | _ | 2,283 | ps | | | | | | 12 mA | _ | 1,763 | _ | 2,026 | _ | 2,291 | ps | | | | | | 16 mA | _ | 1,623 | _ | 1,865 | _ | 2,109 | ps | | | | | 1.8-V LVTTL | 2 mA | _ | 5,506 | _ | 6,331 | _ | 7,157 | ps | | | | | | 8 mA | _ | 4,220 | _ | 4,852 | _ | 5,485 | ps | | | | | | 12 mA | _ | 4,008 | _ | 4,608 | _ | 5,209 | ps | | | | | Table 4-44. 0 | Table 4–44. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Column Pins (Part 2 of 2) | | | | | | | | | | | |----------------|--|---------|---------|---------|---------|---------|-------|------|--|--|--| | | | -6 Spee | d Grade | -7 Spee | d Grade | -8 Spee | 11 | | | | | | I/O Star | iuaru | Min | Max | Min | Max | Min | Max | Unit | | | | | 1.5-V LVTTL | 2 mA | _ | 6,789 | _ | 7,807 | _ | 8,825 | ps | | | | | | 4 mA | _ | 5,109 | _ | 5,875 | _ | 6,641 | ps | | | | | | 8 mA | _ | 4,793 | _ | 5,511 | _ | 6,230 | ps | | | | | SSTL-3 class I | | _ | 1,390 | _ | 1,598 | _ | 1,807 | ps | | | | | SSTL-3 class I | I | _ | 989 | _ | 1,137 | _ | 1,285 | ps | | | | | SSTL-2 class I | | _ | 1,965 | _ | 2,259 | _ | 2,554 | ps | | | | | SSTL-2 class I | I | _ | 1,692 | _ | 1,945 | | 2,199 | ps | | | | | LVDS | · | _ | 802 | _ | 922 | _ | 1,042 | ps | | | | | | | -6 Snor | ed Grade | -7 Sno | ad Grada | -8 Sno | ad Grado | | |-------------|-------|---------|----------|----------------|----------|----------------|----------|------| | I/O Sta | ndard | -o spec | tu ulaut | -7 Speed Grade | | -8 Speed Grade | | Unit | | , | | Min | Max | Min | Max | Min | Max | | | LVCMOS | 2 mA | _ | 1,800 | _ | 2,070 | _ | 2,340 | ps | | | 4 mA | _ | 1,311 | _ | 1,507 | _ | 1,704 | ps | | | 8 mA | _ | 945 | _ | 1,086 | _ | 1,228 | ps | | | 12 mA | _ | 807 | _ | 928 | _ | 1,049 | ps | | 3.3-V LVTTL | 4 mA | _ | 1,831 | _ | 2,105 | _ | 2,380 | ps | | | 8 mA | _ | 1,484 | _ | 1,705 | _ | 1,928 | ps | | | 12 mA | _ | 973 | _ | 1,118 | _ | 1,264 | ps | | | 16 mA | _ | 1,012 | _ | 1,163 | _ | 1,315 | ps | | | 24 mA | _ | 838 | _ | 963 | _ | 1,089 | ps | | 2.5-V LVTTL | 2 mA | _ | 2,747 | _ | 3,158 | _ | 3,570 | ps | | | 8 mA | _ | 1,757 | _ | 2,019 | _ | 2,283 | ps | | | 12 mA | _ | 1,763 | _ | 2,026 | _ | 2,291 | ps | | | 16 mA | _ | 1,623 | _ | 1,865 | _ | 2,109 | ps | | 1.8-V LVTTL | 2 mA | _ | 5,506 | _ | 6,331 | _ | 7,157 | ps | | | 8 mA | _ | 4,220 | _ | 4,852 | _ | 5,485 | ps | | | 12 mA | _ | 4,008 | _ | 4,608 | _ | 5,209 | ps | | 1.5-V LVTTL | 2 mA | _ | 6,789 | _ | 7,807 | _ | 8,825 | ps | | | 4 mA | _ | 5,109 | _ | 5,875 | _ | 6,641 | ps | | | 8 mA | _ | 4,793 | _ | 5,511 | _ | 6,230 | ps | | 3.3-V PCI | | _ | 923 | _ | 1,061 | _ | 1,199 | ps |