Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|----------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 1206 | | Number of Logic Elements/Cells | 12060 | | Total RAM Bits | 239616 | | Number of I/O | 249 | | Number of Gates | - | | Voltage - Supply | 1.425V ~ 1.575V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 324-BGA | | Supplier Device Package | 324-FBGA (19x19) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep1c12f324c8n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ### 1. Introduction C51001-1.5 #### Introduction The Cyclone® field programmable gate array family is based on a 1.5-V, 0.13-µm, all-layer copper SRAM process, with densities up to 20,060 logic elements (LEs) and up to 288 Kbits of RAM. With features like phase-locked loops (PLLs) for clocking and a dedicated double data rate (DDR) interface to meet DDR SDRAM and fast cycle RAM (FCRAM) memory requirements, Cyclone devices are a cost-effective solution for data-path applications. Cyclone devices support various I/O standards, including LVDS at data rates up to 640 megabits per second (Mbps), and 66- and 33-MHz, 64- and 32-bit peripheral component interconnect (PCI), for interfacing with and supporting ASSP and ASIC devices. Altera also offers new low-cost serial configuration devices to configure Cyclone devices. #### **Features** The Cyclone device family offers the following features: - 2,910 to 20,060 LEs, see Table 1–1 - Up to 294,912 RAM bits (36,864 bytes) - Supports configuration through low-cost serial configuration device - Support for LVTTL, LVCMOS, SSTL-2, and SSTL-3 I/O standards - Support for 66- and 33-MHz, 64- and 32-bit PCI standard - High-speed (640 Mbps) LVDS I/O support - Low-speed (311 Mbps) LVDS I/O support - 311-Mbps RSDS I/O support - Up to two PLLs per device provide clock multiplication and phase shifting - Up to eight global clock lines with six clock resources available per logic array block (LAB) row - Support for external memory, including DDR SDRAM (133 MHz), FCRAM, and single data rate (SDR) SDRAM - Support for multiple intellectual property (IP) cores, including Altera® MegaCore® functions and Altera Megafunctions Partners Program (AMPPSM) megafunctions. | Table 1–1. Cyclone Device Features (Part 1 of 2) | | | | | | | | | | | | |--------------------------------------------------|-------|-------|-------|--------|--------|--|--|--|--|--|--| | Feature EP1C3 EP1C4 EP1C6 EP1C12 EP1C20 | | | | | | | | | | | | | LEs | 2,910 | 4,000 | 5,980 | 12,060 | 20,060 | | | | | | | | M4K RAM blocks (128 × 36 bits) | 13 | 17 | 20 | 52 | 64 | | | | | | | to the appropriate plane on the board. The Quartus II software reserves I/O pins as power pins as necessary for layout with the larger densities in the same package having more power pins. | Table 1–3. Cyclone QFP and FineLine BGA Package Sizes | | | | | | | | | | | | |--------------------------------------------------------------------------------------------------|-------|-------|-----------|-------|-------|-------|--|--|--|--|--| | Dimension 100-Pin TQFP 144-Pin TQFP 240-Pin FineLine BGA 324-Pin FineLine BGA BGA | | | | | | | | | | | | | Pitch (mm) | 0.5 | 0.5 | 0.5 | 1.0 | 1.0 | 1.0 | | | | | | | Area (mm²) | 256 | 484 | 1,024 | 289 | 361 | 441 | | | | | | | $\begin{array}{c} \text{Length} \times \text{width} \\ \text{(mm} \times \text{mm)} \end{array}$ | 16×16 | 22×22 | 34.6×34.6 | 17×17 | 19×19 | 21×21 | | | | | | ## Document Revision History Table 1–4 shows the revision history for this document. | Table 1–4. Document Revision History | | | | | | | | | | |--------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|--|--| | Date and<br>Document<br>Version | Changes Made | Summary of Changes | | | | | | | | | May 2008<br>v1.5 | Minor textual and style changes. | _ | | | | | | | | | January 2007<br>v1.4 | Added document revision history. | _ | | | | | | | | | August 2005<br>v1.3 | Minor updates. | _ | | | | | | | | | October 2003<br>v1.2 | Added 64-bit PCI support information. | _ | | | | | | | | | September<br>2003 v1.1 | <ul> <li>Updated LVDS data rates to 640 Mbps from 311 Mbps.</li> <li>Updated RSDS feature information.</li> </ul> | _ | | | | | | | | | May 2003 v1.0 | Added document to Cyclone Device Handbook. | _ | | | | | | | | performance and flexibility. Each LE can drive 30 other LEs through fast local and direct link interconnects. Figure 2–3 shows the direct link connection. Direct link interconnect from left LAB, M4K memory block, PLL, or IOE output Direct link interconnect to left Local Interconnect Local Interconnect Direct link interconnect from right LAB, M4K memory block, PLL, or IOE output Direct link interconnect to right Figure 2-3. Direct Link Connection #### **LAB Control Signals** Each LAB contains dedicated logic for driving control signals to its LEs. The control signals include two clocks, two clock enables, two asynchronous clears, synchronous clear, asynchronous preset/load, synchronous load, and add/subtract control signals. This gives a maximum of 10 control signals at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions. Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked. For example, any LE in a particular LAB using the labclk1 signal will also use labclkenal. If the LAB uses both the rising and falling edges of a clock, it also uses both LAB-wide clock signals. Deasserting the clock enable signal will turn off the LAB-wide clock. Each LAB can use two asynchronous clear signals and an asynchronous load/preset signal. The asynchronous load acts as a preset when the asynchronous load data input is tied high. functions. Another special packing mode allows the register output to feed back into the LUT of the same LE so that the register is packed with its own fan-out LUT. This provides another mechanism for improved fitting. The LE can also drive out registered and unregistered versions of the LUT output. #### **LUT Chain and Register Chain** In addition to the three general routing outputs, the LEs within a LAB have LUT chain and register chain outputs. LUT chain connections allow LUTs within the same LAB to cascade together for wide input functions. Register chain outputs allow registers within the same LAB to cascade together. The register chain output allows a LAB to use LUTs for a single combinatorial function and the registers to be used for an unrelated shift register implementation. These resources speed up connections between LABs while saving local interconnect resources. "MultiTrack Interconnect" on page 2–12 for more information on LUT chain and register chain connections. #### addnsub Signal The LE's dynamic adder/subtractor feature saves logic resources by using one set of LEs to implement both an adder and a subtractor. This feature is controlled by the LAB-wide control signal addnsub. The addnsub signal sets the LAB to perform either A + B or A -B. The LUT computes addition; subtraction is computed by adding the two's complement of the intended subtractor. The LAB-wide signal converts to two's complement by inverting the B bits within the LAB and setting carry-in = 1 to add one to the least significant bit (LSB). The LSB of an adder/subtractor must be placed in the first LE of the LAB, where the LAB-wide addnsub signal automatically sets the carry-in to 1. The Quartus II Compiler automatically places and uses the adder/subtractor feature when using adder/subtractor parameterized functions. #### **LE Operating Modes** The Cyclone LE can operate in one of the following modes: - Normal mode - Dynamic arithmetic mode Each mode uses LE resources differently. In each mode, eight available inputs to the LE—the four data inputs from the LAB local interconnect, carry-in0 and carry-in1 from the previous LE, the LAB carry-in from the previous carry-chain LAB, and the register chain connection—are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, asynchronous Figure 2–10. LUT Chain and Register Chain Interconnects The C4 interconnects span four LABs or M4K blocks up or down from a source LAB. Every LAB has its own set of C4 interconnects to drive either up or down. Figure 2–11 shows the C4 interconnect connections from a LAB in a column. The C4 interconnects can drive and be driven by all types of architecture blocks, including PLLs, M4K memory blocks, and column and row IOEs. For LAB interconnection, a primary LAB or its LAB neighbor can drive a given C4 interconnect. C4 interconnects can drive each other to extend their range as well as drive row interconnects for column-to-column connections. signal. The output registers can be bypassed. Pseudo-asynchronous reading is possible in the simple dual-port mode of M4K blocks by clocking the read enable and read address registers on the negative clock edge and bypassing the output registers. When configured as RAM or ROM, you can use an initialization file to pre-load the memory contents. Two single-port memory blocks can be implemented in a single M4K block as long as each of the two independent block sizes is equal to or less than half of the M4K block size. The Quartus II software automatically implements larger memory by combining multiple M4K memory blocks. For example, two 256×16-bit RAM blocks can be combined to form a 256×32-bit RAM block. Memory performance does not degrade for memory blocks using the maximum number of words allowed. Logical memory blocks using less than the maximum number of words use physical blocks in parallel, eliminating any external control logic that would increase delays. To create a larger high-speed memory block, the Quartus II software automatically combines memory blocks with LE control logic. #### **Parity Bit Support** The M4K blocks support a parity bit for each byte. The parity bit, along with internal LE logic, can implement parity checking for error detection to ensure data integrity. You can also use parity-size data words to store user-specified control bits. Byte enables are also available for data input masking during write operations. #### **Shift Register Support** You can configure M4K memory blocks to implement shift registers for DSP applications such as pseudo-random number generators, multi-channel filtering, auto-correlation, and cross-correlation functions. These and other DSP applications require local data storage, traditionally implemented with standard flip-flops, which can quickly consume many logic cells and routing resources for large shift registers. A more efficient alternative is to use embedded memory as a shift register block, which saves logic cell and routing resources and provides a more efficient implementation with the dedicated circuitry. The size of a $w \times m \times n$ shift register is determined by the input data width (w), the length of the taps (m), and the number of taps (n). The size of a $w \times m \times n$ shift register must be less than or equal to the maximum number of memory bits in the M4K block (4,608 bits). The total number of shift #### Read/Write Clock Mode The M4K memory blocks implement read/write clock mode for simple dual-port memory. You can use up to two clocks in this mode. The write clock controls the block's data inputs, wraddress, and wren. The read clock controls the data output, rdaddress, and rden. The memory blocks support independent clock enables for each clock and asynchronous clear signals for the read- and write-side registers. Figure 2–20 shows a memory block in read/write clock mode. Figure 2–20. Read/Write Clock Mode in Simple Dual-Port Mode Notes (1), (2) #### *Notes to Figure 2–20:* - (1) All registers shown except the rden register have asynchronous clear ports. - (2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both read and write operations. #### **Single-Port Mode** The M4K memory blocks also support single-port mode, used when simultaneous reads and writes are not required. See Figure 2–21. A single M4K memory block can support up to two single-port mode RAM blocks if each RAM block is less than or equal to 2K bits in size. Figure 2–21. Single-Port Mode Note (1) Note to Figure 2–21: (1) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both read and write operations. ## Global Clock Network and Phase-Locked Loops Cyclone devices provide a global clock network and up to two PLLs for a complete clock management solution. #### **Global Clock Network** There are four dedicated clock pins (CLK[3..0], two pins on the left side and two pins on the right side) that drive the global clock network, as shown in Figure 2–22. PLL outputs, logic array, and dual-purpose clock (DPCLK[7..0]) pins can also drive the global clock network. Figure 2–26 shows the PLL global clock connections. Figure 2-26. Cyclone PLL Global Clock Connections #### Notes to Figure 2-26: - (1) PLL 1 supports one single-ended or LVDS input via pins CLKO and CLK1. - (2) PLL2 supports one single-ended or LVDS input via pins CLK2 and CLK3. - (3) PLL1\_OUT and PLL2\_OUT support single-ended or LVDS output. If external output is not required, these pins are available as regular user I/O pins. - (4) The EP1C3 device in the 100-pin TQFP package does not support external clock output. The EP1C6 device in the 144-pin TQFP package does not support external clock output from PLL2. Table 2–7 shows the global clock network sources available in Cyclone devices. | Table 2–7. Global Clock Network Sources (Part 1 of 2) | | | | | | | | | | | | |-------------------------------------------------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|--|--| | Sou | rce | GCLKO | GCLK1 | GCLK2 | GCLK3 | GCLK4 | GCLK5 | GCLK6 | GCLK7 | | | | PLL Counter | PLL1 G0 | _ | <b>✓</b> | <b>✓</b> | _ | _ | _ | _ | _ | | | | Output | PLL1 G1 | <b>✓</b> | _ | _ | <b>✓</b> | _ | _ | _ | _ | | | | | PLL2 G0 (1) | _ | _ | _ | _ | _ | <b>✓</b> | <b>✓</b> | _ | | | | | PLL2 G1 (1) | _ | _ | _ | _ | <b>✓</b> | _ | _ | <b>✓</b> | | | | Dedicated | CLK0 | <b>✓</b> | _ | <b>✓</b> | _ | _ | _ | _ | _ | | | | Clock Input<br>Pins | CLK1 (2) | _ | <b>✓</b> | _ | <b>✓</b> | _ | _ | _ | _ | | | | | CLK2 | _ | _ | _ | _ | <b>✓</b> | _ | <b>✓</b> | _ | | | | | CLK3 (2) | _ | _ | _ | _ | _ | <b>✓</b> | _ | <b>✓</b> | | | #### **External Clock Inputs** Each PLL supports single-ended or differential inputs for source-synchronous receivers or for general-purpose use. The dedicated clock pins (CLK[3..0]) feed the PLL inputs. These dual-purpose pins can also act as LVDS input pins. See Figure 2–25. Table 2–8 shows the I/O standards supported by PLL input and output pins. | Table 2–8. PLL I/O Standards | | | |------------------------------|-----------|---------------| | I/O Standard | CLK Input | EXTCLK Output | | 3.3-V LVTTL/LVCMOS | ✓ | ✓ | | 2.5-V LVTTL/LVCMOS | ✓ | ✓ | | 1.8-V LVTTL/LVCMOS | ✓ | ✓ | | 1.5-V LVCMOS | ✓ | ✓ | | 3.3-V PCI | ✓ | ✓ | | LVDS | ✓ | ✓ | | SSTL-2 class I | ✓ | ✓ | | SSTL-2 class II | ✓ | ✓ | | SSTL-3 class I | ✓ | ✓ | | SSTL-3 class II | ✓ | ✓ | | Differential SSTL-2 | _ | ✓ | For more information on LVDS I/O support, refer to "LVDS I/O Pins" on page 2–54. #### **External Clock Outputs** Each PLL supports one differential or one single-ended output for source-synchronous transmitters or for general-purpose external clocks. If the PLL does not use these PLL\_OUT pins, the pins are available for use as general-purpose I/O pins. The PLL\_OUT pins support all I/O standards shown in Table 2–8. The external clock outputs do not have their own $V_{CC}$ and ground voltage supplies. Therefore, to minimize jitter, do not place switching I/O pins next to these output pins. The EP1C3 device in the 100-pin TQFP package #### **Programmable Duty Cycle** The programmable duty cycle allows PLLs to generate clock outputs with a variable duty cycle. This feature is supported on each PLL post-scale counter (g0, g1, e). The duty cycle setting is achieved by a low- and high-time count setting for the post-scale dividers. The Quartus II software uses the frequency input and the required multiply or divide rate to determine the duty cycle choices. #### **Control Signals** There are three control signals for clearing and enabling PLLs and their outputs. You can use these signals to control PLL resynchronization and the ability to gate PLL output clocks for low-power applications. The pllenable signal enables and disables PLLs. When the pllenable signal is low, the clock output ports are driven by ground and all the PLLs go out of lock. When the pllenable signal goes high again, the PLLs relock and resynchronize to the input clocks. An input pin or LE output can drive the pllenable signal. The areset signals are reset/resynchronization inputs for each PLL. Cyclone devices can drive these input signals from input pins or from LEs. When areset is driven high, the PLL counters will reset, clearing the PLL output and placing the PLL out of lock. When driven low again, the PLL will resynchronize to its input as it relocks. The pfdena signals control the phase frequency detector (PFD) output with a programmable gate. If you disable the PFD, the VCO will operate at its last set value of control voltage and frequency with some drift, and the system will continue running when the PLL goes out of lock or the input clock disables. By maintaining the last locked frequency, the system has time to store its current settings before shutting down. You can either use their own control signal or gated locked status signals to trigger the pfdena signal. For more information about Cyclone PLLs, refer to *Using PLLs in Cyclone Devices* chapter in the *Cyclone Device Handbook*. ## 3. Configuration and Testing C51003-1.4 ## IEEE Std. 1149.1 (JTAG) Boundary Scan Support All Cyclone<sup>®</sup> devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1a-1990 specification. JTAG boundary-scan testing can be performed either before or after, but not during configuration. Cyclone devices can also use the JTAG port for configuration together with either the Quartus<sup>®</sup> II software or hardware using either Jam Files (.jam) or Jam Byte-Code Files (.jbc). Cyclone devices support reconfiguring the I/O standard settings on the IOE through the JTAG BST chain. The JTAG chain can update the I/O standard for all input and output pins any time before or during user mode. Designers can use this ability for JTAG testing before configuration when some of the Cyclone pins drive or receive from other devices on the board using voltage-referenced standards. Since the Cyclone device might not be configured before JTAG testing, the I/O pins might not be configured for appropriate electrical standards for chip-to-chip communication. Programming those I/O standards via JTAG allows designers to fully test I/O connection to other devices. The JTAG pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O standards. The TDO pin voltage is determined by the $V_{\rm CCIO}$ of the bank where it resides. The bank $V_{\rm CCIO}$ selects whether the JTAG inputs are 1.5-V, 1.8-V, 2.5-V, or 3.3-V compatible. Cyclone devices also use the JTAG port to monitor the operation of the device with the SignalTap® II embedded logic analyzer. Cyclone devices support the JTAG instructions shown in Table 3–1. | Table 3–1. Cyclone JTAG Instructions (Part 1 of 2) | | | | | | | | | | | |----------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--| | JTAG Instruction | | | | | | | | | | | | SAMPLE/PRELOAD | 00 0000 0101 | Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap II embedded logic analyzer. | | | | | | | | | | EXTEST (1) | 00 0000 0000 | Allows the external circuitry and board-level interconnects to be tested by forcing a test pattern at the output pins and capturing test results at the input pins. | | | | | | | | | | BYPASS | 11 1111 1111 | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation. | | | | | | | | | #### **Performance** The maximum internal logic array clock tree frequency is limited to the specifications shown in Table 4–19. | Table 4–19. Clock Tree Maximum Performance Specification | | | | | | | | | | | | |----------------------------------------------------------|---------------------------------------------------------------------------------------------|------|----------------|-----|----------------|-----|----------------|-----|-----|-------|-------| | Parameter | Definition | -6 S | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | | Unito | | | | Dennition | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Units | | Clock tree f <sub>MAX</sub> | Maximum frequency<br>that the clock tree<br>can support for<br>clocking registered<br>logic | | _ | 405 | _ | _ | 320 | | _ | 275 | MHz | Table 4–20 shows the Cyclone device performance for some common designs. All performance values were obtained with the Quartus II software compilation of library of parameterized modules (LPM) functions or megafunctions. These performance values are based on EP1C6 devices in 144-pin TQFP packages. | Table 4-20 | Table 4–20. Cyclone Device Performance | | | | | | | | | | | | | |------------------|----------------------------------------|------|-----|-----------------------|-------------------------|----------------------------|----------------------------|----------------------------|--|--|--|--|--| | | | | R | esources U | sed | Performance | | | | | | | | | Resource<br>Used | Design Size and<br>Function | Mode | LEs | M4K<br>Memory<br>Bits | M4K<br>Memory<br>Blocks | -6 Speed<br>Grade<br>(MHz) | -7 Speed<br>Grade<br>(MHz) | -8 Speed<br>Grade<br>(MHz) | | | | | | | LE | 16-to-1<br>multiplexer | _ | 21 | _ | _ | 405.00 | 320.00 | 275.00 | | | | | | | | 32-to-1<br>multiplexer | _ | 44 | _ | _ | 317.36 | 284.98 | 260.15 | | | | | | | | 16-bit counter | _ | 16 | _ | _ | 405.00 | 320.00 | 275.00 | | | | | | | | 64-bit counter (1) | _ | 66 | _ | _ | 208.99 | 181.98 | 160.75 | | | | | | | Table 4–24. Routing Delay Internal Timing Microparameter Descriptions | | | | | | | | |-----------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|--|--|--|--| | Symbol Parameter | | | | | | | | | t <sub>R4</sub> | Delay for an R4 line with average loading; covers a distance of four LAB columns | | | | | | | | t <sub>C4</sub> | Delay for an C4 line with average loading; covers a distance of four LAB rows | | | | | | | | t <sub>LOCAL</sub> | Local interconnect delay | | | | | | | Figure 4–1 shows the memory waveforms for the M4K timing parameters shown in Table 4–23. | | Table 4–36. EP1C12 Column Pin Global Clock External I/O Timing Parameters (Part 2 of 2) | | | | | | | | | | |----------|-----------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|-------|--|--|--| | Symbol | -6 Spee | d Grade | -7 Spee | d Grade | -8 Spee | d Grade | Unit | | | | | Syllibul | Min | Max | Min | Max | Min | Max | Ullit | | | | 0.000 0.500 1.913 0.000 0.500 ns ns 2.164 0.000 0.500 1.663 tinhpll $t_{\text{OUTCOPLL}}$ | Table 4-37 | Table 4–37. EP1C12 Row Pin Global Clock External I/O Timing Parameters | | | | | | | | | | | | |----------------------|------------------------------------------------------------------------|---------|---------|---------|---------|-------|------|--|--|--|--|--| | Symbol | -6 Spee | d Grade | -7 Spee | d Grade | -8 Spee | Hait | | | | | | | | | Min | Max | Min | Max | Min | Max | Unit | | | | | | | t <sub>INSU</sub> | 2.620 | _ | 3.012 | _ | 3.404 | _ | ns | | | | | | | t <sub>INH</sub> | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | | | | toutco | 2.000 | 3.671 | 2.000 | 4.221 | 2.000 | 4.774 | ns | | | | | | | t <sub>INSUPLL</sub> | 1.698 | _ | 1.951 | _ | 2.206 | _ | ns | | | | | | | t <sub>INHPLL</sub> | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | | | | toutcople | 0.500 | 1.536 | 0.500 | 1.767 | 0.500 | 1.998 | ns | | | | | | Tables 4–38 through 4–39 show the external timing parameters on column and row pins for EP1C20 devices. | Table 4–38. EP1C20 Column Pin Global Clock External I/O Timing<br>Parameters | | | | | | | | |------------------------------------------------------------------------------|----------------|-------|----------------|-------|----------------|-------|---------| | | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | II.m.:A | | Symbol | Min | Max | Min | Max | Min | Max | Unit | | t <sub>INSU</sub> | 2.417 | _ | 2.779 | _ | 3.140 | _ | ns | | t <sub>INH</sub> | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | t <sub>outco</sub> | 2.000 | 3.724 | 2.000 | 4.282 | 2.000 | 4.843 | ns | | t <sub>INSUPLL</sub> | 1.417 | _ | 1.629 | _ | 1.840 | _ | ns | | t <sub>INHPLL</sub> | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | toutcople | 0.500 | 1.667 | 0.500 | 1.917 | 0.500 | 2.169 | ns | | Table 4–42. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Column Pins (Part 2 of 2) | | | | | | | | | |------------------------------------------------------------------------------------------------------|-------|----------------|-------|----------------|--------|----------------|--------|------| | Standard | | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | | | | | Min Max | | Min | Max | Min | Max | Unit | | 2.5-V LVTTL | 2 mA | _ | 329 | _ | 378 | _ | 427 | ps | | | 8 mA | _ | -661 | _ | -761 | _ | -860 | ps | | | 12 mA | _ | -655 | _ | -754 | _ | -852 | ps | | | 16 mA | _ | -795 | _ | -915 | _ | -1034 | ps | | 1.8-V LVTTL | 2 mA | _ | 4 | _ | 4 | _ | 5 | ps | | | 8 mA | _ | -208 | _ | -240 | _ | -271 | ps | | | 12 mA | _ | -208 | _ | -240 | _ | -271 | ps | | 1.5-V LVTTL | 2 mA | _ | 2,288 | _ | 2,631 | _ | 2,974 | ps | | | 4 mA | _ | 608 | _ | 699 | _ | 790 | ps | | | 8 mA | _ | 292 | _ | 335 | _ | 379 | ps | | SSTL-3 class I | | _ | -410 | _ | -472 | _ | -533 | ps | | SSTL-3 class II | | _ | -811 | _ | -933 | _ | -1,055 | ps | | SSTL-2 class I | | _ | -485 | _ | -558 | _ | -631 | ps | | SSTL-2 class II | | _ | -758 | _ | -872 | _ | -986 | ps | | LVDS | | _ | -998 | _ | -1,148 | _ | -1,298 | ps | | Table 4–43. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Row Pins (Part 1 of 2) | | | | | | | | | |---------------------------------------------------------------------------------------------------|-------|----------------|------|----------------|--------|----------------|--------|------| | Standard | | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | | | | | Min | Max | Min | Max | Min | Max | Unit | | LVCMOS | 2 mA | _ | 0 | _ | 0 | _ | 0 | ps | | | 4 mA | _ | -489 | _ | -563 | _ | -636 | ps | | | 8 mA | _ | -855 | _ | -984 | _ | -1,112 | ps | | | 12 mA | _ | -993 | _ | -1,142 | _ | -1,291 | ps | | 3.3-V LVTTL | 4 mA | _ | 0 | _ | 0 | _ | 0 | ps | | | 8 mA | _ | -347 | _ | -400 | _ | -452 | ps | | | 12 mA | _ | -858 | _ | -987 | _ | -1,116 | ps | | | 16 mA | _ | -819 | _ | -942 | _ | -1,065 | ps | | | 24 mA | _ | -993 | _ | -1,142 | _ | -1,291 | ps | | 2.5-V LVTTL | 2 mA | _ | 329 | _ | 378 | _ | 427 | ps | | | 8 mA | _ | -661 | _ | -761 | _ | -860 | ps | | | 12 mA | _ | -655 | _ | -754 | _ | -852 | ps | | | 16 mA | _ | -795 | _ | -915 | _ | -1,034 | ps | | Table 4–49. Cyclone Maximum Input Clock Rate for Row Pins | | | | | | | |-----------------------------------------------------------|-------------------|-------------------|-------------------|------|--|--| | I/O Standard | -6 Speed<br>Grade | -7 Speed<br>Grade | -8 Speed<br>Grade | Unit | | | | LVTTL | 464 | 428 | 387 | MHz | | | | 2.5 V | 392 | 302 | 207 | MHz | | | | 1.8 V | 387 | 311 | 252 | MHz | | | | 1.5 V | 387 | 320 | 243 | MHz | | | | LVCMOS | 405 | 374 | 333 | MHz | | | | SSTL-3 class I | 405 | 356 | 293 | MHz | | | | SSTL-3 class II | 414 | 365 | 302 | MHz | | | | SSTL-2 class I | 464 | 428 | 396 | MHz | | | | SSTL-2 class II | 473 | 432 | 396 | MHz | | | | 3.3-V PCI (1) | 464 | 428 | 387 | MHz | | | | LVDS | 567 | 549 | 531 | MHz | | | Note to Tables 4–48 through 4–49: Tables 4–50 and 4–51 show the maximum output clock rate for column and row pins in Cyclone devices. | Table 4–50. Cyclone Maximum Output Clock Rate for Column Pins | | | | | | | |---------------------------------------------------------------|-------------------|-------------------|-------------------|------|--|--| | I/O Standard | -6 Speed<br>Grade | -7 Speed<br>Grade | -8 Speed<br>Grade | Unit | | | | LVTTL | 304 | 304 | 304 | MHz | | | | 2.5 V | 220 | 220 | 220 | MHz | | | | 1.8 V | 213 | 213 | 213 | MHz | | | | 1.5 V | 166 | 166 | 166 | MHz | | | | LVCMOS | 304 | 304 | 304 | MHz | | | | SSTL-3 class I | 100 | 100 | 100 | MHz | | | | SSTL-3 class II | 100 | 100 | 100 | MHz | | | | SSTL-2 class I | 134 | 134 | 134 | MHz | | | | SSTL-2 class II | 134 | 134 | 134 | MHz | | | | LVDS | 320 | 320 | 275 | MHz | | | Note to Table 4-50: (1) EP1C3 devices do not support the PCI I/O standard. <sup>(1)</sup> EP1C3 devices do not support the PCI I/O standard. These parameters are only available on row I/O pins. | July 2003<br>v1.1 | Updated timing information. Timing finalized for EP1C6 and EP1C20 devices. Updated performance information. Added PLL Timing section. | _ | |-------------------|---------------------------------------------------------------------------------------------------------------------------------------|---| | May 2003<br>v1.0 | Added document to Cyclone Device Handbook. | _ | # 5. Reference and Ordering Information C51005-1.4 #### Software Cyclone® devices are supported by the Altera® Quartus® II design software, which provides a comprehensive environment for system-on-a-programmable-chip (SOPC) design. The Quartus II software includes HDL and schematic design entry, compilation and logic synthesis, full simulation and advanced timing analysis, SignalTap® II logic analysis, and device configuration. For more information about the Quartus II software features, refer to the *Quartus II Handbook*. The Quartus II software supports the Windows 2000/NT/98, Sun Solaris, Linux Red Hat v7.1 and HP-UX operating systems. It also supports seamless integration with industry-leading EDA tools through the NativeLink® interface. #### **Device Pin-Outs** Device pin-outs for Cyclone devices are available on the Altera website (www.altera.com) and in the *Cyclone Device Handbook*. ## Ordering Information Figure 5–1 describes the ordering codes for Cyclone devices. For more information about a specific package, refer to the *Package Information for Cyclone Devices* chapter in the *Cyclone Device Handbook*.