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Logic Elements

With the LAB-wide addnsub control signal, a single LE can implement a 
one-bit adder and subtractor. This saves LE resources and improves 
performance for logic functions such as DSP correlators and signed 
multipliers that alternate between addition and subtraction depending 
on data.

The LAB row clocks [5..0] and LAB local interconnect generate the 
LAB-wide control signals. The MultiTrackTM interconnect's inherent low 
skew allows clock and control signal distribution in addition to data. 
Figure 2–4 shows the LAB control signal generation circuit.

Figure 2–4. LAB-Wide Control Signals

Logic Elements The smallest unit of logic in the Cyclone architecture, the LE, is compact 
and provides advanced features with efficient logic utilization. Each LE 
contains a four-input LUT, which is a function generator that can 
implement any function of four variables. In addition, each LE contains a 
programmable register and carry chain with carry select capability. A 
single LE also supports dynamic single bit addition or subtraction mode 
selectable by a LAB-wide control signal. Each LE drives all types of 
interconnects: local, row, column, LUT chain, register chain, and direct 
link interconnects. See Figure 2–5.
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Figure 2–5. Cyclone LE 

Each LE's programmable register can be configured for D, T, JK, or SR 
operation. Each register has data, true asynchronous load data, clock, 
clock enable, clear, and asynchronous load/preset inputs. Global signals, 
general-purpose I/O pins, or any internal logic can drive the register's 
clock and clear control signals. Either general-purpose I/O pins or 
internal logic can drive the clock enable, preset, asynchronous load, and 
asynchronous data. The asynchronous load data input comes from the 
data3 input of the LE. For combinatorial functions, the LUT output 
bypasses the register and drives directly to the LE outputs.

Each LE has three outputs that drive the local, row, and column routing 
resources. The LUT or register output can drive these three outputs 
independently. Two LE outputs drive column or row and direct link 
routing connections and one drives local interconnect resources. This 
allows the LUT to drive one output while the register drives another 
output. This feature, called register packing, improves device utilization 
because the device can use the register and the LUT for unrelated 
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preset/load, synchronous clear, synchronous load, and clock enable 
control for the register. These LAB-wide signals are available in all LE 
modes. The addnsub control signal is allowed in arithmetic mode. 

The Quartus II software, in conjunction with parameterized functions 
such as library of parameterized modules (LPM) functions, automatically 
chooses the appropriate mode for common functions such as counters, 
adders, subtractors, and arithmetic functions. If required, you can also 
create special-purpose functions that specify which LE operating mode to 
use for optimal performance.

Normal Mode

The normal mode is suitable for general logic applications and 
combinatorial functions. In normal mode, four data inputs from the LAB 
local interconnect are inputs to a four-input LUT (see Figure 2–6). The 
Quartus II Compiler automatically selects the carry-in or the data3 
signal as one of the inputs to the LUT. Each LE can use LUT chain 
connections to drive its combinatorial output directly to the next LE in the 
LAB. Asynchronous load data for the register comes from the data3 
input of the LE. LEs in normal mode support packed registers.

Figure 2–6. LE in Normal Mode

Note to Figure 2–6:
(1) This signal is only allowed in normal mode if the LE is at the end of an adder/subtractor chain.
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Figure 2–7. LE in Dynamic Arithmetic Mode

Note to Figure 2–7:
(1) The addnsub signal is tied to the carry input for the first LE of a carry chain only.

Carry-Select Chain

The carry-select chain provides a very fast carry-select function between 
LEs in dynamic arithmetic mode. The carry-select chain uses the 
redundant carry calculation to increase the speed of carry functions. The 
LE is configured to calculate outputs for a possible carry-in of 0 and 
carry-in of 1 in parallel. The carry-in0 and carry-in1 signals from a 
lower-order bit feed forward into the higher-order bit via the parallel 
carry chain and feed into both the LUT and the next portion of the carry 
chain. Carry-select chains can begin in any LE within a LAB. 

The speed advantage of the carry-select chain is in the parallel 
pre-computation of carry chains. Since the LAB carry-in selects the 
precomputed carry chain, not every LE is in the critical path. Only the 
propagation delays between LAB carry-in generation (LE 5 and LE 10) are 
now part of the critical path. This feature allows the Cyclone architecture 
to implement high-speed counters, adders, multipliers, parity functions, 
and comparators of arbitrary width. 
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Embedded 
Memory

The Cyclone embedded memory consists of columns of M4K memory 
blocks. EP1C3 and EP1C6 devices have one column of M4K blocks, while 
EP1C12 and EP1C20 devices have two columns (refer to Table 1–1 on 
page 1–1 for total RAM bits per density). Each M4K block can implement 
various types of memory with or without parity, including true dual-port, 
simple dual-port, and single-port RAM, ROM, and FIFO buffers. The 
M4K blocks support the following features:

■ 4,608 RAM bits
■ 250 MHz performance
■ True dual-port memory
■ Simple dual-port memory
■ Single-port memory
■ Byte enable
■ Parity bits
■ Shift register
■ FIFO buffer
■ ROM
■ Mixed clock mode

1 Violating the setup or hold time on the address registers could 
corrupt the memory contents. This applies to both read and 
write operations.

Memory Modes

The M4K memory blocks include input registers that synchronize writes 
and output registers to pipeline designs and improve system 
performance. M4K blocks offer a true dual-port mode to support any 
combination of two-port operations: two reads, two writes, or one read 
and one write at two different clock frequencies. Figure 2–12 shows true 
dual-port memory.

Figure 2–12. True Dual-Port Memory Configuration

dataA[ ]
addressA[ ]
wrenA

   clockA

clockenA

qA[ ]
aclrA

dataB[ ]
addressB[ ]

wrenB

clockB   
clockenB

qB[ ]
aclrB

A B



2–22  Altera Corporation
Preliminary May 2008

Cyclone Device Handbook, Volume 1

is not available in the true dual-port mode. Mixed-width configurations 
are also possible, allowing different read and write widths. Tables 2–3 
and 2–4 summarize the possible M4K RAM block configurations.

When the M4K RAM block is configured as a shift register block, you can 
create a shift register up to 4,608 bits (w × m × n).

Table 2–3. M4K RAM Block Configurations (Simple Dual-Port)

Read Port
Write Port

4K × 1 2K × 2 1K × 4 512 × 8 256 × 16 128 × 32 512 × 9 256 × 18 128 × 36

4K × 1 v v v v v v — — —

2K × 2 v v v v v v — — —

1K × 4 v v v v v v — — —

512 × 8 v v v v v v — — —

256 × 16 v v v v v v — — —

128 × 32 v v v v v v — — —

512 × 9 — — — — — — v v v

256 × 18 — — — — — — v v v

128 × 36 — — — — — — v v v

Table 2–4. M4K RAM Block Configurations (True Dual-Port)

Port A
Port B

4K × 1 2K × 2 1K × 4 512 × 8 256 × 16 512 × 9 256 × 18

4K × 1 v v v v v — —

2K × 2 v v v v v — —

1K × 4 v v v v v — —

512 × 8 v v v v v — —

256 × 16 v v v v v — —

512 × 9 — — — — — v v

256 × 18 — — — — — v v
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Embedded Memory

Figure 2–19. Input/Output Clock Mode in Simple Dual-Port Mode Notes (1), (2)

Notes to Figure 2–19:
(1) All registers shown except the rden register have asynchronous clear ports.
(2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both 

read and write operations.
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External Clock Inputs

Each PLL supports single-ended or differential inputs for source-
synchronous receivers or for general-purpose use. The dedicated clock 
pins (CLK[3..0]) feed the PLL inputs. These dual-purpose pins can also 
act as LVDS input pins. See Figure 2–25.

Table 2–8 shows the I/O standards supported by PLL input and output 
pins.

For more information on LVDS I/O support, refer to “LVDS I/O Pins” on 
page 2–54.

External Clock Outputs

Each PLL supports one differential or one single-ended output for 
source-synchronous transmitters or for general-purpose external clocks. 
If the PLL does not use these PLL_OUT pins, the pins are available for use 
as general-purpose I/O pins. The PLL_OUT pins support all I/O 
standards shown in Table 2–8.

The external clock outputs do not have their own VCC and ground voltage 
supplies. Therefore, to minimize jitter, do not place switching I/O pins 
next to these output pins. The EP1C3 device in the 100-pin TQFP package 

Table 2–8. PLL I/O Standards

I/O Standard CLK Input EXTCLK Output

3.3-V LVTTL/LVCMOS v v

2.5-V LVTTL/LVCMOS v v

1.8-V LVTTL/LVCMOS v v

1.5-V LVCMOS v v

3.3-V PCI v v

LVDS v v

SSTL-2 class I v v

SSTL-2 class II v v

SSTL-3 class I v v

SSTL-3 class II v v

Differential SSTL-2 — v
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Figure 2–27. Cyclone IOE Structure

Note to Figure 2–27:
(1) There are two paths available for combinatorial inputs to the logic array. Each path 

contains a unique programmable delay chain.

The IOEs are located in I/O blocks around the periphery of the Cyclone 
device. There are up to three IOEs per row I/O block and up to three IOEs 
per column I/O block (column I/O blocks span two columns). The row 
I/O blocks drive row, column, or direct link interconnects. The column 
I/O blocks drive column interconnects. Figure 2–28 shows how a row 
I/O block connects to the logic array. Figure 2–29 shows how a column 
I/O block connects to the logic array.
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to automatically minimize setup time while providing a zero hold time. 
Programmable delays can increase the register-to-pin delays for output 
registers. Table 2–9 shows the programmable delays for Cyclone devices.

There are two paths in the IOE for a combinatorial input to reach the logic 
array. Each of the two paths can have a different delay. This allows you 
adjust delays from the pin to internal LE registers that reside in two 
different areas of the device. The designer sets the two combinatorial 
input delays by selecting different delays for two different paths under 
the Decrease input delay to internal cells logic option in the Quartus II 
software. When the input signal requires two different delays for the 
combinatorial input, the input register in the IOE is no longer available.

The IOE registers in Cyclone devices share the same source for clear or 
preset. The designer can program preset or clear for each individual IOE. 
The designer can also program the registers to power up high or low after 
configuration is complete. If programmed to power up low, an 
asynchronous clear can control the registers. If programmed to power up 
high, an asynchronous preset can control the registers. This feature 
prevents the inadvertent activation of another device's active-low input 
upon power up. If one register in an IOE uses a preset or clear signal then 
all registers in the IOE must use that same signal if they require preset or 
clear. Additionally a synchronous reset signal is available to the designer 
for the IOE registers.

External RAM Interfacing

Cyclone devices support DDR SDRAM and FCRAM interfaces at up to 
133 MHz through dedicated circuitry.

DDR SDRAM and FCRAM

Cyclone devices have dedicated circuitry for interfacing with DDR 
SDRAM. All I/O banks support DDR SDRAM and FCRAM I/O pins. 
However, the configuration input pins in bank 1 must operate at 2.5 V 
because the SSTL-2 VCCIO level is 2.5 V. Additionally, the configuration 

Table 2–9. Cyclone Programmable Delay Chain

Programmable Delays Quartus II Logic Option

Input pin to logic array delay Decrease input delay to internal cells

Input pin to input register delay Decrease input delay to input registers

Output pin delay Increase delay to output pin
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of the standard. Using minimum settings provides signal slew rate 
control to reduce system noise and signal overshoot. Table 2–11 shows the 
possible settings for the I/O standards with drive strength control.

Open-Drain Output

Cyclone devices provide an optional open-drain (equivalent to an 
open-collector) output for each I/O pin. This open-drain output enables 
the device to provide system-level control signals (e.g., interrupt and 
write-enable signals) that can be asserted by any of several devices.

Table 2–11. Programmable Drive Strength Note (1)

I/O Standard IOH/IOL Current Strength Setting (mA)

LVTTL (3.3 V) 4

8

12

16

24(2)

LVCMOS (3.3 V) 2

4

8

12(2)

LVTTL (2.5 V) 2

8

12

16(2)

LVTTL (1.8 V) 2

8

12(2)

LVCMOS (1.5 V) 2

4

8(2)

Notes to Table 2–11:
(1) SSTL-3 class I and II, SSTL-2 class I and II, and 3.3-V PCI I/O Standards do not 

support programmable drive strength.
(2) This is the default current strength setting in the Quartus II software.
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Each I/O bank can support multiple standards with the same VCCIO for 
input and output pins. For example, when VCCIO is 3.3-V, a bank can 
support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs.

LVDS I/O Pins

A subset of pins in all four I/O banks supports LVDS interfacing. These 
dual-purpose LVDS pins require an external-resistor network at the 
transmitter channels in addition to 100-Ω termination resistors on 
receiver channels. These pins do not contain dedicated serialization or 
deserialization circuitry; therefore, internal logic performs serialization 
and deserialization functions.

Table 2–13 shows the total number of supported LVDS channels per 
device density.

MultiVolt I/O Interface

The Cyclone architecture supports the MultiVolt I/O interface feature, 
which allows Cyclone devices in all packages to interface with systems of 
different supply voltages. The devices have one set of VCC pins for 
internal operation and input buffers (VCCINT), and four sets for I/O 
output drivers (VCCIO).

Table 2–13. Cyclone Device LVDS Channels

Device Pin Count Number of LVDS Channels

EP1C3 100 (1)

144 34

EP1C4 324 103

400 129

EP1C6 144 29

240 72

256 72

EP1C12 240 66

256 72

324 103

EP1C20 324 95

400 129

Note to Table 2–13:
(1) EP1C3 devices in the 100-pin TQFP package do not support the LVDS I/O 

standard.
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3. Configuration and Testing

IEEE Std. 1149.1 
(JTAG) Boundary 
Scan Support

All Cyclone® devices provide JTAG BST circuitry that complies with the 
IEEE Std. 1149.1a-1990 specification. JTAG boundary-scan testing can be 
performed either before or after, but not during configuration. Cyclone 
devices can also use the JTAG port for configuration together with either 
the Quartus® II software or hardware using either Jam Files (.jam) or Jam 
Byte-Code Files (.jbc).

Cyclone devices support reconfiguring the I/O standard settings on the 
IOE through the JTAG BST chain. The JTAG chain can update the I/O 
standard for all input and output pins any time before or during user 
mode. Designers can use this ability for JTAG testing before configuration 
when some of the Cyclone pins drive or receive from other devices on the 
board using voltage-referenced standards. Since the Cyclone device 
might not be configured before JTAG testing, the I/O pins might not be 
configured for appropriate electrical standards for chip-to-chip 
communication. Programming those I/O standards via JTAG allows 
designers to fully test I/O connection to other devices.

The JTAG pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O standards. The 
TDO pin voltage is determined by the VCCIO of the bank where it resides. 
The bank VCCIO selects whether the JTAG inputs are 1.5-V, 1.8-V, 2.5-V, or 
3.3-V compatible. 

Cyclone devices also use the JTAG port to monitor the operation of the 
device with the SignalTap® II embedded logic analyzer. Cyclone devices 
support the JTAG instructions shown in Table 3–1.

Table 3–1. Cyclone JTAG Instructions  (Part 1 of 2)

JTAG Instruction Instruction Code Description

SAMPLE/PRELOAD 00 0000 0101 Allows a snapshot of signals at the device pins to be captured and 
examined during normal device operation, and permits an initial 
data pattern to be output at the device pins. Also used by the 
SignalTap II embedded logic analyzer.

EXTEST (1) 00 0000 0000 Allows the external circuitry and board-level interconnects to be 
tested by forcing a test pattern at the output pins and capturing test 
results at the input pins.

BYPASS 11 1111 1111 Places the 1-bit bypass register between the TDI and TDO pins, 
which allows the BST data to pass synchronously through selected 
devices to adjacent devices during normal device operation.

C51003-1.4
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VREF Reference voltage — 1.3 1.5 1.7 V

VIH High-level input voltage — VR E F + 0.2 — VCCIO + 0.3 V

VIL Low-level input voltage — –0.3 — VR E F – 0.2 V

VOH High-level output voltage IOH = –8 mA (11) VTT + 0.6 — — V

VOL Low-level output voltage IOL = 8 mA (11) — — VT T – 0.6 V

Table 4–14. SSTL-3 Class II Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage — 3.0 3.3 3.6 V

VTT Termination voltage — VR E F – 0.05 VR E F VR E F + 0.05 V

VREF Reference voltage — 1.3 1.5 1.7 V

VIH High-level input voltage — VR E F + 0.2 — VCCIO + 0.3 V

VIL Low-level input voltage — –0.3 — VR E F – 0.2 V

VOH High-level output voltage IOH = –16 mA 
(11)

VT T + 0.8 — — V

VOL Low-level output voltage IOL = 16 mA (11) — — VTT – 0.8 V

Table 4–15. Bus Hold Parameters

Parameter Conditions

VC C I O  Level

Unit1.5 V 1.8 V 2.5 V 3.3 V

Min Max Min Max Min Max Min Max

Low sustaining 
current

VIN > VIL 
(maximum)

— — 30 — 50 — 70 — μA

High sustaining 
current

VIN < VIH 
(minimum)

— — –30 — –50 — –70 — μA

Low overdrive 
current

0 V < VIN < 
VCCIO

— — — 200 — 300 — 500 μA

High overdrive 
current

0 V < VIN < 
VCCIO

— — — –200 — –300 — –500 μA

Table 4–13. SSTL-3 Class I Specifications  (Part 2 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit
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Timing Model

External Timing Parameters

External timing parameters are specified by device density and speed 
grade. Figure 4–2 shows the timing model for bidirectional IOE pin 
timing. All registers are within the IOE.

Table 4–27. M4K Block Internal Timing Microparameters

Symbol
-6 -7 -8

Unit
Min Max Min Max Min Max

tM4KRC — 4,379 5,035 5,691 ps

tM4KWC — 2,910 3,346 3,783 ps

tM4KWERESU 72 — 82 — 93 — ps

tM4KWEREH 43 — 49 — 55 — ps

tM4KBESU 72 — 82 — 93 — ps

tM4KBEH 43 — 49 — 55 — ps

tM4KDATAASU 72 — 82 — 93 — ps

tM4KDATAAH 43 — 49 — 55 — ps

tM4KADDRASU 72 — 82 — 93 — ps

tM4KADDRAH 43 — 49 — 55 — ps

tM4KDATABSU 72 — 82 — 93 — ps

tM4KDATABH 43 — 49 — 55 — ps

tM4KADDRBSU 72 — 82 — 93 — ps

tM4KADDRBH 43 — 49 — 55 — ps

tM4KDATACO1 — 621 — 714 — 807 ps

tM4KDATACO2 — 4,351 — 5,003 — 5,656 ps

tM4KCLKHL 1,234 — 1,562 — 1,818 — ps

tM4KCLR 286 — 328 — 371 — ps

Table 4–28. Routing Delay Internal Timing Microparameters

Symbol
-6 -7 -8

Unit
Min Max Min Max Min Max

tR4 — 261 — 300 — 339 ps

tC4 — 338 — 388 — 439 ps

tLOCAL — 244 — 281 — 318 ps
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Timing Model

Tables 4–30 through 4–31 show the external timing parameters on column 
and row pins for EP1C3 devices.

tO U T C O P L L Clock-to-output delay output or bidirectional pin using IOE 
output register with global clock enhanced PLL with default 
phase setting

CLOAD = 10 pF

Notes to Table 4–29:
(1) These timing parameters are sample-tested only.
(2) These timing parameters are for IOE pins using a 3.3-V LVTTL, 24-mA setting. Designers should use the Quartus II 

software to verify the external timing for any pin.

Table 4–29. Cyclone Global Clock External I/O Timing Parameters Notes (1), (2)  (Part 2 of 2)

Symbol Parameter Conditions

Table 4–30. EP1C3 Column Pin Global Clock External I/O Timing 
Parameters

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 3.085 — 3.547 — 4.009 — ns

tI N H 0.000 — 0.000 — 0.000 — ns

tO U T C O 2.000 4.073 2.000 4.682 2.000 5.295 ns

tI N S UP L L 1.795 — 2.063 — 2.332 — ns

tI N H P L L 0.000 — 0.000 — 0.000 — ns

tO U T C O P L L 0.500 2.306 0.500 2.651 0.500 2.998 ns

Table 4–31. EP1C3 Row Pin Global Clock External I/O Timing Parameters

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 3.157 — 3.630 — 4.103 — ns

tI N H 0.000 — 0.000 — 0.000 — ns

tO U T C O 2.000 3.984 2.000 4.580 2.000 5.180 ns

tI N S UP L L 1.867 — 2.146 — 2.426 — ns

tI N H P L L 0.000 — 0.000 — 0.000 — ns

tO U T C O P L L 0.500 2.217 0.500 2.549 0.500 2.883 ns
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SSTL-2 class II –278 — –320 — –362 ps

LVDS –261 — –301 — –340 ps

Table 4–41. Cyclone I/O Standard Row Pin Input Delay Adders

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS — 0 — 0 — 0 ps

3.3-V LVTTL — 0 — 0 — 0 ps

2.5-V LVTTL — 27 — 31 — 35 ps

1.8-V LVTTL — 182 — 209 — 236 ps

1.5-V LVTTL — 278 — 319 — 361 ps

3.3-V PCI (1) — 0 — 0 — 0 ps

SSTL-3 class I — –250 — –288 — –325 ps

SSTL-3 class II — –250 — –288 — –325 ps

SSTL-2 class I — –278 — –320 — –362 ps

SSTL-2 class II — –278 — –320 — –362 ps

LVDS — –261 — –301 — –340 ps

Table 4–42. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Column Pins  (Part 1 of 2)

Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS 2 mA — 0 — 0 — 0 ps

4 mA — –489 — –563 — –636 ps

8 mA — –855 — –984 — –1,112 ps

12 mA — –993 — –1,142 — –1,291 ps

3.3-V LVTTL 4 mA — 0 — 0 — 0 ps

8 mA — –347 — –400 — –452 ps

12 mA — –858 — –987 — –1,116 ps

16 mA — –819 — –942 — –1,065 ps

24 mA — –993 — –1,142 — –1,291 ps

Table 4–40. Cyclone I/O Standard Column Pin Input Delay Adders  (Part 2 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max
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2.5-V LVTTL 2 mA — 329 — 378 — 427 ps

8 mA — –661 — –761 — –860 ps

12 mA — –655 — –754 — –852 ps

16 mA — –795 — –915 — –1034 ps

1.8-V LVTTL 2 mA — 4 — 4 — 5 ps

8 mA — –208 — –240 — –271 ps

12 mA — –208 — –240 — –271 ps

1.5-V LVTTL 2 mA — 2,288 — 2,631 — 2,974 ps

4 mA — 608 — 699 — 790 ps

8 mA — 292 — 335 — 379 ps

SSTL-3 class I — –410 — –472 — –533 ps

SSTL-3 class II — –811 — –933 — –1,055 ps

SSTL-2 class I — –485 — –558 — –631 ps

SSTL-2 class II — –758 — –872 — –986 ps

LVDS — –998 — –1,148 — –1,298 ps

Table 4–43. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Row Pins  (Part 1 of 2)

Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS 2 mA — 0 — 0 — 0 ps

4 mA — –489 — –563 — –636 ps

8 mA — –855 — –984 — –1,112 ps

12 mA — –993 — –1,142 — –1,291 ps

3.3-V LVTTL 4 mA — 0 — 0 — 0 ps

8 mA — –347 — –400 — –452 ps

12 mA — –858 — –987 — –1,116 ps

16 mA — –819 — –942 — –1,065 ps

24 mA — –993 — –1,142 — –1,291 ps

2.5-V LVTTL 2 mA — 329 — 378 — 427 ps

8 mA — –661 — –761 — –860 ps

12 mA — –655 — –754 — –852 ps

16 mA — –795 — –915 — –1,034 ps

Table 4–42. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Column Pins  (Part 2 of 2)

Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max
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July 2003
v1.1

Updated timing information. Timing finalized for EP1C6 and 
EP1C20 devices. Updated performance information. Added PLL 
Timing section.

—

May 2003
v1.0

Added document to Cyclone Device Handbook. —
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