Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 1206 | | Number of Logic Elements/Cells | 12060 | | Total RAM Bits | 239616 | | Number of I/O | 173 | | Number of Gates | - | | Voltage - Supply | 1.425V ~ 1.575V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 240-BFQFP | | Supplier Device Package | 240-PQFP (32x32) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep1c12q240c8 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong With the LAB-wide addnsub control signal, a single LE can implement a one-bit adder and subtractor. This saves LE resources and improves performance for logic functions such as DSP correlators and signed multipliers that alternate between addition and subtraction depending on data. The LAB row clocks [5..0] and LAB local interconnect generate the LAB-wide control signals. The MultiTrackTM interconnect's inherent low skew allows clock and control signal distribution in addition to data. Figure 2–4 shows the LAB control signal generation circuit. Figure 2-4. LAB-Wide Control Signals ## **Logic Elements** The smallest unit of logic in the Cyclone architecture, the LE, is compact and provides advanced features with efficient logic utilization. Each LE contains a four-input LUT, which is a function generator that can implement any function of four variables. In addition, each LE contains a programmable register and carry chain with carry select capability. A single LE also supports dynamic single bit addition or subtraction mode selectable by a LAB-wide control signal. Each LE drives all types of interconnects: local, row, column, LUT chain, register chain, and direct link interconnects. See Figure 2–5. Figure 2-5. Cyclone LE Each LE's programmable register can be configured for D, T, JK, or SR operation. Each register has data, true asynchronous load data, clock, clock enable, clear, and asynchronous load/preset inputs. Global signals, general-purpose I/O pins, or any internal logic can drive the register's clock and clear control signals. Either general-purpose I/O pins or internal logic can drive the clock enable, preset, asynchronous load, and asynchronous data. The asynchronous load data input comes from the data3 input of the LE. For combinatorial functions, the LUT output bypasses the register and drives directly to the LE outputs. Each LE has three outputs that drive the local, row, and column routing resources. The LUT or register output can drive these three outputs independently. Two LE outputs drive column or row and direct link routing connections and one drives local interconnect resources. This allows the LUT to drive one output while the register drives another output. This feature, called register packing, improves device utilization because the device can use the register and the LUT for unrelated preset/load, synchronous clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available in all LE modes. The addnsub control signal is allowed in arithmetic mode. The Quartus II software, in conjunction with parameterized functions such as library of parameterized modules (LPM) functions, automatically chooses the appropriate mode for common functions such as counters, adders, subtractors, and arithmetic functions. If required, you can also create special-purpose functions that specify which LE operating mode to use for optimal performance. #### Normal Mode The normal mode is suitable for general logic applications and combinatorial functions. In normal mode, four data inputs from the LAB local interconnect are inputs to a four-input LUT (see Figure 2–6). The Quartus II Compiler automatically selects the carry-in or the data3 signal as one of the inputs to the LUT. Each LE can use LUT chain connections to drive its combinatorial output directly to the next LE in the LAB. Asynchronous load data for the register comes from the data3 input of the LE. LEs in normal mode support packed registers. Figure 2-6. LE in Normal Mode Note to Figure 2–6: This signal is only allowed in normal mode if the LE is at the end of an adder/subtractor chain. Figure 2-7. LE in Dynamic Arithmetic Mode Note to Figure 2-7: (1) The addnsub signal is tied to the carry input for the first LE of a carry chain only. #### Carry-Select Chain The carry-select chain provides a very fast carry-select function between LEs in dynamic arithmetic mode. The carry-select chain uses the redundant carry calculation to increase the speed of carry functions. The LE is configured to calculate outputs for a possible carry-in of 0 and carry-in of 1 in parallel. The carry-in0 and carry-in1 signals from a lower-order bit feed forward into the higher-order bit via the parallel carry chain and feed into both the LUT and the next portion of the carry chain. Carry-select chains can begin in any LE within a LAB. The speed advantage of the carry-select chain is in the parallel pre-computation of carry chains. Since the LAB carry-in selects the precomputed carry chain, not every LE is in the critical path. Only the propagation delays between LAB carry-in generation (LE 5 and LE 10) are now part of the critical path. This feature allows the Cyclone architecture to implement high-speed counters, adders, multipliers, parity functions, and comparators of arbitrary width. # Embedded Memory The Cyclone embedded memory consists of columns of M4K memory blocks. EP1C3 and EP1C6 devices have one column of M4K blocks, while EP1C12 and EP1C20 devices have two columns (refer to Table 1–1 on page 1–1 for total RAM bits per density). Each M4K block can implement various types of memory with or without parity, including true dual-port, simple dual-port, and single-port RAM, ROM, and FIFO buffers. The M4K blocks support the following features: - 4,608 RAM bits - 250 MHz performance - True dual-port memory - Simple dual-port memory - Single-port memory - Byte enable - Parity bits - Shift register - FIFO buffer - ROM - Mixed clock mode Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both read and write operations. ### **Memory Modes** The M4K memory blocks include input registers that synchronize writes and output registers to pipeline designs and improve system performance. M4K blocks offer a true dual-port mode to support any combination of two-port operations: two reads, two writes, or one read and one write at two different clock frequencies. Figure 2–12 shows true dual-port memory. Figure 2–12. True Dual-Port Memory Configuration is not available in the true dual-port mode. Mixed-width configurations are also possible, allowing different read and write widths. Tables 2–3 and 2–4 summarize the possible M4K RAM block configurations. | Table 2–3. M4 | K KAM BI | OCK Conf | iguration | s (Simple | Duai-Port) | | | | | |---------------|----------|----------|----------------------------------------------|-----------|------------|----------|----------|----------|----------| | Read Port | | | | | Write P | ort | | | | | neau ruii | 4K × 1 | 2K × 2 | 1K × 4 512 × 8 256 × 16 128 × 32 512 | | | | 512 × 9 | 256 × 18 | 128 × 36 | | 4K × 1 | ✓ | ✓ | ✓ | ~ | ✓ | ✓ | _ | _ | _ | | 2K × 2 | ✓ | ✓ | ✓ | ~ | ✓ | ✓ | _ | _ | _ | | 1K × 4 | ~ | ✓ | ✓ | ~ | ✓ | ✓ | _ | _ | _ | | 512 × 8 | ✓ | ✓ | ✓ | ~ | ✓ | ✓ | _ | _ | _ | | 256 × 16 | ~ | ✓ | ✓ | ~ | ✓ | ✓ | _ | _ | _ | | 128 × 32 | ✓ | ✓ | ✓ | ~ | ✓ | ✓ | _ | _ | _ | | 512 × 9 | _ | _ | _ | _ | _ | _ | ✓ | ~ | ✓ | | 256 × 18 | _ | _ | _ | _ | _ | _ | ✓ | ~ | ✓ | | 128 × 36 | _ | _ | _ | _ | _ | _ | ✓ | ✓ | ✓ | | Table 2–4. M4K RAM Block Configurations (True Dual-Port) | | | | | | | | | | |----------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|--|--| | Dovt A | | Port B | | | | | | | | | Port A | 4K × 1 | 2K × 2 | 1K × 4 | 512 × 8 | 256 × 16 | 512 × 9 | 256 × 18 | | | | 4K × 1 | ✓ | ✓ | ✓ | ✓ | ✓ | _ | _ | | | | 2K × 2 | ✓ | ✓ | ✓ | ✓ | ✓ | _ | _ | | | | 1K × 4 | ✓ | ✓ | ✓ | ✓ | ✓ | _ | _ | | | | 512 × 8 | ✓ | ✓ | ✓ | ✓ | ✓ | _ | _ | | | | 256 × 16 | ✓ | ✓ | ✓ | ✓ | ✓ | _ | _ | | | | 512 × 9 | _ | _ | _ | _ | _ | ✓ | ✓ | | | | 256 × 18 | _ | _ | _ | _ | _ | ✓ | ✓ | | | When the M4K RAM block is configured as a shift register block, you can create a shift register up to 4,608 bits $(w \times m \times n)$. Figure 2–19. Input/Output Clock Mode in Simple Dual-Port Mode Notes (1), (2) #### Notes to Figure 2-19: - (1) All registers shown except the rden register have asynchronous clear ports. - (2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both read and write operations. ### **External Clock Inputs** Each PLL supports single-ended or differential inputs for source-synchronous receivers or for general-purpose use. The dedicated clock pins (CLK[3..0]) feed the PLL inputs. These dual-purpose pins can also act as LVDS input pins. See Figure 2–25. Table 2–8 shows the I/O standards supported by PLL input and output pins. | Table 2–8. PLL I/O Standards | | | |------------------------------|-----------|---------------| | I/O Standard | CLK Input | EXTCLK Output | | 3.3-V LVTTL/LVCMOS | ✓ | ✓ | | 2.5-V LVTTL/LVCMOS | ✓ | ✓ | | 1.8-V LVTTL/LVCMOS | ✓ | ✓ | | 1.5-V LVCMOS | ✓ | ✓ | | 3.3-V PCI | ✓ | ✓ | | LVDS | ✓ | ✓ | | SSTL-2 class I | ✓ | ✓ | | SSTL-2 class II | ✓ | ✓ | | SSTL-3 class I | ✓ | ✓ | | SSTL-3 class II | ✓ | ✓ | | Differential SSTL-2 | _ | ✓ | For more information on LVDS I/O support, refer to "LVDS I/O Pins" on page 2–54. ### **External Clock Outputs** Each PLL supports one differential or one single-ended output for source-synchronous transmitters or for general-purpose external clocks. If the PLL does not use these PLL_OUT pins, the pins are available for use as general-purpose I/O pins. The PLL_OUT pins support all I/O standards shown in Table 2–8. The external clock outputs do not have their own V_{CC} and ground voltage supplies. Therefore, to minimize jitter, do not place switching I/O pins next to these output pins. The EP1C3 device in the 100-pin TQFP package Figure 2-27. Cyclone IOE Structure Note to Figure 2-27: There are two paths available for combinatorial inputs to the logic array. Each path contains a unique programmable delay chain. The IOEs are located in I/O blocks around the periphery of the Cyclone device. There are up to three IOEs per row I/O block and up to three IOEs per column I/O block (column I/O blocks span two columns). The row I/O blocks drive row, column, or direct link interconnects. The column I/O blocks drive column interconnects. Figure 2–28 shows how a row I/O block connects to the logic array. Figure 2–29 shows how a column I/O block connects to the logic array. to automatically minimize setup time while providing a zero hold time. Programmable delays can increase the register-to-pin delays for output registers. Table 2–9 shows the programmable delays for Cyclone devices. | Table 2–9. Cyclone Programmable Delay Chain | | | | | | |---------------------------------------------|-----------------------------------------|--|--|--|--| | Programmable Delays Quartus II Logic Option | | | | | | | Input pin to logic array delay | Decrease input delay to internal cells | | | | | | Input pin to input register delay | Decrease input delay to input registers | | | | | | Output pin delay | Increase delay to output pin | | | | | There are two paths in the IOE for a combinatorial input to reach the logic array. Each of the two paths can have a different delay. This allows you adjust delays from the pin to internal LE registers that reside in two different areas of the device. The designer sets the two combinatorial input delays by selecting different delays for two different paths under the **Decrease input delay to internal cells** logic option in the Quartus II software. When the input signal requires two different delays for the combinatorial input, the input register in the IOE is no longer available. The IOE registers in Cyclone devices share the same source for clear or preset. The designer can program preset or clear for each individual IOE. The designer can also program the registers to power up high or low after configuration is complete. If programmed to power up low, an asynchronous clear can control the registers. If programmed to power up high, an asynchronous preset can control the registers. This feature prevents the inadvertent activation of another device's active-low input upon power up. If one register in an IOE uses a preset or clear signal then all registers in the IOE must use that same signal if they require preset or clear. Additionally a synchronous reset signal is available to the designer for the IOE registers. ### **External RAM Interfacing** Cyclone devices support DDR SDRAM and FCRAM interfaces at up to 133 MHz through dedicated circuitry. #### DDR SDRAM and FCRAM Cyclone devices have dedicated circuitry for interfacing with DDR SDRAM. All I/O banks support DDR SDRAM and FCRAM I/O pins. However, the configuration input pins in bank 1 must operate at 2.5 V because the SSTL-2 $\rm V_{CCIO}$ level is 2.5 V. Additionally, the configuration of the standard. Using minimum settings provides signal slew rate control to reduce system noise and signal overshoot. Table 2–11 shows the possible settings for the I/O standards with drive strength control. | Table 2–11. Programmable Drive Strength Note (1) | | | | | | |--------------------------------------------------|----------------------------------------------------------------|--|--|--|--| | I/O Standard | I _{OH} /I _{OL} Current Strength Setting (mA) | | | | | | VTTL (3.3 V) VCMOS (3.3 V) | 4 | | | | | | | 8 | | | | | | | 12 | | | | | | | 16 | | | | | | | 24(2) | | | | | | LVCMOS (3.3 V) | 2 | | | | | | | 4 | | | | | | | 8 | | | | | | | 12(2) | | | | | | LVTTL (2.5 V) | 2 | | | | | | | 8 | | | | | | | 12 | | | | | | | 16(2) | | | | | | LVTTL (1.8 V) | 2 | | | | | | | 8 | | | | | | | 12(2) | | | | | | LVCMOS (1.5 V) | 2 | | | | | | | 4 | | | | | | | 8(2) | | | | | #### *Notes to Table 2–11:* - SSTL-3 class I and II, SSTL-2 class I and II, and 3.3-V PCI I/O Standards do not support programmable drive strength. - (2) This is the default current strength setting in the Quartus II software. ### **Open-Drain Output** Cyclone devices provide an optional open-drain (equivalent to an open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write-enable signals) that can be asserted by any of several devices. Each I/O bank can support multiple standards with the same V_{CCIO} for input and output pins. For example, when V_{CCIO} is 3.3-V, a bank can support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs. #### LVDS I/O Pins A subset of pins in all four I/O banks supports LVDS interfacing. These dual-purpose LVDS pins require an external-resistor network at the transmitter channels in addition to 100- Ω termination resistors on receiver channels. These pins do not contain dedicated serialization or deserialization circuitry; therefore, internal logic performs serialization and deserialization functions. Table 2–13 shows the total number of supported LVDS channels per device density. | Table 2–13. Cyclone Device LVDS Channels | | | | | | | |------------------------------------------|-----------|-------------------------|--|--|--|--| | Device | Pin Count | Number of LVDS Channels | | | | | | EP1C3 | 100 | (1) | | | | | | | 144 | 34 | | | | | | EP1C4 | 324 | 103 | | | | | | | 400 | 129 | | | | | | EP1C6 | 144 | 29 | | | | | | | 240 | 72 | | | | | | | 256 | 72 | | | | | | EP1C12 | 240 | 66 | | | | | | | 256 | 72 | | | | | | | 324 | 103 | | | | | | EP1C20 | 324 | 95 | | | | | | | 400 | 129 | | | | | *Note to Table 2–13:* ### MultiVolt I/O Interface The Cyclone architecture supports the MultiVolt I/O interface feature, which allows Cyclone devices in all packages to interface with systems of different supply voltages. The devices have one set of V_{CC} pins for internal operation and input buffers (V_{CCINT}), and four sets for I/O output drivers (V_{CCIO}). EP1C3 devices in the 100-pin TQFP package do not support the LVDS I/O standard. # 3. Configuration and Testing C51003-1.4 # IEEE Std. 1149.1 (JTAG) Boundary Scan Support All Cyclone[®] devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1a-1990 specification. JTAG boundary-scan testing can be performed either before or after, but not during configuration. Cyclone devices can also use the JTAG port for configuration together with either the Quartus[®] II software or hardware using either Jam Files (.jam) or Jam Byte-Code Files (.jbc). Cyclone devices support reconfiguring the I/O standard settings on the IOE through the JTAG BST chain. The JTAG chain can update the I/O standard for all input and output pins any time before or during user mode. Designers can use this ability for JTAG testing before configuration when some of the Cyclone pins drive or receive from other devices on the board using voltage-referenced standards. Since the Cyclone device might not be configured before JTAG testing, the I/O pins might not be configured for appropriate electrical standards for chip-to-chip communication. Programming those I/O standards via JTAG allows designers to fully test I/O connection to other devices. The JTAG pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O standards. The TDO pin voltage is determined by the $V_{\rm CCIO}$ of the bank where it resides. The bank $V_{\rm CCIO}$ selects whether the JTAG inputs are 1.5-V, 1.8-V, 2.5-V, or 3.3-V compatible. Cyclone devices also use the JTAG port to monitor the operation of the device with the SignalTap® II embedded logic analyzer. Cyclone devices support the JTAG instructions shown in Table 3–1. | Table 3–1. Cyclone JTAG Instructions (Part 1 of 2) | | | | | | | | |----------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--| | JTAG Instruction | Instruction Code | Description | | | | | | | SAMPLE/PRELOAD | 00 0000 0101 | Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap II embedded logic analyzer. | | | | | | | EXTEST (1) | 00 0000 0000 | Allows the external circuitry and board-level interconnects to be tested by forcing a test pattern at the output pins and capturing test results at the input pins. | | | | | | | BYPASS | 11 1111 1111 | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation. | | | | | | | Table 4–13. SSTL-3 Class I Specifications (Part 2 of 2) | | | | | | | | | |---------------------------------------------------------|---------------------------|------------------------------|------------------------|---------|-------------------------|------|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | | V_{REF} | Reference voltage | _ | 1.3 | 1.5 | 1.7 | V | | | | V _{IH} | High-level input voltage | _ | V _{REF} + 0.2 | _ | V _{CCIO} + 0.3 | ٧ | | | | V_{IL} | Low-level input voltage | _ | -0.3 | _ | V _{REF} - 0.2 | ٧ | | | | V _{OH} | High-level output voltage | I _{OH} = -8 mA (11) | V _{TT} + 0.6 | _ | _ | V | | | | V _{OL} | Low-level output voltage | I _{OL} = 8 mA (11) | _ | _ | V _{TT} - 0.6 | ٧ | | | | Table 4–14 | Table 4–14. SSTL-3 Class II Specifications | | | | | | | | | |-------------------|--------------------------------------------|-------------------------------|-------------------------|------------------|-------------------------|------|--|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | | | V _{CCIO} | Output supply voltage | _ | 3.0 | 3.3 | 3.6 | V | | | | | V _{TT} | Termination voltage | _ | V _{REF} - 0.05 | V _{REF} | V _{REF} + 0.05 | V | | | | | V _{REF} | Reference voltage | _ | 1.3 | 1.5 | 1.7 | V | | | | | V _{IH} | High-level input voltage | _ | V _{REF} + 0.2 | _ | V _{CCIO} + 0.3 | V | | | | | V _{IL} | Low-level input voltage | _ | -0.3 | _ | V _{REF} - 0.2 | V | | | | | V _{OH} | High-level output voltage | I _{OH} = -16 mA (11) | V _{TT} + 0.8 | _ | _ | V | | | | | V _{OL} | Low-level output voltage | I _{OL} = 16 mA (11) | _ | _ | V _{TT} – 0.8 | V | | | | | Table 4–15. Bus Hold Parameters | | | | | | | | | | | |---------------------------------|------------------------------------------------|-------------------------|-------|-----|-------|-----|-------|-----|-------|----| | | | V _{CC10} Level | | | | | | | | | | Parameter | Conditions | 1.5 | 1.5 V | | 1.8 V | | 2.5 V | | 3.3 V | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | Low sustaining current | $V_{IN} > V_{IL}$ (maximum) | _ | _ | 30 | _ | 50 | _ | 70 | _ | μΑ | | High sustaining current | V _{IN} < V _{IH}
(minimum) | _ | _ | -30 | _ | -50 | _ | -70 | _ | μΑ | | Low overdrive current | 0 V < V _{IN} < V _{CCIO} | _ | _ | _ | 200 | _ | 300 | _ | 500 | μА | | High overdrive current | 0 V < V _{IN} < V _{CCIO} | _ | _ | _ | -200 | _ | -300 | _ | -500 | μА | | Symbol | - | 6 | - | 7 | - | Hait | | |-------------------------|-------|-------|-------|-------|-------|-------|------| | | Min | Max | Min | Max | Min | Max | Unit | | t _{M4KRC} | _ | 4,379 | | 5,035 | | 5,691 | ps | | t _{M4KWC} | _ | 2,910 | | 3,346 | | 3,783 | ps | | t _{M4KWERESU} | 72 | _ | 82 | _ | 93 | _ | ps | | t _{M4KWEREH} | 43 | _ | 49 | _ | 55 | _ | ps | | t _{M4KBESU} | 72 | _ | 82 | _ | 93 | _ | ps | | t _{M4KBEH} | 43 | _ | 49 | _ | 55 | _ | ps | | t _{M4KDATAASU} | 72 | _ | 82 | _ | 93 | _ | ps | | t _{M4KDATAAH} | 43 | _ | 49 | _ | 55 | _ | ps | | t _{M4KADDRASU} | 72 | _ | 82 | _ | 93 | _ | ps | | t _{M4KADDRAH} | 43 | _ | 49 | _ | 55 | _ | ps | | t _{M4KDATABSU} | 72 | _ | 82 | _ | 93 | _ | ps | | t _{M4KDATABH} | 43 | _ | 49 | _ | 55 | _ | ps | | t _{M4KADDRBSU} | 72 | _ | 82 | _ | 93 | _ | ps | | t _{M4KADDRBH} | 43 | _ | 49 | _ | 55 | _ | ps | | t _{M4KDATACO1} | _ | 621 | _ | 714 | _ | 807 | ps | | t _{M4KDATACO2} | _ | 4,351 | _ | 5,003 | _ | 5,656 | ps | | t _{M4KCLKHL} | 1,234 | _ | 1,562 | _ | 1,818 | _ | ps | | t _{M4KCLR} | 286 | _ | 328 | | 371 | | ps | | Table 4–28. Routing Delay Internal Timing Microparameters | | | | | | | | | |---|-----|-----|-----|-----|-----|-----|-------|--| | Cumbal | - | -6 | | 7 | - | 8 | IImia | | | Symbol | Min | Max | Min | Max | Min | Max | Unit | | | t _{R4} | _ | 261 | _ | 300 | _ | 339 | ps | | | t _{C4} | _ | 338 | _ | 388 | _ | 439 | ps | | | t _{LOCAL} | _ | 244 | _ | 281 | _ | 318 | ps | | ### **External Timing Parameters** External timing parameters are specified by device density and speed grade. Figure 4–2 shows the timing model for bidirectional IOE pin timing. All registers are within the IOE. | Table 4–29. C | tes (1), (2) (Part 2 of 2) | | |---------------|---|---------------------------| | Symbol | Parameter | Conditions | | toutcople | Clock-to-output delay output or bidirectional pin using IOE output register with global clock enhanced PLL with default phase setting | C _{LOAD} = 10 pF | #### Notes to Table 4-29: - (1) These timing parameters are sample-tested only. - (2) These timing parameters are for IOE pins using a 3.3-V LVTTL, 24-mA setting. Designers should use the Quartus II software to verify the external timing for any pin. Tables 4–30 through 4–31 show the external timing parameters on column and row pins for EP1C3 devices. | Table 4–30. EP1C3 Column Pin Global Clock External I/O Timing
Parameters | | | | | | | | | | |---|---------|---------|-------|-------|-------|-------|------|--|--| | Cumbal | -6 Spee | d Grade | Hait | | | | | | | | Symbol | Min | Max | Min | Max | Min | Max | Unit | | | | t _{INSU} | 3.085 | _ | 3.547 | _ | 4.009 | _ | ns | | | | t _{INH} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | toutco | 2.000 | 4.073 | 2.000 | 4.682 | 2.000 | 5.295 | ns | | | | t _{INSUPLL} | 1.795 | _ | 2.063 | _ | 2.332 | _ | ns | | | | t _{INHPLL} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | toutcople | 0.500 | 2.306 | 0.500 | 2.651 | 0.500 | 2.998 | ns | | | | Table 4–31. EP1C3 Row Pin Global Clock External I/O Timing Parameters | | | | | | | | | | |---|----------------------|-------|---------|---------|---------|-------|------|--|--| | Cumbal | -6 Speed Grade -7 Sp | | -7 Spee | d Grade | d Grade | Unit | | | | | Symbol | Min | Max | Min | Max | Min | Max | Unit | | | | t _{INSU} | 3.157 | _ | 3.630 | _ | 4.103 | _ | ns | | | | t _{INH} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | t _{outco} | 2.000 | 3.984 | 2.000 | 4.580 | 2.000 | 5.180 | ns | | | | t _{INSUPLL} | 1.867 | _ | 2.146 | _ | 2.426 | _ | ns | | | | t _{INHPLL} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | toutcople | 0.500 | 2.217 | 0.500 | 2.549 | 0.500 | 2.883 | ns | | | | Table 4–40. Cyclone I/O Standard Column Pin Input Delay Adders (Part 2 of 2) | | | | | | | | | |--|---------|---------|---------|---------|---------|---------|------|--| | I/O Standard | -6 Spee | d Grade | -7 Spee | d Grade | -8 Spee | d Grade | Hnit | | | I/O Standard | Min | Max | Min | Max | Min | Max | Unit | | | SSTL-2 class II | | -278 | _ | -320 | _ | -362 | ps | | | LVDS | | -261 | _ | -301 | _ | -340 | ps | | | Table 4–41. Cyclone I/O Standard Row Pin Input Delay Adders | | | | | | | | | | |---|----------------|------|----------------|------|----------------|------|------|--|--| | 1/0.01 | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | | | | | I/O Standard | Min | Max | Min | Max | Min | Max | Unit | | | | LVCMOS | _ | 0 | _ | 0 | _ | 0 | ps | | | | 3.3-V LVTTL | _ | 0 | _ | 0 | _ | 0 | ps | | | | 2.5-V LVTTL | _ | 27 | _ | 31 | _ | 35 | ps | | | | 1.8-V LVTTL | _ | 182 | _ | 209 | _ | 236 | ps | | | | 1.5-V LVTTL | _ | 278 | _ | 319 | _ | 361 | ps | | | | 3.3-V PCI (1) | _ | 0 | _ | 0 | _ | 0 | ps | | | | SSTL-3 class I | _ | -250 | _ | -288 | _ | -325 | ps | | | | SSTL-3 class II | _ | -250 | _ | -288 | _ | -325 | ps | | | | SSTL-2 class I | _ | -278 | _ | -320 | _ | -362 | ps | | | | SSTL-2 class II | _ | -278 | _ | -320 | _ | -362 | ps | | | | LVDS | _ | -261 | _ | -301 | _ | -340 | ps | | | | Stand | loud | -6 Spee | d Grade | -7 Spe | ed Grade | -8 Spe | ed Grade | Unit | |-------------|-------|---------|---------|--------|----------|--------|----------|-------| | Stallt | iaru | Min | Max | Min | Max | Min | Max | UIIII | | LVCMOS | 2 mA | _ | 0 | _ | 0 | _ | 0 | ps | | | 4 mA | _ | -489 | _ | -563 | _ | -636 | ps | | | 8 mA | _ | -855 | _ | -984 | _ | -1,112 | ps | | | 12 mA | _ | -993 | _ | -1,142 | _ | -1,291 | ps | | 3.3-V LVTTL | 4 mA | _ | 0 | _ | 0 | _ | 0 | ps | | | 8 mA | _ | -347 | _ | -400 | _ | -452 | ps | | | 12 mA | _ | -858 | _ | -987 | _ | -1,116 | ps | | | 16 mA | _ | -819 | _ | -942 | _ | -1,065 | ps | | | 24 mA | _ | -993 | _ | -1,142 | _ | -1,291 | ps | | Table 4–42. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Column Pins (Part 2 of 2) | | | | | | | | | |--|-------|----------------|-------|----------------|--------|----------------|--------|------| | Standard | | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | | | Stanu | aru | Min | Max | Min | Max | Min | Max | Unit | | 2.5-V LVTTL | 2 mA | _ | 329 | _ | 378 | _ | 427 | ps | | | 8 mA | _ | -661 | _ | -761 | _ | -860 | ps | | | 12 mA | _ | -655 | _ | -754 | _ | -852 | ps | | | 16 mA | _ | -795 | _ | -915 | _ | -1034 | ps | | 1.8-V LVTTL | 2 mA | _ | 4 | _ | 4 | _ | 5 | ps | | | 8 mA | _ | -208 | _ | -240 | _ | -271 | ps | | | 12 mA | _ | -208 | _ | -240 | _ | -271 | ps | | 1.5-V LVTTL | 2 mA | _ | 2,288 | _ | 2,631 | _ | 2,974 | ps | | | 4 mA | _ | 608 | _ | 699 | _ | 790 | ps | | | 8 mA | _ | 292 | _ | 335 | _ | 379 | ps | | SSTL-3 class I | | _ | -410 | _ | -472 | _ | -533 | ps | | SSTL-3 class II | | _ | -811 | _ | -933 | _ | -1,055 | ps | | SSTL-2 class I | | _ | -485 | _ | -558 | _ | -631 | ps | | SSTL-2 class I | I | _ | -758 | _ | -872 | _ | -986 | ps | | LVDS | | _ | -998 | _ | -1,148 | _ | -1,298 | ps | | Table 4–43. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Row Pins (Part 1 of 2) | | | | | | | | | | |---|-------|----------------|------|---------|----------------|-----|----------------|------|--| | 0 | | -6 Speed Grade | | -7 Spee | -7 Speed Grade | | -8 Speed Grade | | | | Stand | aru | Min | Max | Min | Max | Min | Max | Unit | | | LVCMOS | 2 mA | _ | 0 | _ | 0 | _ | 0 | ps | | | | 4 mA | _ | -489 | _ | -563 | _ | -636 | ps | | | | 8 mA | _ | -855 | _ | -984 | _ | -1,112 | ps | | | | 12 mA | _ | -993 | _ | -1,142 | _ | -1,291 | ps | | | 3.3-V LVTTL | 4 mA | _ | 0 | _ | 0 | _ | 0 | ps | | | | 8 mA | _ | -347 | _ | -400 | _ | -452 | ps | | | | 12 mA | _ | -858 | _ | -987 | _ | -1,116 | ps | | | | 16 mA | _ | -819 | _ | -942 | _ | -1,065 | ps | | | | 24 mA | _ | -993 | _ | -1,142 | _ | -1,291 | ps | | | 2.5-V LVTTL | 2 mA | _ | 329 | _ | 378 | _ | 427 | ps | | | | 8 mA | _ | -661 | _ | -761 | _ | -860 | ps | | | | 12 mA | _ | -655 | _ | -754 | _ | -852 | ps | | | | 16 mA | _ | -795 | _ | -915 | _ | -1,034 | ps | | | July 2003
v1.1 | Updated timing information. Timing finalized for EP1C6 and EP1C20 devices. Updated performance information. Added PLL Timing section. | _ | |-------------------|---|---| | May 2003
v1.0 | Added document to Cyclone Device Handbook. | _ |