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Logic Elements

Dynamic Arithmetic Mode

The dynamic arithmetic mode is ideal for implementing adders, counters, 
accumulators, wide parity functions, and comparators. An LE in dynamic 
arithmetic mode uses four 2-input LUTs configurable as a dynamic 
adder/subtractor. The first two 2-input LUTs compute two summations 
based on a possible carry-in of 1 or 0; the other two LUTs generate carry 
outputs for the two chains of the carry select circuitry. As shown in 
Figure 2–7, the LAB carry-in signal selects either the carry-in0 or 
carry-in1 chain. The selected chain's logic level in turn determines 
which parallel sum is generated as a combinatorial or registered output. 
For example, when implementing an adder, the sum output is the 
selection of two possible calculated sums:

data1 + data2 + carry-in0

or

data1 + data2 + carry-in1

The other two LUTs use the data1 and data2 signals to generate two 
possible carry-out signals⎯one for a carry of 1 and the other for a carry of 
0. The carry-in0 signal acts as the carry select for the carry-out0 
output and carry-in1 acts as the carry select for the carry-out1 
output. LEs in arithmetic mode can drive out registered and unregistered 
versions of the LUT output.

The dynamic arithmetic mode also offers clock enable, counter enable, 
synchronous up/down control, synchronous clear, synchronous load, 
and dynamic adder/subtractor options. The LAB local interconnect data 
inputs generate the counter enable and synchronous up/down control 
signals. The synchronous clear and synchronous load options are 
LAB-wide signals that affect all registers in the LAB. The Quartus II 
software automatically places any registers that are not used by the 
counter into other LABs. The addnsub LAB-wide signal controls 
whether the LE acts as an adder or subtractor.
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Figure 2–11. C4 Interconnect Connections Note (1)

Note to Figure 2–11:
(1) Each C4 interconnect can drive either up or down four rows.
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Embedded 
Memory

The Cyclone embedded memory consists of columns of M4K memory 
blocks. EP1C3 and EP1C6 devices have one column of M4K blocks, while 
EP1C12 and EP1C20 devices have two columns (refer to Table 1–1 on 
page 1–1 for total RAM bits per density). Each M4K block can implement 
various types of memory with or without parity, including true dual-port, 
simple dual-port, and single-port RAM, ROM, and FIFO buffers. The 
M4K blocks support the following features:

■ 4,608 RAM bits
■ 250 MHz performance
■ True dual-port memory
■ Simple dual-port memory
■ Single-port memory
■ Byte enable
■ Parity bits
■ Shift register
■ FIFO buffer
■ ROM
■ Mixed clock mode

1 Violating the setup or hold time on the address registers could 
corrupt the memory contents. This applies to both read and 
write operations.

Memory Modes

The M4K memory blocks include input registers that synchronize writes 
and output registers to pipeline designs and improve system 
performance. M4K blocks offer a true dual-port mode to support any 
combination of two-port operations: two reads, two writes, or one read 
and one write at two different clock frequencies. Figure 2–12 shows true 
dual-port memory.

Figure 2–12. True Dual-Port Memory Configuration
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Global Clock Network and Phase-Locked Loops

Clock Multiplication and Division

Cyclone PLLs provide clock synthesis for PLL output ports using 
m/(n × post scale counter) scaling factors. The input clock is divided by 
a pre-scale divider, n, and is then multiplied by the m feedback factor. The 
control loop drives the VCO to match fIN  × (m/n). Each output port has 
a unique post-scale counter to divide down the high-frequency VCO. For 
multiple PLL outputs with different frequencies, the VCO is set to the 
least-common multiple of the output frequencies that meets its frequency 
specifications. Then, the post-scale dividers scale down the output 
frequency for each output port. For example, if the output frequencies 
required from one PLL are 33 and 66 MHz, the VCO is set to 330 MHz (the 
least-common multiple in the VCO's range).

Each PLL has one pre-scale divider, n, that can range in value from 1 to 
32. Each PLL also has one multiply divider, m, that can range in value 
from 2 to 32. Global clock outputs have two post scale G dividers for 
global clock outputs, and external clock outputs have an E divider for 
external clock output, both ranging from 1 to 32. The Quartus II software 
automatically chooses the appropriate scaling factors according to the 
input frequency, multiplication, and division values entered.

Dual-Purpose 
Clock Pins

DPCLK0 (3) — — — v — — — —

DPCLK1 (3) — — v — — — — —

DPCLK2 v — — — — — — —

DPCLK3 — — — — v — — —

DPCLK4 — — — — — — v —

DPCLK5 (3) — — — — — — — v

DPCLK6 — — — — — v — —

DPCLK7 — v — — — — — —

Notes to Table 2–7:
(1) EP1C3 devices only have one PLL (PLL 1).
(2) EP1C3 devices in the 100-pin TQFP package do not have dedicated clock pins CLK1 and CLK3.
(3) EP1C3 devices in the 100-pin TQFP package do not have the DPCLK0, DPCLK1, or DPCLK5 pins.

Table 2–7. Global Clock Network Sources  (Part 2 of 2)

Source GCLK0 GCLK1 GCLK2 GCLK3 GCLK4 GCLK5 GCLK6 GCLK7



Altera Corporation  2–37
May 2008 Preliminary

Global Clock Network and Phase-Locked Loops

does not have dedicated clock output pins. The EP1C6 device in the 
144-pin TQFP package only supports dedicated clock outputs from 
PLL 1.

Clock Feedback

Cyclone PLLs have three modes for multiplication and/or phase shifting:

■ Zero delay buffer mode⎯The external clock output pin is phase-
aligned with the clock input pin for zero delay. 

■ Normal mode⎯If the design uses an internal PLL clock output, the 
normal mode compensates for the internal clock delay from the input 
clock pin to the IOE registers. The external clock output pin is phase 
shifted with respect to the clock input pin if connected in this mode. 
You defines which internal clock output from the PLL should be 
phase-aligned to compensate for internal clock delay.

■ No compensation mode⎯In this mode, the PLL will not compensate 
for any clock networks.

Phase Shifting

Cyclone PLLs have an advanced clock shift capability that enables 
programmable phase shifts. You can enter a phase shift (in degrees or 
time units) for each PLL clock output port or for all outputs together in 
one shift. You can perform phase shifting in time units with a resolution 
range of 125 to 250 ps. The finest resolution equals one eighth of the VCO 
period. The VCO period is a function of the frequency input and the 
multiplication and division factors. Each clock output counter can choose 
a different phase of the VCO period from up to eight taps. You can use this 
clock output counter along with an initial setting on the post-scale 
counter to achieve a phase-shift range for the entire period of the output 
clock. The phase tap feedback to the m counter can shift all outputs to a 
single phase. The Quartus II software automatically sets the phase taps 
and counter settings according to the phase shift entered.

Lock Detect Signal

The lock output indicates that there is a stable clock output signal in 
phase with the reference clock. Without any additional circuitry, the lock 
signal may toggle as the PLL begins tracking the reference clock. 
Therefore, you may need to gate the lock signal for use as a 
system-control signal. For correct operation of the lock circuit below
–20 C, fIN/N > 200 MHz.
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Figure 2–31. Control Signal Selection per IOE

In normal bidirectional operation, you can use the input register for input 
data requiring fast setup times. The input register can have its own clock 
input and clock enable separate from the OE and output registers. The 
output register can be used for data requiring fast clock-to-output 
performance. The OE register is available for fast clock-to-output enable 
timing. The OE and output register share the same clock source and the 
same clock enable source from the local interconnect in the associated 
LAB, dedicated I/O clocks, or the column and row interconnects. 
Figure 2–32 shows the IOE in bidirectional configuration.
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I/O Structure

Figure 2–32. Cyclone IOE in Bidirectional I/O Configuration

The Cyclone device IOE includes programmable delays to ensure zero 
hold times, minimize setup times, or increase clock to output times.

A path in which a pin directly drives a register may require a 
programmable delay to ensure zero hold time, whereas a path in which a 
pin drives a register through combinatorial logic may not require the 
delay. Programmable delays decrease input-pin-to-logic-array and IOE 
input register delays. The Quartus II Compiler can program these delays 
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A programmable delay chain on each DQS pin allows for either a 90° 
phase shift (for DDR SDRAM), or a 72° phase shift (for FCRAM) which 
automatically center-aligns input DQS synchronization signals within the 
data window of their corresponding DQ data signals. The phase-shifted 
DQS signals drive the global clock network. This global DQS signal clocks 
DQ signals on internal LE registers.

These DQS delay elements combine with the PLL’s clocking and phase 
shift ability to provide a complete hardware solution for interfacing to 
high-speed memory.

The clock phase shift allows the PLL to clock the DQ output enable and 
output paths. The designer should use the following guidelines to meet 
133 MHz performance for DDR SDRAM and FCRAM interfaces:

■ The DQS signal must be in the middle of the DQ group it clocks
■ Resynchronize the incoming data to the logic array clock using 

successive LE registers or FIFO buffers
■ LE registers must be placed in the LAB adjacent to the DQ I/O pin 

column it is fed by

Figure 2–34 illustrates DDR SDRAM and FCRAM interfacing from the 
I/O through the dedicated circuitry to the logic array.

EP1C6 144-pin TQFP 4 32

240-pin PQFP 4 32

256-pin FineLine BGA 4 32

EP1C12 240-pin PQFP 4 32

256-pin FineLine BGA 4 32

324-pin FineLine BGA 8 64

EP1C20 324-pin FineLine BGA 8 64

400-pin FineLine BGA 8 64

Note to Table 2–10:
(1) EP1C3 devices in the 100-pin TQFP package do not have any DQ pin groups in 

I/O bank 1.

Table 2–10. DQ Pin Groups  (Part 2 of 2)

Device Package Number of  × 8 DQ 
Pin Groups

Total DQ Pin 
Count



Altera Corporation  3–7
May 2008 Preliminary

Referenced Documents

Multiple Cyclone devices can be configured in any of the three 
configuration schemes by connecting the configuration enable (nCE) and 
configuration enable output (nCEO) pins on each device.

Referenced 
Documents

This chapter references the following document:

■ AN 39: IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices
■ Jam Programming & Test Language Specification

Document 
Revision History

Table 3–6 shows the revision history for this chapter.

Table 3–5. Data Sources for Configuration

Configuration Scheme Data Source

Active serial Low-cost serial configuration device

Passive serial (PS) Enhanced or EPC2 configuration device, 
MasterBlaster or ByteBlasterMV download cable, 
or serial data source

JTAG MasterBlaster or ByteBlasterMV download cable 
or a microprocessor with a Jam or JBC file

Table 3–6. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

May 2008
v1.4

Minor textual and style changes. Added “Referenced 
Documents” section.

—

January 2007 
v1.3

● Added document revision history.
● Updated handpara note below Table 3–4.

—

August 2005 
V1.2

Minor updates. —

February 2005 
V1.1

Updated JTAG chain limits. Added information concerning test 
vectors.

—

May 2003 v1.0 Added document to Cyclone Device Handbook. —

http://www.altera.com/literature/an/an039.pdf
http://www.jedec.org/download/search/jesd71.pdf
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VO Output voltage 0 VCCIO V

TJ Operating junction temperature For commercial 
use

0 85 °  C

For industrial use –40 100 °  C

For extended-
temperature use

–40 125 °  C

Table 4–3. Cyclone Device DC Operating Conditions Note (6)

Symbol Parameter Conditions Minimum Typical Maximum Unit

II Input pin leakage current VI = VC C I O m a x to 0 V (8) –10 — 10 μA

IOZ Tri-stated I/O pin leakage 
current

VO = VC C I O m a x  to 0 V (8) –10 — 10 μA

ICC0 VCC supply current (standby) 
(All M4K blocks in power-down 
mode) (7)

EP1C3 — 4 — mA

EP1C4 — 6 — mA

EP1C6 — 6 — mA

EP1C12 — 8 — mA

EP1C20 — 12 — mA

RCONF (9) Value of I/O pin pull-up resistor 
before and during configuration

VI = 0 V; VCCI0 = 3.3 V 15 25 50 kΩ

VI = 0 V; VCCI0 = 2.5 V 20 45 70 kΩ

VI = 0 V; VCCI0 = 1.8 V 30 65 100 kΩ

VI = 0 V; VCCI0 = 1.5 V 50 100 150 kΩ

Recommended value of I/O pin 
external pull-down resistor 
before and during configuration

— — 1 2 kΩ

Table 4–4. LVTTL Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage — 3.0 3.6 V

VIH High-level input voltage — 1.7 4.1 V

VIL Low-level input voltage — –0.5 0.7 V

VOH High-level output voltage IOH = –4 to –24 mA (11) 2.4 — V

VOL Low-level output voltage IOL = 4 to 24 mA (11) — 0.45 V

Table 4–2. Cyclone Device Recommended Operating Conditions  (Part 2 of 2)

Symbol Parameter Conditions Minimum  Maximum Unit
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Power 
Consumption

Designers can use the Altera web Early Power Estimator to estimate the 
device power.

Cyclone devices require a certain amount of power-up current to 
successfully power up because of the nature of the leading-edge process 
on which they are fabricated. Table 4–17 shows the maximum power-up 
current required to power up a Cyclone device. 

Designers should select power supplies and regulators that can supply 
this amount of current when designing with Cyclone devices. This 
specification is for commercial operating conditions. Measurements were 
performed with an isolated Cyclone device on the board. Decoupling 
capacitors were not used in this measurement. To factor in the current for 
decoupling capacitors, sum up the current for each capacitor using the 
following equation:

I = C (dV/dt)

The exact amount of current that is consumed varies according to the 
process, temperature, and power ramp rate. If the power supply or 
regulator can supply more current than required, the Cyclone device may 
consume more current than the maximum current specified in Table 4–17. 
However, the device does not require any more current to successfully 
power up than what is listed in Table 4–17.

The duration of the ICCINT power-up requirement depends on the VCCINT 
voltage supply rise time. The power-up current consumption drops when 
the VCCINT supply reaches approximately 0.75 V. For example, if the 
VCCINT rise time has a linear rise of 15 ms, the current consumption spike 
drops by 7.5 ms.

Table 4–17. Cyclone Maximum Power-Up Current (ICCINT) Requirements (In-Rush Current)

Device Commercial Specification Industrial Specification Unit

EP1C3 150 180 mA

EP1C4 150 180 mA

EP1C6 175 210 mA

EP1C12 300 360 mA

EP1C20 500 600 mA

Notes to Table 4–17:
(1) The Cyclone devices (except for the EP1C20 device) meet the power up specification for Mini PCI.
(2) The lot codes 9G0082 to 9G2999, or 9G3109 and later comply to the specifications in Table 4–17 and meet the Mini 

PCI specification. Lot codes appear at the top of the device.
(3) The lot codes 9H0004 to 9H29999, or 9H3014 and later comply to the specifications in this table and meet the Mini 

PCI specification. Lot codes appear at the top of the device.
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Typically, the user-mode current during device operation is lower than 
the power-up current in Table 4–17. Altera recommends using the 
Cyclone Power Calculator, available on the Altera web site, to estimate 
the user-mode ICCINT consumption and then select power supplies or 
regulators based on the higher value.

Timing Model The DirectDrive technology and MultiTrack interconnect ensure 
predictable performance, accurate simulation, and accurate timing 
analysis across all Cyclone device densities and speed grades. This 
section describes and specifies the performance, internal, external, and 
PLL timing specifications. 

All specifications are representative of worst-case supply voltage and 
junction temperature conditions.

Preliminary and Final Timing

Timing models can have either preliminary or final status. The 
Quartus® II software issues an informational message during the design 
compilation if the timing models are preliminary. Table 4–18 shows the 
status of the Cyclone device timing models.

Preliminary status means the timing model is subject to change. Initially, 
timing numbers are created using simulation results, process data, and 
other known parameters. These tests are used to make the preliminary 
numbers as close to the actual timing parameters as possible. 

Final timing numbers are based on actual device operation and testing. 
These numbers reflect the actual performance of the device under 
worst-case voltage and junction temperature conditions.

Table 4–18. Cyclone Device Timing Model Status

Device Preliminary Final

EP1C3 — v

EP1C4 — v

EP1C6 — v

EP1C12 — v

EP1C20 — v
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Table 4–22. IOE Internal Timing Microparameter Descriptions

Symbol Parameter

tSU IOE input and output register setup time before clock

tH IOE input and output register hold time after clock

tCO IOE input and output register clock-to-output delay

tPIN2COMBOUT_R Row input pin to IOE combinatorial output

tPIN2COMBOUT_C Column input pin to IOE combinatorial output

tCOMBIN2PIN_R Row IOE data input to combinatorial output pin

tCOMBIN2PIN_C Column IOE data input to combinatorial output pin

tCLR Minimum clear pulse width

tPRE Minimum preset pulse width

tCLKHL Minimum clock high or low time

Table 4–23. M4K Block Internal Timing Microparameter Descriptions

Symbol Parameter

tM4KRC Synchronous read cycle time

tM4KWC Synchronous write cycle time

tM4KWERESU Write or read enable setup time before clock

tM4KWEREH Write or read enable hold time after clock

tM4KBESU Byte enable setup time before clock

tM4KBEH Byte enable hold time after clock

tM4KDATAASU A port data setup time before clock

tM4KDATAAH A port data hold time after clock

tM4KADDRASU A port address setup time before clock

tM4KADDRAH A port address hold time after clock

tM4KDATABSU B port data setup time before clock

tM4KDATABH B port data hold time after clock

tM4KADDRBSU B port address setup time before clock

tM4KADDRBH B port address hold time after clock

tM4KDATACO1 Clock-to-output delay when using output registers

tM4KDATACO2 Clock-to-output delay without output registers

tM4KCLKHL Minimum clock high or low time

tM4KCLR Minimum clear pulse width
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Figure 4–1 shows the memory waveforms for the M4K timing parameters 
shown in Table 4–23.

Figure 4–1. Dual-Port RAM Timing Microparameter Waveform

Table 4–24. Routing Delay Internal Timing Microparameter Descriptions

Symbol Parameter

tR4 Delay for an R4 line with average loading; covers a distance 
of four LAB columns

tC4 Delay for an C4 line with average loading; covers a distance 
of four LAB rows

tLOCAL Local interconnect delay
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Tables 4–30 through 4–31 show the external timing parameters on column 
and row pins for EP1C3 devices.

tO U T C O P L L Clock-to-output delay output or bidirectional pin using IOE 
output register with global clock enhanced PLL with default 
phase setting

CLOAD = 10 pF

Notes to Table 4–29:
(1) These timing parameters are sample-tested only.
(2) These timing parameters are for IOE pins using a 3.3-V LVTTL, 24-mA setting. Designers should use the Quartus II 

software to verify the external timing for any pin.

Table 4–29. Cyclone Global Clock External I/O Timing Parameters Notes (1), (2)  (Part 2 of 2)

Symbol Parameter Conditions

Table 4–30. EP1C3 Column Pin Global Clock External I/O Timing 
Parameters

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 3.085 — 3.547 — 4.009 — ns

tI N H 0.000 — 0.000 — 0.000 — ns

tO U T C O 2.000 4.073 2.000 4.682 2.000 5.295 ns

tI N S UP L L 1.795 — 2.063 — 2.332 — ns

tI N H P L L 0.000 — 0.000 — 0.000 — ns

tO U T C O P L L 0.500 2.306 0.500 2.651 0.500 2.998 ns

Table 4–31. EP1C3 Row Pin Global Clock External I/O Timing Parameters

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 3.157 — 3.630 — 4.103 — ns

tI N H 0.000 — 0.000 — 0.000 — ns

tO U T C O 2.000 3.984 2.000 4.580 2.000 5.180 ns

tI N S UP L L 1.867 — 2.146 — 2.426 — ns

tI N H P L L 0.000 — 0.000 — 0.000 — ns

tO U T C O P L L 0.500 2.217 0.500 2.549 0.500 2.883 ns



Altera Corporation  4–23
May 2008 Preliminary

Timing Model

2.5-V LVTTL 2 mA — 329 — 378 — 427 ps

8 mA — –661 — –761 — –860 ps

12 mA — –655 — –754 — –852 ps

16 mA — –795 — –915 — –1034 ps

1.8-V LVTTL 2 mA — 4 — 4 — 5 ps

8 mA — –208 — –240 — –271 ps

12 mA — –208 — –240 — –271 ps

1.5-V LVTTL 2 mA — 2,288 — 2,631 — 2,974 ps

4 mA — 608 — 699 — 790 ps

8 mA — 292 — 335 — 379 ps

SSTL-3 class I — –410 — –472 — –533 ps

SSTL-3 class II — –811 — –933 — –1,055 ps

SSTL-2 class I — –485 — –558 — –631 ps

SSTL-2 class II — –758 — –872 — –986 ps

LVDS — –998 — –1,148 — –1,298 ps

Table 4–43. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Row Pins  (Part 1 of 2)

Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS 2 mA — 0 — 0 — 0 ps

4 mA — –489 — –563 — –636 ps

8 mA — –855 — –984 — –1,112 ps

12 mA — –993 — –1,142 — –1,291 ps

3.3-V LVTTL 4 mA — 0 — 0 — 0 ps

8 mA — –347 — –400 — –452 ps

12 mA — –858 — –987 — –1,116 ps

16 mA — –819 — –942 — –1,065 ps

24 mA — –993 — –1,142 — –1,291 ps

2.5-V LVTTL 2 mA — 329 — 378 — 427 ps

8 mA — –661 — –761 — –860 ps

12 mA — –655 — –754 — –852 ps

16 mA — –795 — –915 — –1,034 ps

Table 4–42. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Column Pins  (Part 2 of 2)

Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max
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1.8-V LVTTL 2 mA — 1,290 — 1,483 — 1,677 ps

8 mA — 4 — 4 — 5 ps

12 mA — –208 — –240 — –271 ps

1.5-V LVTTL 2 mA — 2,288 — 2,631 — 2,974 ps

4 mA — 608 — 699 — 790 ps

8 mA — 292 — 335 — 379 ps

3.3-V PCI (1) — –877 — –1,009 — –1,141 ps

SSTL-3 class I — –410 — –472 — –533 ps

SSTL-3 class II — –811 — –933 — –1,055 ps

SSTL-2 class I — –485 — –558 — –631 ps

SSTL-2 class II — –758 — –872 — –986 ps

LVDS — –998 — –1,148 — –1,298 ps

Table 4–44. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Column Pins  (Part 1 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS 2 mA — 1,800 — 2,070 — 2,340 ps

4 mA — 1,311 — 1,507 — 1,704 ps

8 mA — 945 — 1,086 — 1,228 ps

12 mA — 807 — 928 — 1,049 ps

3.3-V LVTTL 4 mA — 1,831 — 2,105 — 2,380 ps

8 mA — 1,484 — 1,705 — 1,928 ps

12 mA — 973 — 1,118 — 1,264 ps

16 mA — 1,012 — 1,163 — 1,315 ps

24 mA — 838 — 963 — 1,089 ps

2.5-V LVTTL 2 mA — 2,747 — 3,158 — 3,570 ps

8 mA — 1,757 — 2,019 — 2,283 ps

12 mA — 1,763 — 2,026 — 2,291 ps

16 mA — 1,623 — 1,865 — 2,109 ps

1.8-V LVTTL 2 mA — 5,506 — 6,331 — 7,157 ps

8 mA — 4,220 — 4,852 — 5,485 ps

12 mA — 4,008 — 4,608 — 5,209 ps

Table 4–43. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Row Pins  (Part 2 of 2)

Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max
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fOUT (to global clock) PLL output frequency 
(-6 speed grade)

15.625 405 MHz

PLL output frequency 
(-7 speed grade)

15.625 320 MHz

PLL output frequency 
(-8 speed grade)

15.625 275 MHz

tOUT DUTY Duty cycle for external clock 
output (when set to 50%)

45.00 55 %

tJITTER (1) Period jitter for external clock 
output

— ±300 (2) ps

tLOCK (3) Time required to lock from end 
of device configuration 

10.00 100 μs

fVCO PLL internal VCO operating 
range

500.00 1,000 MHz

- Minimum areset time 10 — ns

N, G0, G1, E Counter values 1 32 integer

Notes to Table 4–52:
(1) The tJITTER specification for the PLL[2..1]_OUT pins are dependent on the I/O pins in its VCCIO bank, how many 

of them are switching outputs, how much they toggle, and whether or not they use programmable current strength 
or slow slew rate.

(2) fOUT ≥ 100 MHz. When the PLL external clock output frequency (fOUT) is smaller than 100 MHz, the jitter 
specification is 60 mUI.

(3) fIN/N must be greater than 200 MHz to ensure correct lock detect circuit operation below –20 C. Otherwise, the PLL 
operates with the specified parameters under the specified conditions.

Table 4–52. Cyclone PLL Specifications  (Part 2 of 2)

Symbol Parameter Min Max Unit
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Figure 5–1. Cyclone Device Packaging Ordering Information

Referenced 
Documents

This chapter references the following documents:

■ Package Information for Cyclone Devices chapter in the Cyclone Device 
Handbook

■ Quartus II Handbook

Document 
Revision History

Table 5–1 shows the revision history for this chapter.

Device Type

Package Type

6, 7, or 8 , with 6 being the fastest

Number of pins for a particular package

ES:

T:
Q:
F:

Thin quad flat pack (TQFP)
Plastic quad flat pack (PQFP)
FineLine BGA

EP1C: Cyclone

3
4
6
12
20

C:
I:

Commercial temperature (tJ = 0˚ C to 85˚ C)
Industrial temperature (tJ = -40˚ C to 100˚ C)

Optional SuffixFamily Signature

Operating Temperature

Speed Grade

Pin Count

Engineering sample

7EP1C 20 C400F ES

Indicates specific device options or 
shipment method.

Table 5–1. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

May 2008
v1.4

Minor textual and style changes. Added “Referenced 
Documents” section.

—

January 2007 
v1.3

Added document revision history. —

August 2005 
v1.2

Minor updates. —

http://www.altera.com/literature/hb/cyc/cyc_c52006.pdf
http://www.altera.com/literature/lit-qts.jsp
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