
Intel - EP1C20F400C6 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
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support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
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of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
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meet the stringent standards of the automotive industry,
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based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Figure 2–1. Cyclone EP1C12 Device Block Diagram

The number of M4K RAM blocks, PLLs, rows, and columns vary per 
device. Table 2–1 lists the resources available in each Cyclone device.

Logic Array

PLL

IOEs

M4K Blocks

EP1C12 Device

Table 2–1. Cyclone Device Resources

Device
M4K RAM

PLLs LAB Columns LAB Rows
Columns Blocks

EP1C3 1 13 1 24 13

EP1C4 1 17 2 26 17

EP1C6 1 20 2 32 20

EP1C12 2 52 2 48 26

EP1C20 2 64 2 64 32
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The Quartus II Compiler automatically creates carry chain logic during 
design processing, or you can create it manually during design entry. 
Parameterized functions such as LPM functions automatically take 
advantage of carry chains for the appropriate functions.

The Quartus II Compiler creates carry chains longer than 10 LEs by 
linking LABs together automatically. For enhanced fitting, a long carry 
chain runs vertically allowing fast horizontal connections to M4K 
memory blocks. A carry chain can continue as far as a full column.

Clear and Preset Logic Control

LAB-wide signals control the logic for the register's clear and preset 
signals. The LE directly supports an asynchronous clear and preset 
function. The register preset is achieved through the asynchronous load 
of a logic high. The direct asynchronous preset does not require a 
NOT-gate push-back technique. Cyclone devices support simultaneous 
preset/ asynchronous load and clear signals. An asynchronous clear 
signal takes precedence if both signals are asserted simultaneously. Each 
LAB supports up to two clears and one preset signal.

In addition to the clear and preset ports, Cyclone devices provide a 
chip-wide reset pin (DEV_CLRn) that resets all registers in the device. An 
option set before compilation in the Quartus II software controls this pin. 
This chip-wide reset overrides all other control signals.

MultiTrack 
Interconnect

In the Cyclone architecture, connections between LEs, M4K memory 
blocks, and device I/O pins are provided by the MultiTrack interconnect 
structure with DirectDriveTM technology. The MultiTrack interconnect 
consists of continuous, performance-optimized routing lines of different 
speeds used for inter- and intra-design block connectivity. The Quartus II 
Compiler automatically places critical design paths on faster 
interconnects to improve design performance.

DirectDrive technology is a deterministic routing technology that ensures 
identical routing resource usage for any function regardless of placement 
within the device. The MultiTrack interconnect and DirectDrive 
technology simplify the integration stage of block-based designing by 
eliminating the re-optimization cycles that typically follow design 
changes and additions.

The MultiTrack interconnect consists of row and column interconnects 
that span fixed distances. A routing structure with fixed length resources 
for all devices allows predictable and repeatable performance when 



Altera Corporation  2–13
May 2008 Preliminary

MultiTrack Interconnect

migrating through different device densities. Dedicated row 
interconnects route signals to and from LABs, PLLs, and M4K memory 
blocks within the same row. These row resources include:

■ Direct link interconnects between LABs and adjacent blocks
■ R4 interconnects traversing four blocks to the right or left

The direct link interconnect allows a LAB or M4K memory block to drive 
into the local interconnect of its left and right neighbors. Only one side of 
a PLL block interfaces with direct link and row interconnects. The direct 
link interconnect provides fast communication between adjacent LABs 
and/or blocks without using row interconnect resources.

The R4 interconnects span four LABs, or two LABs and one M4K RAM 
block. These resources are used for fast row connections in a four-LAB 
region. Every LAB has its own set of R4 interconnects to drive either left 
or right. Figure 2–9 shows R4 interconnect connections from a LAB. R4 
interconnects can drive and be driven by M4K memory blocks, PLLs, and 
row IOEs. For LAB interfacing, a primary LAB or LAB neighbor can drive 
a given R4 interconnect. For R4 interconnects that drive to the right, the 
primary LAB and right neighbor can drive on to the interconnect. For R4 
interconnects that drive to the left, the primary LAB and its left neighbor 
can drive on to the interconnect. R4 interconnects can drive other R4 
interconnects to extend the range of LABs they can drive. R4 
interconnects can also drive C4 interconnects for connections from one 
row to another. 
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MultiTrack Interconnect

All embedded blocks communicate with the logic array similar to 
LAB-to-LAB interfaces. Each block (i.e., M4K memory or PLL) connects 
to row and column interconnects and has local interconnect regions 
driven by row and column interconnects. These blocks also have direct 
link interconnects for fast connections to and from a neighboring LAB.

Table 2–2 shows the Cyclone device's routing scheme.

Table 2–2. Cyclone Device Routing Scheme

Source

Destination

LU
T 

Ch
ai

n

Re
gi

st
er

 C
ha

in

Lo
ca

l I
nt

er
co

nn
ec

t

Di
re

ct
 L

in
k 

In
te

rc
on

ne
ct

R4
 In

te
rc

on
ne

ct

C4
 In

te
rc

on
ne

ct

LE M
4K

 R
AM

 B
lo

ck

PL
L

Co
lu

m
n 

IO
E

Ro
w

 IO
E

LUT Chain — — — — — — v — — — —

Register Chain — — — — — — v — — — —

Local Interconnect — — — — — — v v v v v

Direct Link 
Interconnect — — v — — — — — — — —

R4 Interconnect — — v — v v — — — — —

C4 Interconnect — — v — v v — — — — —

LE v v v v v v — — — — —

M4K RAM Block — — v v v v — — — — —

PLL — — — v v v — — — — —

Column IOE — — — — — v — — — — —

Row IOE — — — v v v — — — — —
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is not available in the true dual-port mode. Mixed-width configurations 
are also possible, allowing different read and write widths. Tables 2–3 
and 2–4 summarize the possible M4K RAM block configurations.

When the M4K RAM block is configured as a shift register block, you can 
create a shift register up to 4,608 bits (w × m × n).

Table 2–3. M4K RAM Block Configurations (Simple Dual-Port)

Read Port
Write Port

4K × 1 2K × 2 1K × 4 512 × 8 256 × 16 128 × 32 512 × 9 256 × 18 128 × 36

4K × 1 v v v v v v — — —

2K × 2 v v v v v v — — —

1K × 4 v v v v v v — — —

512 × 8 v v v v v v — — —

256 × 16 v v v v v v — — —

128 × 32 v v v v v v — — —

512 × 9 — — — — — — v v v

256 × 18 — — — — — — v v v

128 × 36 — — — — — — v v v

Table 2–4. M4K RAM Block Configurations (True Dual-Port)

Port A
Port B

4K × 1 2K × 2 1K × 4 512 × 8 256 × 16 512 × 9 256 × 18

4K × 1 v v v v v — —

2K × 2 v v v v v — —

1K × 4 v v v v v — —

512 × 8 v v v v v — —

256 × 16 v v v v v — —

512 × 9 — — — — — v v

256 × 18 — — — — — v v
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Figure 2–18. Input/Output Clock Mode in True Dual-Port Mode Notes (1), (2)

Notes to Figure 2–18:
(1) All registers shown have asynchronous clear ports.
(2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both 

read and write operations.
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Single-Port Mode

The M4K memory blocks also support single-port mode, used when 
simultaneous reads and writes are not required. See Figure 2–21. A single 
M4K memory block can support up to two single-port mode RAM blocks 
if each RAM block is less than or equal to 2K bits in size.

Figure 2–21. Single-Port Mode Note (1)

Note to Figure 2–21:
(1) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both 

read and write operations.

Global Clock 
Network and 
Phase-Locked 
Loops

Cyclone devices provide a global clock network and up to two PLLs for a 
complete clock management solution.

Global Clock Network

There are four dedicated clock pins (CLK[3..0], two pins on the left side 
and two pins on the right side) that drive the global clock network, as 
shown in Figure 2–22. PLL outputs, logic array, and dual-purpose clock 
(DPCLK[7..0]) pins can also drive the global clock network.
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Global Clock Network and Phase-Locked Loops

Table 2–6 shows the PLL features in Cyclone devices. Figure 2–25 shows 
a Cyclone PLL.

Figure 2–25. Cyclone PLL Note (1)

Notes to Figure 2–25:
(1) The EP1C3 device in the 100-pin TQFP package does not support external outputs or LVDS inputs. The EP1C6 

device in the 144-pin TQFP package does not support external output from PLL2.
(2) LVDS input is supported via the secondary function of the dedicated clock pins. For PLL 1, the CLK0 pin’s secondary 

function is LVDSCLK1p and the CLK1 pin’s secondary function is LVDSCLK1n. For PLL 2, the CLK2 pin’s secondary 
function is LVDSCLK2p and the CLK3 pin’s secondary function is LVDSCLK2n.

(3) PFD: phase frequency detector.

Table 2–6. Cyclone PLL Features

Feature PLL Support

Clock multiplication and division m/(n × post-scale counter) (1)

Phase shift Down to 125-ps increments (2), (3)

Programmable duty cycle Yes

Number of internal clock outputs 2

Number of external clock outputs One differential or one single-ended (4)

Notes to Table 2–6:
(1) The m counter ranges from 2 to 32. The n counter and the post-scale counters 

range from 1 to 32.
(2) The smallest phase shift is determined by the voltage-controlled oscillator (VCO) 

period divided by 8.
(3) For degree increments, Cyclone devices can shift all output frequencies in 

increments of 45°. Smaller degree increments are possible depending on the 
frequency and divide parameters.

(4) The EP1C3 device in the 100-pin TQFP package does not support external clock 
output. The EP1C6 device in the 144-pin TQFP package does not support external 
clock output from PLL2.
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Figure 2–26 shows the PLL global clock connections.

Figure 2–26. Cyclone PLL Global Clock Connections

Notes to Figure 2–26:
(1) PLL 1 supports one single-ended or LVDS input via pins CLK0 and CLK1.
(2) PLL2 supports one single-ended or LVDS input via pins CLK2 and CLK3.
(3) PLL1_OUT and PLL2_OUT support single-ended or LVDS output. If external output is not required, these pins are 

available as regular user I/O pins.
(4) The EP1C3 device in the 100-pin TQFP package does not support external clock output. The EP1C6 device in the 

144-pin TQFP package does not support external clock output from PLL2.

Table 2–7 shows the global clock network sources available in Cyclone 
devices.
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Table 2–7. Global Clock Network Sources  (Part 1 of 2)

Source GCLK0 GCLK1 GCLK2 GCLK3 GCLK4 GCLK5 GCLK6 GCLK7

PLL Counter 
Output

PLL1 G0 — v v — — — — —

PLL1 G1 v — — v — — — —

PLL2 G0 (1) — — — — — v v —

PLL2 G1 (1) — — — — v — — v

Dedicated 
Clock Input 
Pins

CLK0 v — v — — — — —

CLK1 (2) — v — v — — — —

CLK2 — — — — v — v —

CLK3 (2) — — — — — v — v
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Programmable Duty Cycle

The programmable duty cycle allows PLLs to generate clock outputs with 
a variable duty cycle. This feature is supported on each PLL post-scale 
counter (g0, g1, e). The duty cycle setting is achieved by a low- and 
high-time count setting for the post-scale dividers. The Quartus II 
software uses the frequency input and the required multiply or divide 
rate to determine the duty cycle choices.

Control Signals

There are three control signals for clearing and enabling PLLs and their 
outputs. You can use these signals to control PLL resynchronization and 
the ability to gate PLL output clocks for low-power applications.

The pllenable signal enables and disables PLLs. When the pllenable 
signal is low, the clock output ports are driven by ground and all the PLLs 
go out of lock. When the pllenable signal goes high again, the PLLs 
relock and resynchronize to the input clocks. An input pin or LE output 
can drive the pllenable signal.

The areset signals are reset/resynchronization inputs for each PLL. 
Cyclone devices can drive these input signals from input pins or from 
LEs. When areset is driven high, the PLL counters will reset, clearing 
the PLL output and placing the PLL out of lock. When driven low again, 
the PLL will resynchronize to its input as it relocks. 

The pfdena signals control the phase frequency detector (PFD) output 
with a programmable gate. If you disable the PFD, the VCO will operate 
at its last set value of control voltage and frequency with some drift, and 
the system will continue running when the PLL goes out of lock or the 
input clock disables. By maintaining the last locked frequency, the system 
has time to store its current settings before shutting down. You can either 
use their own control signal or gated locked status signals to trigger the 
pfdena signal.

f For more information about Cyclone PLLs, refer to Using PLLs in Cyclone 
Devices chapter in the Cyclone Device Handbook.

http://www.altera.com/literature/hb/cyc/cyc_c51006.pdf
http://www.altera.com/literature/hb/cyc/cyc_c51006.pdf


2–46  Altera Corporation
Preliminary May 2008

Cyclone Device Handbook, Volume 1

to automatically minimize setup time while providing a zero hold time. 
Programmable delays can increase the register-to-pin delays for output 
registers. Table 2–9 shows the programmable delays for Cyclone devices.

There are two paths in the IOE for a combinatorial input to reach the logic 
array. Each of the two paths can have a different delay. This allows you 
adjust delays from the pin to internal LE registers that reside in two 
different areas of the device. The designer sets the two combinatorial 
input delays by selecting different delays for two different paths under 
the Decrease input delay to internal cells logic option in the Quartus II 
software. When the input signal requires two different delays for the 
combinatorial input, the input register in the IOE is no longer available.

The IOE registers in Cyclone devices share the same source for clear or 
preset. The designer can program preset or clear for each individual IOE. 
The designer can also program the registers to power up high or low after 
configuration is complete. If programmed to power up low, an 
asynchronous clear can control the registers. If programmed to power up 
high, an asynchronous preset can control the registers. This feature 
prevents the inadvertent activation of another device's active-low input 
upon power up. If one register in an IOE uses a preset or clear signal then 
all registers in the IOE must use that same signal if they require preset or 
clear. Additionally a synchronous reset signal is available to the designer 
for the IOE registers.

External RAM Interfacing

Cyclone devices support DDR SDRAM and FCRAM interfaces at up to 
133 MHz through dedicated circuitry.

DDR SDRAM and FCRAM

Cyclone devices have dedicated circuitry for interfacing with DDR 
SDRAM. All I/O banks support DDR SDRAM and FCRAM I/O pins. 
However, the configuration input pins in bank 1 must operate at 2.5 V 
because the SSTL-2 VCCIO level is 2.5 V. Additionally, the configuration 

Table 2–9. Cyclone Programmable Delay Chain

Programmable Delays Quartus II Logic Option

Input pin to logic array delay Decrease input delay to internal cells

Input pin to input register delay Decrease input delay to input registers

Output pin delay Increase delay to output pin
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Power Sequencing and Hot Socketing

The Cyclone VCCINT pins must always be connected to a 1.5-V power 
supply. If the VCCINT level is 1.5 V, then input pins are 1.5-V, 1.8-V, 2.5-V, 
and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.5-V, 1.8-V, 
2.5-V, or 3.3-V power supply, depending on the output requirements. The 
output levels are compatible with systems of the same voltage as the 
power supply (i.e., when VCCIO pins are connected to a 1.5-V power 
supply, the output levels are compatible with 1.5-V systems). When VCCIO 
pins are connected to a 3.3-V power supply, the output high is 3.3-V and 
is compatible with 3.3-V or 5.0-V systems. Table 2–14 summarizes 
Cyclone MultiVolt I/O support.

Power 
Sequencing and 
Hot Socketing

Because Cyclone devices can be used in a mixed-voltage environment, 
they have been designed specifically to tolerate any possible power-up 
sequence. Therefore, the VCCIO and VCCINT power supplies may be 
powered in any order. 

Signals can be driven into Cyclone devices before and during power up 
without damaging the device. In addition, Cyclone devices do not drive 
out during power up. Once operating conditions are reached and the 
device is configured, Cyclone devices operate as specified by the user.

Table 2–14. Cyclone MultiVolt I/O Support Note (1)

VCCIO (V)
Input Signal Output Signal

1.5 V 1.8 V 2.5 V 3.3 V 5.0 V 1.5 V 1.8 V 2.5 V 3.3 V 5.0 V

1.5 v v v (2) v (2) — v — — — —

1.8 v v v (2) v (2) — v (3) v — — —

2.5 — — v v — v (5) v (5) v — —

3.3 — — v (4) v v (6) v (7) v (7) v (7) v v (8)

Notes to Table 2–14:
(1) The PCI clamping diode must be disabled to drive an input with voltages higher than VCCIO.
(2) When VCCIO = 1.5-V or 1.8-V and a 2.5-V or 3.3-V input signal feeds an input pin, higher pin leakage current is 

expected. Turn on Allow voltage overdrive for LVTTL / LVCMOS input pins in the Assignments > Device > 
Device and Pin Options > Pin Placement tab when a device has this I/O combinations.

(3) When VCCIO = 1.8-V, a Cyclone device can drive a 1.5-V device with 1.8-V tolerant inputs.
(4) When VCCIO = 3.3-V and a 2.5-V input signal feeds an input pin, the VCCIO supply current will be slightly larger 

than expected.
(5) When VCCIO = 2.5-V, a Cyclone device can drive a 1.5-V or 1.8-V device with 2.5-V tolerant inputs.
(6) Cyclone devices can be 5.0-V tolerant with the use of an external resistor and the internal PCI clamp diode.
(7) When VCCIO = 3.3-V, a Cyclone device can drive a 1.5-V, 1.8-V, or 2.5-V device with 3.3-V tolerant inputs.
(8) When VCCIO = 3.3-V, a Cyclone device can drive a device with 5.0-V LVTTL inputs but not 5.0-V LVCMOS inputs.
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IEEE Std. 1149.1 (JTAG) Boundary Scan Support

The Cyclone device instruction register length is 10 bits and the 
USERCODE register length is 32 bits. Tables 3–2 and 3–3 show the 
boundary-scan register length and device IDCODE information for 
Cyclone devices.

Table 3–2. Cyclone Boundary-Scan Register Length

Device Boundary-Scan Register Length

EP1C3 339

EP1C4 930

EP1C6 582

EP1C12 774

EP1C20 930

Table 3–3. 32-Bit Cyclone Device IDCODE

Device

IDCODE (32 bits) (1)

Version (4 Bits) Part Number (16 Bits) Manufacturer Identity 
(11 Bits) LSB (1 Bit) (2)

EP1C3 0000 0010 0000 1000 0001 000 0110 1110 1

EP1C4 0000 0010 0000 1000 0101 000 0110 1110 1

EP1C6 0000 0010 0000 1000 0010 000 0110 1110 1

EP1C12 0000 0010 0000 1000 0011 000 0110 1110 1

EP1C20 0000 0010 0000 1000 0100 000 0110 1110 1

Notes to Table 3–3:
(1) The most significant bit (MSB) is on the left.
(2) The IDCODE’s least significant bit (LSB) is always 1.
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VREF Reference voltage — 1.3 1.5 1.7 V

VIH High-level input voltage — VR E F + 0.2 — VCCIO + 0.3 V

VIL Low-level input voltage — –0.3 — VR E F – 0.2 V

VOH High-level output voltage IOH = –8 mA (11) VTT + 0.6 — — V

VOL Low-level output voltage IOL = 8 mA (11) — — VT T – 0.6 V

Table 4–14. SSTL-3 Class II Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage — 3.0 3.3 3.6 V

VTT Termination voltage — VR E F – 0.05 VR E F VR E F + 0.05 V

VREF Reference voltage — 1.3 1.5 1.7 V

VIH High-level input voltage — VR E F + 0.2 — VCCIO + 0.3 V

VIL Low-level input voltage — –0.3 — VR E F – 0.2 V

VOH High-level output voltage IOH = –16 mA 
(11)

VT T + 0.8 — — V

VOL Low-level output voltage IOL = 16 mA (11) — — VTT – 0.8 V

Table 4–15. Bus Hold Parameters

Parameter Conditions

VC C I O  Level

Unit1.5 V 1.8 V 2.5 V 3.3 V

Min Max Min Max Min Max Min Max

Low sustaining 
current

VIN > VIL 
(maximum)

— — 30 — 50 — 70 — μA

High sustaining 
current

VIN < VIH 
(minimum)

— — –30 — –50 — –70 — μA

Low overdrive 
current

0 V < VIN < 
VCCIO

— — — 200 — 300 — 500 μA

High overdrive 
current

0 V < VIN < 
VCCIO

— — — –200 — –300 — –500 μA

Table 4–13. SSTL-3 Class I Specifications  (Part 2 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit
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Table 4–22. IOE Internal Timing Microparameter Descriptions

Symbol Parameter

tSU IOE input and output register setup time before clock

tH IOE input and output register hold time after clock

tCO IOE input and output register clock-to-output delay

tPIN2COMBOUT_R Row input pin to IOE combinatorial output

tPIN2COMBOUT_C Column input pin to IOE combinatorial output

tCOMBIN2PIN_R Row IOE data input to combinatorial output pin

tCOMBIN2PIN_C Column IOE data input to combinatorial output pin

tCLR Minimum clear pulse width

tPRE Minimum preset pulse width

tCLKHL Minimum clock high or low time

Table 4–23. M4K Block Internal Timing Microparameter Descriptions

Symbol Parameter

tM4KRC Synchronous read cycle time

tM4KWC Synchronous write cycle time

tM4KWERESU Write or read enable setup time before clock

tM4KWEREH Write or read enable hold time after clock

tM4KBESU Byte enable setup time before clock

tM4KBEH Byte enable hold time after clock

tM4KDATAASU A port data setup time before clock

tM4KDATAAH A port data hold time after clock

tM4KADDRASU A port address setup time before clock

tM4KADDRAH A port address hold time after clock

tM4KDATABSU B port data setup time before clock

tM4KDATABH B port data hold time after clock

tM4KADDRBSU B port address setup time before clock

tM4KADDRBH B port address hold time after clock

tM4KDATACO1 Clock-to-output delay when using output registers

tM4KDATACO2 Clock-to-output delay without output registers

tM4KCLKHL Minimum clock high or low time

tM4KCLR Minimum clear pulse width



Altera Corporation  4–17
May 2008 Preliminary

Timing Model

Tables 4–30 through 4–31 show the external timing parameters on column 
and row pins for EP1C3 devices.

tO U T C O P L L Clock-to-output delay output or bidirectional pin using IOE 
output register with global clock enhanced PLL with default 
phase setting

CLOAD = 10 pF

Notes to Table 4–29:
(1) These timing parameters are sample-tested only.
(2) These timing parameters are for IOE pins using a 3.3-V LVTTL, 24-mA setting. Designers should use the Quartus II 

software to verify the external timing for any pin.

Table 4–29. Cyclone Global Clock External I/O Timing Parameters Notes (1), (2)  (Part 2 of 2)

Symbol Parameter Conditions

Table 4–30. EP1C3 Column Pin Global Clock External I/O Timing 
Parameters

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 3.085 — 3.547 — 4.009 — ns

tI N H 0.000 — 0.000 — 0.000 — ns

tO U T C O 2.000 4.073 2.000 4.682 2.000 5.295 ns

tI N S UP L L 1.795 — 2.063 — 2.332 — ns

tI N H P L L 0.000 — 0.000 — 0.000 — ns

tO U T C O P L L 0.500 2.306 0.500 2.651 0.500 2.998 ns

Table 4–31. EP1C3 Row Pin Global Clock External I/O Timing Parameters

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 3.157 — 3.630 — 4.103 — ns

tI N H 0.000 — 0.000 — 0.000 — ns

tO U T C O 2.000 3.984 2.000 4.580 2.000 5.180 ns

tI N S UP L L 1.867 — 2.146 — 2.426 — ns

tI N H P L L 0.000 — 0.000 — 0.000 — ns

tO U T C O P L L 0.500 2.217 0.500 2.549 0.500 2.883 ns
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External I/O Delay Parameters

External I/O delay timing parameters for I/O standard input and output 
adders and programmable input and output delays are specified by 
speed grade independent of device density. 

Tables 4–40 through 4–45 show the adder delays associated with column 
and row I/O pins for all packages. If an I/O standard is selected other 
than LVTTL 4 mA with a fast slew rate, add the selected delay to the 
external tCO and tSU I/O parameters shown in Tables 4–25 through 
4–28.

Table 4–39. EP1C20 Row Pin Global Clock External I/O Timing Parameters

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 2.417 — 2.779 — 3.140 — ns

tI N H 0.000 — 0.000 — 0.000 — ns

tO U T C O 2.000 3.724 2.000 4.282 2.000 4.843 ns

tX Z — 3.645 — 4.191 — 4.740 ns

tZ X — 3.645 — 4.191 — 4.740 ns

tI N S UP L L 1.417 — 1.629 — 1.840 — ns

tI N H P L L 0.000 — 0.000 — 0.000 — ns

tO U T C O P L L 0.500 1.667 0.500 1.917 0.500 2.169 ns

tX Z P L L — 1.588 — 1.826 — 2.066 ns

tZ X P L L — 1.588 — 1.826 — 2.066 ns

Table 4–40. Cyclone I/O Standard Column Pin Input Delay Adders  (Part 1 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS — 0 — 0 — 0 ps

3.3-V LVTTL — 0 — 0 — 0 ps

2.5-V LVTTL — 27 — 31 — 35 ps

1.8-V LVTTL — 182 — 209 — 236 ps

1.5-V LVTTL — 278 — 319 — 361 ps

SSTL-3 class I — –250 — –288 — –325 ps

SSTL-3 class II — –250 — –288 — –325 ps

SSTL-2 class I — –278 — –320 — –362 ps
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Tables 4–50 and 4–51 show the maximum output clock rate for column 
and row pins in Cyclone devices.

Table 4–49. Cyclone Maximum Input Clock Rate for Row Pins

I/O Standard -6 Speed 
Grade

-7 Speed 
Grade

-8 Speed 
Grade Unit

LVTTL 464 428 387 MHz

2.5 V 392 302 207 MHz

1.8 V 387 311 252 MHz

1.5 V 387 320 243 MHz

LVCMOS 405 374 333 MHz

SSTL-3 class I 405 356 293 MHz

SSTL-3 class II 414 365 302 MHz

SSTL-2 class I 464 428 396 MHz

SSTL-2 class II 473 432 396 MHz

3.3-V PCI (1) 464 428 387 MHz

LVDS 567 549 531 MHz

Note to Tables 4–48 through 4–49:
(1) EP1C3 devices do not support the PCI I/O standard. These parameters are only 

available on row I/O pins.

Table 4–50. Cyclone Maximum Output Clock Rate for Column Pins

I/O Standard -6 Speed 
Grade

-7 Speed 
Grade

-8 Speed 
Grade Unit

LVTTL 304 304 304 MHz

2.5 V 220 220 220 MHz

1.8 V 213 213 213 MHz

1.5 V 166 166 166 MHz

LVCMOS 304 304 304 MHz

SSTL-3 class I 100 100 100 MHz

SSTL-3 class II 100 100 100 MHz

SSTL-2 class I 134 134 134 MHz

SSTL-2 class II 134 134 134 MHz

LVDS 320 320 275 MHz

Note to Table 4–50:
(1) EP1C3 devices do not support the PCI I/O standard. 
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