Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 2006 | | Number of Logic Elements/Cells | 20060 | | Total RAM Bits | 294912 | | Number of I/O | 301 | | Number of Gates | - | | Voltage - Supply | 1.425V ~ 1.575V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 400-BGA | | Supplier Device Package | 400-FBGA (21x21) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep1c20f400c8 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Section I–2 Altera Corporation # 2. Cyclone Architecture C51002-1.6 # Functional Description Cyclone® devices contain a two-dimensional row- and column-based architecture to implement custom logic. Column and row interconnects of varying speeds provide signal interconnects between LABs and embedded memory blocks. The logic array consists of LABs, with 10 LEs in each LAB. An LE is a small unit of logic providing efficient implementation of user logic functions. LABs are grouped into rows and columns across the device. Cyclone devices range between 2,910 to 20,060 LEs. M4K RAM blocks are true dual-port memory blocks with 4K bits of memory plus parity (4,608 bits). These blocks provide dedicated true dual-port, simple dual-port, or single-port memory up to 36-bits wide at up to 250 MHz. These blocks are grouped into columns across the device in between certain LABs. Cyclone devices offer between 60 to 288 Kbits of embedded RAM. Each Cyclone device I/O pin is fed by an I/O element (IOE) located at the ends of LAB rows and columns around the periphery of the device. I/O pins support various single-ended and differential I/O standards, such as the 66- and 33-MHz, 64- and 32-bit PCI standard and the LVDS I/O standard at up to 640 Mbps. Each IOE contains a bidirectional I/O buffer and three registers for registering input, output, and output-enable signals. Dual-purpose DQS, DQ, and DM pins along with delay chains (used to phase-align DDR signals) provide interface support with external memory devices such as DDR SDRAM, and FCRAM devices at up to 133 MHz (266 Mbps). Cyclone devices provide a global clock network and up to two PLLs. The global clock network consists of eight global clock lines that drive throughout the entire device. The global clock network can provide clocks for all resources within the device, such as IOEs, LEs, and memory blocks. The global clock lines can also be used for control signals. Cyclone PLLs provide general-purpose clocking with clock multiplication and phase shifting as well as external outputs for high-speed differential I/O support. Figure 2–1 shows a diagram of the Cyclone EP1C12 device. Figure 2-7. LE in Dynamic Arithmetic Mode Note to Figure 2-7: (1) The addnsub signal is tied to the carry input for the first LE of a carry chain only. ### Carry-Select Chain The carry-select chain provides a very fast carry-select function between LEs in dynamic arithmetic mode. The carry-select chain uses the redundant carry calculation to increase the speed of carry functions. The LE is configured to calculate outputs for a possible carry-in of 0 and carry-in of 1 in parallel. The carry-in0 and carry-in1 signals from a lower-order bit feed forward into the higher-order bit via the parallel carry chain and feed into both the LUT and the next portion of the carry chain. Carry-select chains can begin in any LE within a LAB. The speed advantage of the carry-select chain is in the parallel pre-computation of carry chains. Since the LAB carry-in selects the precomputed carry chain, not every LE is in the critical path. Only the propagation delays between LAB carry-in generation (LE 5 and LE 10) are now part of the critical path. This feature allows the Cyclone architecture to implement high-speed counters, adders, multipliers, parity functions, and comparators of arbitrary width. The Quartus II Compiler automatically creates carry chain logic during design processing, or you can create it manually during design entry. Parameterized functions such as LPM functions automatically take advantage of carry chains for the appropriate functions. The Quartus II Compiler creates carry chains longer than 10 LEs by linking LABs together automatically. For enhanced fitting, a long carry chain runs vertically allowing fast horizontal connections to M4K memory blocks. A carry chain can continue as far as a full column. ### Clear and Preset Logic Control LAB-wide signals control the logic for the register's clear and preset signals. The LE directly supports an asynchronous clear and preset function. The register preset is achieved through the asynchronous load of a logic high. The direct asynchronous preset does not require a NOT-gate push-back technique. Cyclone devices support simultaneous preset/ asynchronous load and clear signals. An asynchronous clear signal takes precedence if both signals are asserted simultaneously. Each LAB supports up to two clears and one preset signal. In addition to the clear and preset ports, Cyclone devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. An option set before compilation in the Quartus II software controls this pin. This chip-wide reset overrides all other control signals. # MultiTrack Interconnect In the Cyclone architecture, connections between LEs, M4K memory blocks, and device I/O pins are provided by the MultiTrack interconnect structure with DirectDriveTM technology. The MultiTrack interconnect consists of continuous, performance-optimized routing lines of different speeds used for inter- and intra-design block connectivity. The Quartus II Compiler automatically places critical design paths on faster interconnects to improve design performance. DirectDrive technology is a deterministic routing technology that ensures identical routing resource usage for any function regardless of placement within the device. The MultiTrack interconnect and DirectDrive technology simplify the integration stage of block-based designing by eliminating the re-optimization cycles that typically follow design changes and additions. The MultiTrack interconnect consists of row and column interconnects that span fixed distances. A routing structure with fixed length resources for all devices allows predictable and repeatable performance when In addition to true dual-port memory, the M4K memory blocks support simple dual-port and single-port RAM. Simple dual-port memory supports a simultaneous read and write. Single-port memory supports non-simultaneous reads and writes. Figure 2–13 shows these different M4K RAM memory port configurations. Figure 2–13. Simple Dual-Port and Single-Port Memory Configurations ### Simple Dual-Port Memory #### Single-Port Memory (1) #### *Note to Figure 2–13:* Two single-port memory blocks can be implemented in a single M4K block as long as each of the two independent block sizes is equal to or less than half of the M4K block size. The memory blocks also enable mixed-width data ports for reading and writing to the RAM ports in dual-port RAM configuration. For example, the memory block can be written in $\times 1$ mode at port A and read out in $\times 16$ mode from port B. The Cyclone memory architecture can implement fully synchronous RAM by registering both the input and output signals to the M4K RAM block. All M4K memory block inputs are registered, providing synchronous write cycles. In synchronous operation, the memory block generates its own self-timed strobe write enable (wren) signal derived from a global clock. In contrast, a circuit using asynchronous RAM must generate the RAM wren signal while ensuring its data and address signals meet setup and hold time specifications relative to the wren is not available in the true dual-port mode. Mixed-width configurations are also possible, allowing different read and write widths. Tables 2–3 and 2–4 summarize the possible M4K RAM block configurations. | Table 2–3. M4K RAM Block Configurations (Simple Dual-Port) | | | | | | | | | | | | | | | |------------------------------------------------------------|----------|------------|----------|----------|----------|----------|----------|----------|----------|--|--|--|--|--| | Read Port | | Write Port | | | | | | | | | | | | | | neau ruii | 4K × 1 | 2K × 2 | 1K × 4 | 512 × 8 | 256 × 16 | 128 × 32 | 512 × 9 | 256 × 18 | 128 × 36 | | | | | | | 4K × 1 | ✓ | ✓ | ✓ | ~ | ✓ | ✓ | _ | _ | _ | | | | | | | 2K × 2 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | _ | _ | _ | | | | | | | 1K × 4 | ~ | ✓ | ✓ | ~ | ✓ | ✓ | _ | _ | _ | | | | | | | 512 × 8 | ✓ | ✓ | ✓ | ~ | ✓ | ✓ | _ | _ | _ | | | | | | | 256 × 16 | ~ | ✓ | ✓ | ~ | ✓ | ✓ | _ | _ | _ | | | | | | | 128 × 32 | ✓ | ✓ | ✓ | ~ | ✓ | ✓ | _ | _ | _ | | | | | | | 512 × 9 | _ | _ | _ | _ | _ | _ | ✓ | ~ | ✓ | | | | | | | 256 × 18 | _ | _ | _ | _ | _ | _ | ✓ | ~ | ✓ | | | | | | | 128 × 36 | <u> </u> | _ | _ | _ | _ | _ | ✓ | ✓ | ✓ | | | | | | | Table 2–4. M4K RAM Block Configurations (True Dual-Port) | | | | | | | | | | | | | |----------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|--|--|--|--|--| | D 14 | | Port B | | | | | | | | | | | | Port A | 4K × 1 | 2K × 2 | 1K × 4 | 512 × 8 | 256 × 16 | 512 × 9 | 256 × 18 | | | | | | | 4K × 1 | ✓ | ✓ | ✓ | ✓ | ✓ | _ | _ | | | | | | | 2K × 2 | ✓ | ✓ | ✓ | ✓ | ✓ | _ | _ | | | | | | | 1K × 4 | ✓ | ✓ | ✓ | ✓ | ✓ | _ | _ | | | | | | | 512 × 8 | ✓ | ✓ | ✓ | ✓ | ✓ | _ | _ | | | | | | | 256 × 16 | ✓ | ✓ | ✓ | ✓ | ✓ | _ | _ | | | | | | | 512 × 9 | _ | _ | _ | _ | _ | ✓ | ✓ | | | | | | | 256 × 18 | _ | _ | _ | _ | _ | ✓ | ✓ | | | | | | When the M4K RAM block is configured as a shift register block, you can create a shift register up to 4,608 bits $(w \times m \times n)$. ### Read/Write Clock Mode The M4K memory blocks implement read/write clock mode for simple dual-port memory. You can use up to two clocks in this mode. The write clock controls the block's data inputs, wraddress, and wren. The read clock controls the data output, rdaddress, and rden. The memory blocks support independent clock enables for each clock and asynchronous clear signals for the read- and write-side registers. Figure 2–20 shows a memory block in read/write clock mode. Figure 2–20. Read/Write Clock Mode in Simple Dual-Port Mode Notes (1), (2) #### *Notes to Figure 2–20:* - (1) All registers shown except the rden register have asynchronous clear ports. - (2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both read and write operations. ### **Single-Port Mode** The M4K memory blocks also support single-port mode, used when simultaneous reads and writes are not required. See Figure 2–21. A single M4K memory block can support up to two single-port mode RAM blocks if each RAM block is less than or equal to 2K bits in size. Figure 2–21. Single-Port Mode Note (1) Note to Figure 2–21: (1) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both read and write operations. # Global Clock Network and Phase-Locked Loops Cyclone devices provide a global clock network and up to two PLLs for a complete clock management solution. ### **Global Clock Network** There are four dedicated clock pins (CLK[3..0], two pins on the left side and two pins on the right side) that drive the global clock network, as shown in Figure 2–22. PLL outputs, logic array, and dual-purpose clock (DPCLK[7..0]) pins can also drive the global clock network. | Table 2–7. Global Clock Network Sources (Part 2 of 2) | | | | | | | | | | | | | |-------------------------------------------------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--| | Sou | rce | GCLKO | GCLK1 | GCLK2 | GCLK3 | GCLK4 | GCLK5 | GCLK6 | GCLK7 | | | | | Dual-Purpose | DPCLK0 (3) | _ | _ | _ | ✓ | _ | _ | _ | _ | | | | | Clock Pins | DPCLK1 (3) | _ | _ | ✓ | _ | _ | _ | _ | _ | | | | | | DPCLK2 | ✓ | _ | _ | _ | _ | _ | _ | _ | | | | | | DPCLK3 | _ | _ | _ | _ | ✓ | _ | _ | _ | | | | | | DPCLK4 | | _ | _ | _ | _ | | ✓ | _ | | | | | | DPCLK5 (3) | _ | _ | _ | _ | _ | _ | _ | ✓ | | | | | | DPCLK6 | _ | _ | _ | _ | _ | ✓ | _ | _ | | | | | | DPCLK7 | _ | ✓ | _ | _ | _ | _ | _ | _ | | | | Notes to Table 2-7: - (1) EP1C3 devices only have one PLL (PLL 1). - (2) EP1C3 devices in the 100-pin TQFP package do not have dedicated clock pins CLK1 and CLK3. - (3) EP1C3 devices in the 100-pin TQFP package do not have the DPCLK0, DPCLK1, or DPCLK5 pins. ### **Clock Multiplication and Division** Cyclone PLLs provide clock synthesis for PLL output ports using $m/(n \times post$ scale counter) scaling factors. The input clock is divided by a pre-scale divider, n, and is then multiplied by the m feedback factor. The control loop drives the VCO to match $f_{\rm IN} \times (m/n)$. Each output port has a unique post-scale counter to divide down the high-frequency VCO. For multiple PLL outputs with different frequencies, the VCO is set to the least-common multiple of the output frequencies that meets its frequency specifications. Then, the post-scale dividers scale down the output frequency for each output port. For example, if the output frequencies required from one PLL are 33 and 66 MHz, the VCO is set to 330 MHz (the least-common multiple in the VCO's range). Each PLL has one pre-scale divider, n, that can range in value from 1 to 32. Each PLL also has one multiply divider, m, that can range in value from 2 to 32. Global clock outputs have two post scale G dividers for global clock outputs, and external clock outputs have an E divider for external clock output, both ranging from 1 to 32. The Quartus II software automatically chooses the appropriate scaling factors according to the input frequency, multiplication, and division values entered. # I/O Structure IOEs support many features, including: - Differential and single-ended I/O standards - 3.3-V, 64- and 32-bit, 66- and 33-MHz PCI compliance - Joint Test Action Group (JTAG) boundary-scan test (BST) support - Output drive strength control - Weak pull-up resistors during configuration - Slew-rate control - Tri-state buffers - Bus-hold circuitry - Programmable pull-up resistors in user mode - Programmable input and output delays - Open-drain outputs - DQ and DQS I/O pins Cyclone device IOEs contain a bidirectional I/O buffer and three registers for complete embedded bidirectional single data rate transfer. Figure 2–27 shows the Cyclone IOE structure. The IOE contains one input register, one output register, and one output enable register. You can use the input registers for fast setup times and output registers for fast clock-to-output times. Additionally, you can use the output enable (OE) register for fast clock-to-output enable timing. The Quartus II software automatically duplicates a single OE register that controls multiple output or bidirectional pins. IOEs can be used as input, output, or bidirectional pins. Figure 2-27. Cyclone IOE Structure Note to Figure 2-27: There are two paths available for combinatorial inputs to the logic array. Each path contains a unique programmable delay chain. The IOEs are located in I/O blocks around the periphery of the Cyclone device. There are up to three IOEs per row I/O block and up to three IOEs per column I/O block (column I/O blocks span two columns). The row I/O blocks drive row, column, or direct link interconnects. The column I/O blocks drive column interconnects. Figure 2–28 shows how a row I/O block connects to the logic array. Figure 2–29 shows how a column I/O block connects to the logic array. The pin's datain signals can drive the logic array. The logic array drives the control and data signals, providing a flexible routing resource. The row or column IOE clocks, io_clk[5..0], provide a dedicated routing resource for low-skew, high-speed clocks. The global clock network generates the IOE clocks that feed the row or column I/O regions (see "Global Clock Network and Phase-Locked Loops" on page 2–29). Figure 2–30 illustrates the signal paths through the I/O block. Figure 2-30. Signal Path through the I/O Block Each IOE contains its own control signal selection for the following control signals: oe, ce_in, ce_out, aclr/preset, sclr/preset, clk_in, and clk_out. Figure 2–31 illustrates the control signal selection. to automatically minimize setup time while providing a zero hold time. Programmable delays can increase the register-to-pin delays for output registers. Table 2–9 shows the programmable delays for Cyclone devices. | Table 2–9. Cyclone Programmable Delay Chain | | | | | | | | |---------------------------------------------|-----------------------------------------|--|--|--|--|--|--| | Programmable Delays Quartus II Logic Option | | | | | | | | | Input pin to logic array delay | Decrease input delay to internal cells | | | | | | | | Input pin to input register delay | Decrease input delay to input registers | | | | | | | | Output pin delay | Increase delay to output pin | | | | | | | There are two paths in the IOE for a combinatorial input to reach the logic array. Each of the two paths can have a different delay. This allows you adjust delays from the pin to internal LE registers that reside in two different areas of the device. The designer sets the two combinatorial input delays by selecting different delays for two different paths under the **Decrease input delay to internal cells** logic option in the Quartus II software. When the input signal requires two different delays for the combinatorial input, the input register in the IOE is no longer available. The IOE registers in Cyclone devices share the same source for clear or preset. The designer can program preset or clear for each individual IOE. The designer can also program the registers to power up high or low after configuration is complete. If programmed to power up low, an asynchronous clear can control the registers. If programmed to power up high, an asynchronous preset can control the registers. This feature prevents the inadvertent activation of another device's active-low input upon power up. If one register in an IOE uses a preset or clear signal then all registers in the IOE must use that same signal if they require preset or clear. Additionally a synchronous reset signal is available to the designer for the IOE registers. # **External RAM Interfacing** Cyclone devices support DDR SDRAM and FCRAM interfaces at up to 133 MHz through dedicated circuitry. ### DDR SDRAM and FCRAM Cyclone devices have dedicated circuitry for interfacing with DDR SDRAM. All I/O banks support DDR SDRAM and FCRAM I/O pins. However, the configuration input pins in bank 1 must operate at 2.5 V because the SSTL-2 $\rm V_{CCIO}$ level is 2.5 V. Additionally, the configuration output pins (nSTATUS and CONF_DONE) and all the JTAG pins in I/O bank 3 must operate at 2.5 V because the V_{CCIO} level of SSTL-2 is 2.5 V. I/O banks 1, 2, 3, and 4 support DQS signals with DQ bus modes of \times 8. For ×8 mode, there are up to eight groups of programmable DQS and DQ pins, I/O banks 1, 2, 3, and 4 each have two groups in the 324-pin and 400-pin FineLine BGA packages. Each group consists of one DQS pin, a set of eight DQ pins, and one DM pin (see Figure 2–33). Each DQS pin drives the set of eight DQ pins within that group. Figure 2–33. Cyclone Device DQ and DQS Groups in ×8 Mode Note (1) Note to Figure 2-33: (1) Each DQ group consists of one DQS pin, eight DQ pins, and one DM pin. Table 2–10 shows the number of DQ pin groups per device. | Table 2–10. DQ Pin Groups (Part 1 of 2) | | | | | | | | | | |-----------------------------------------|----------------------|--------------------------------|-----------------------|--|--|--|--|--|--| | Device | Package | Number of × 8 DQ
Pin Groups | Total DQ Pin
Count | | | | | | | | EP1C3 | 100-pin TQFP (1) | 3 | 24 | | | | | | | | | 144-pin TQFP | 4 | 32 | | | | | | | | EP1C4 | 324-pin FineLine BGA | 8 | 64 | | | | | | | | | 400-pin FineLine BGA | 8 | 64 | | | | | | | and DM pins to support a DDR SDRAM or FCRAM interface. I/O bank 1 can also support a DDR SDRAM or FCRAM interface, however, the configuration input pins in I/O bank 1 must operate at 2.5 V. I/O bank 3 can also support a DDR SDRAM or FCRAM interface, however, all the JTAG pins in I/O bank 3 must operate at 2.5 V. **Figure 2–35. Cyclone I/O Banks** Notes (1), (2) I/O Bank 4 #### *Notes to Figure 2–35:* - (1) Figure 2–35 is a top view of the silicon die. - (2) Figure 2–35 is a graphic representation only. Refer to the pin list and the Quartus II software for exact pin locations. Each I/O bank has its own VCCIO pins. A single device can support 1.5-V, 1.8-V, 2.5-V, and 3.3-V interfaces; each individual bank can support a different standard with different I/O voltages. Each bank also has dual-purpose VREF pins to support any one of the voltage-referenced standards (e.g., SSTL-3) independently. If an I/O bank does not use voltage-referenced standards, the $V_{\rm REF}$ pins are available as user I/O pins. ## **Operating Modes** The Cyclone architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. Together, the configuration and initialization processes are called command mode. Normal device operation is called user mode. SRAM configuration elements allow Cyclone devices to be reconfigured in-circuit by loading new configuration data into the device. With real-time reconfiguration, the device is forced into command mode with a device pin. The configuration process loads different configuration data, reinitializes the device, and resumes user-mode operation. Designers can perform in-field upgrades by distributing new configuration files either within the system or remotely. A built-in weak pull-up resistor pulls all user I/O pins to V_{CCIO} before and during device configuration. The configuration pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O standards. The voltage level of the configuration output pins is determined by the V_{CCIO} of the bank where the pins reside. The bank V_{CCIO} selects whether the configuration inputs are 1.5-V, 1.8-V, 2.5-V, or 3.3-V compatible. # **Configuration Schemes** Designers can load the configuration data for a Cyclone device with one of three configuration schemes (see Table 3–5), chosen on the basis of the target application. Designers can use a configuration device, intelligent controller, or the JTAG port to configure a Cyclone device. A low-cost configuration device can automatically configure a Cyclone device at system power-up. | Table 4–24. Routing Delay Internal Timing Microparameter Descriptions | | | | | | | | |---|--|--|--|--|--|--|--| | Symbol Parameter | | | | | | | | | t _{R4} | Delay for an R4 line with average loading; covers a distance of four LAB columns | | | | | | | | t _{C4} | Delay for an C4 line with average loading; covers a distance of four LAB rows | | | | | | | | t _{LOCAL} | Local interconnect delay | | | | | | | Figure 4–1 shows the memory waveforms for the M4K timing parameters shown in Table 4–23. | Table 4–29. C | yclone Global Clock External I/O Timing Parameters No | tes (1), (2) (Part 2 of 2) | |---------------|---|----------------------------| | Symbol | Parameter | Conditions | | toutcople | Clock-to-output delay output or bidirectional pin using IOE output register with global clock enhanced PLL with default phase setting | C _{LOAD} = 10 pF | ### Notes to Table 4-29: - (1) These timing parameters are sample-tested only. - (2) These timing parameters are for IOE pins using a 3.3-V LVTTL, 24-mA setting. Designers should use the Quartus II software to verify the external timing for any pin. Tables 4–30 through 4–31 show the external timing parameters on column and row pins for EP1C3 devices. | Table 4–30. EP1C3 Column Pin Global Clock External I/O Timing
Parameters | | | | | | | | | | | | |---|---------|---------|---------|---------|---------|-------|------|--|--|--|--| | Cumbal | -6 Spee | d Grade | -7 Spee | d Grade | -8 Spee | | | | | | | | Symbol | Min | Max | Min | Max | Min | Max | Unit | | | | | | t _{INSU} | 3.085 | _ | 3.547 | _ | 4.009 | _ | ns | | | | | | t _{INH} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | | | toutco | 2.000 | 4.073 | 2.000 | 4.682 | 2.000 | 5.295 | ns | | | | | | t _{INSUPLL} | 1.795 | _ | 2.063 | _ | 2.332 | _ | ns | | | | | | t _{INHPLL} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | | | toutcople | 0.500 | 2.306 | 0.500 | 2.651 | 0.500 | 2.998 | ns | | | | | | Table 4–31. EP1C3 Row Pin Global Clock External I/O Timing Parameters | | | | | | | | | | | | |---|---------|---------|---------|---------|---------|-------|------|--|--|--|--| | Symbol | -6 Spee | d Grade | -7 Spee | d Grade | -8 Spee | IIiA | | | | | | | | Min | Max | Min | Max | Min | Max | Unit | | | | | | t _{INSU} | 3.157 | _ | 3.630 | _ | 4.103 | _ | ns | | | | | | t _{INH} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | | | t _{outco} | 2.000 | 3.984 | 2.000 | 4.580 | 2.000 | 5.180 | ns | | | | | | t _{INSUPLL} | 1.867 | _ | 2.146 | _ | 2.426 | _ | ns | | | | | | t _{INHPLL} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | | | toutcople | 0.500 | 2.217 | 0.500 | 2.549 | 0.500 | 2.883 | ns | | | | | | Table 4–39. EP1C20 Row Pin Global Clock External I/O Timing Parameters | | | | | | | | | | | | |--|---------|---------|---------|---------|---------|-------|------|--|--|--|--| | Cumbal | -6 Spee | d Grade | -7 Spee | d Grade | -8 Spee | IIiA | | | | | | | Symbol | Min | Max | Min | Max | Min | Max | Unit | | | | | | t _{INSU} | 2.417 | _ | 2.779 | _ | 3.140 | _ | ns | | | | | | t _{INH} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | | | toutco | 2.000 | 3.724 | 2.000 | 4.282 | 2.000 | 4.843 | ns | | | | | | t _{XZ} | _ | 3.645 | _ | 4.191 | _ | 4.740 | ns | | | | | | t _{ZX} | _ | 3.645 | _ | 4.191 | _ | 4.740 | ns | | | | | | t _{INSUPLL} | 1.417 | _ | 1.629 | _ | 1.840 | _ | ns | | | | | | t _{INHPLL} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | | | toutcople | 0.500 | 1.667 | 0.500 | 1.917 | 0.500 | 2.169 | ns | | | | | | t _{XZPLL} | _ | 1.588 | _ | 1.826 | _ | 2.066 | ns | | | | | | t _{ZXPLL} | _ | 1.588 | 1 | 1.826 | _ | 2.066 | ns | | | | | # **External I/O Delay Parameters** External I/O delay timing parameters for I/O standard input and output adders and programmable input and output delays are specified by speed grade independent of device density. Tables 4–40 through 4–45 show the adder delays associated with column and row I/O pins for all packages. If an I/O standard is selected other than LVTTL 4 mA with a fast slew rate, add the selected delay to the external t_{CO} and t_{SU} I/O parameters shown in Tables 4–25 through 4–28. | Table 4–40. Cyclone I/O Standard Column Pin Input Delay Adders (Part 1 of 2) | | | | | | | | | | | | |--|----------------|------|---------|---------|---------|------|------|--|--|--|--| | 1/0 0444 | -6 Speed Grade | | -7 Spee | d Grade | -8 Spee | Unit | | | | | | | I/O Standard | Min | Max | Min | Max | Min | Max | Unit | | | | | | LVCMOS | _ | 0 | _ | 0 | _ | 0 | ps | | | | | | 3.3-V LVTTL | _ | 0 | _ | 0 | _ | 0 | ps | | | | | | 2.5-V LVTTL | _ | 27 | _ | 31 | _ | 35 | ps | | | | | | 1.8-V LVTTL | _ | 182 | _ | 209 | _ | 236 | ps | | | | | | 1.5-V LVTTL | _ | 278 | _ | 319 | _ | 361 | ps | | | | | | SSTL-3 class I | _ | -250 | _ | -288 | _ | -325 | ps | | | | | | SSTL-3 class II | _ | -250 | _ | -288 | _ | -325 | ps | | | | | | SSTL-2 class I | _ | -278 | _ | -320 | _ | -362 | ps | | | | |