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1. Introduction

Introduction The Cyclone® field programmable gate array family is based on a 1.5-V, 
0.13-μm, all-layer copper SRAM process, with densities up to 
20,060 logic elements (LEs) and up to 288 Kbits of RAM. With features like 
phase-locked loops (PLLs) for clocking and a dedicated double data rate 
(DDR) interface to meet DDR SDRAM and fast cycle RAM (FCRAM) 
memory requirements, Cyclone devices are a cost-effective solution for 
data-path applications. Cyclone devices support various I/O standards, 
including LVDS at data rates up to 640 megabits per second (Mbps), and 
66- and 33-MHz, 64- and 32-bit peripheral component interconnect (PCI), 
for interfacing with and supporting ASSP and ASIC devices. Altera also 
offers new low-cost serial configuration devices to configure Cyclone 
devices.

Features The Cyclone device family offers the following features:

■ 2,910 to 20,060 LEs, see Table 1–1
■ Up to 294,912 RAM bits (36,864 bytes)
■ Supports configuration through low-cost serial configuration device
■ Support for LVTTL, LVCMOS, SSTL-2, and SSTL-3 I/O standards
■ Support for 66- and 33-MHz, 64- and 32-bit PCI standard
■ High-speed (640 Mbps) LVDS I/O support
■ Low-speed (311 Mbps) LVDS I/O support
■ 311-Mbps RSDS I/O support
■ Up to two PLLs per device provide clock multiplication and phase 

shifting
■ Up to eight global clock lines with six clock resources available per 

logic array block (LAB) row
■ Support for external memory, including DDR SDRAM (133 MHz), 

FCRAM, and single data rate (SDR) SDRAM
■ Support for multiple intellectual property (IP) cores, including 

Altera® MegaCore® functions and Altera Megafunctions Partners 
Program (AMPPSM) megafunctions. 

Table 1–1. Cyclone Device Features  (Part 1 of 2)

Feature EP1C3 EP1C4 EP1C6 EP1C12 EP1C20

LEs 2,910 4,000 5,980 12,060 20,060

M4K RAM blocks (128 × 36 bits) 13 17 20 52 64

C51001-1.5
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Figure 2–1. Cyclone EP1C12 Device Block Diagram

The number of M4K RAM blocks, PLLs, rows, and columns vary per 
device. Table 2–1 lists the resources available in each Cyclone device.

Logic Array

PLL

IOEs

M4K Blocks

EP1C12 Device

Table 2–1. Cyclone Device Resources

Device
M4K RAM

PLLs LAB Columns LAB Rows
Columns Blocks

EP1C3 1 13 1 24 13

EP1C4 1 17 2 26 17

EP1C6 1 20 2 32 20

EP1C12 2 52 2 48 26

EP1C20 2 64 2 64 32
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Logic Elements

Figure 2–8 shows the carry-select circuitry in a LAB for a 10-bit full adder. 
One portion of the LUT generates the sum of two bits using the input 
signals and the appropriate carry-in bit; the sum is routed to the output 
of the LE. The register can be bypassed for simple adders or used for 
accumulator functions. Another portion of the LUT generates carry-out 
bits. A LAB-wide carry-in bit selects which chain is used for the addition 
of given inputs. The carry-in signal for each chain, carry-in0 or 
carry-in1, selects the carry-out to carry forward to the carry-in signal 
of the next-higher-order bit. The final carry-out signal is routed to an LE, 
where it is fed to local, row, or column interconnects. 

Figure 2–8. Carry Select Chain
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Figure 2–9. R4 Interconnect Connections

Notes to Figure 2–9:
(1) C4 interconnects can drive R4 interconnects.
(2) This pattern is repeated for every LAB in the LAB row.

The column interconnect operates similarly to the row interconnect. Each 
column of LABs is served by a dedicated column interconnect, which 
vertically routes signals to and from LABs, M4K memory blocks, and row 
and column IOEs. These column resources include:

■ LUT chain interconnects within a LAB
■ Register chain interconnects within a LAB
■ C4 interconnects traversing a distance of four blocks in an up and 

down direction

Cyclone devices include an enhanced interconnect structure within LABs 
for routing LE output to LE input connections faster using LUT chain 
connections and register chain connections. The LUT chain connection 
allows the combinatorial output of an LE to directly drive the fast input 
of the LE right below it, bypassing the local interconnect. These resources 
can be used as a high-speed connection for wide fan-in functions from 
LE 1 to LE 10 in the same LAB. The register chain connection allows the 
register output of one LE to connect directly to the register input of the 
next LE in the LAB for fast shift registers. The Quartus II Compiler 
automatically takes advantage of these resources to improve utilization 
and performance. Figure 2–10 shows the LUT chain and register chain 
interconnects.
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Figure 2–11. C4 Interconnect Connections Note (1)

Note to Figure 2–11:
(1) Each C4 interconnect can drive either up or down four rows.

C4 Interconnect
Drives Local and R4
Interconnects
Up to Four Rows

Adjacent LAB can
drive onto neighboring
LAB's C4 interconnect

C4 Interconnect
Driving Up

C4 Interconnect
Driving Down

LAB

Row
Interconnect

Local
Interconnect



Altera Corporation  2–21
May 2008 Preliminary

Embedded Memory

register outputs (number of taps n × width w) must be less than the 
maximum data width of the M4K RAM block (×36). To create larger shift 
registers, multiple memory blocks are cascaded together.

Data is written into each address location at the falling edge of the clock 
and read from the address at the rising edge of the clock. The shift register 
mode logic automatically controls the positive and negative edge 
clocking to shift the data in one clock cycle. Figure 2–14 shows the M4K 
memory block in the shift register mode.

Figure 2–14. Shift Register Memory Configuration

Memory Configuration Sizes

The memory address depths and output widths can be configured as 
4,096 × 1, 2,048 × 2, 1,024 × 4, 512 × 8 (or 512 × 9 bits), 256 × 16 (or 256 × 18 
bits), and 128 × 32 (or 128 × 36 bits). The 128 × 32- or 36-bit configuration 
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Embedded Memory

Byte Enables

M4K blocks support byte writes when the write port has a data width of 
16, 18, 32, or 36 bits. The byte enables allow the input data to be masked 
so the device can write to specific bytes. The unwritten bytes retain the 
previous written value. Table 2–5 summarizes the byte selection. 

Control Signals and M4K Interface

The M4K blocks allow for different clocks on their inputs and outputs. 
Either of the two clocks feeding the block can clock M4K block registers 
(renwe, address, byte enable, datain, and output registers). Only the 
output register can be bypassed. The six labclk signals or local 
interconnects can drive the control signals for the A and B ports of the 
M4K block. LEs can also control the clock_a, clock_b, renwe_a, 
renwe_b, clr_a, clr_b, clocken_a, and clocken_b signals, as 
shown in Figure 2–15.

The R4, C4, and direct link interconnects from adjacent LABs drive the 
M4K block local interconnect. The M4K blocks can communicate with 
LABs on either the left or right side through these row resources or with 
LAB columns on either the right or left with the column resources. Up to 
10 direct link input connections to the M4K block are possible from the 
left adjacent LABs and another 10 possible from the right adjacent LAB. 
M4K block outputs can also connect to left and right LABs through 10 
direct link interconnects each. Figure 2–16 shows the M4K block to logic 
array interface.

Table 2–5. Byte Enable for M4K Blocks Notes (1), (2)

byteena[3..0] datain ×18 datain ×36

[0] = 1 [8..0] [8..0]

[1] = 1 [17..9] [17..9]

[2] = 1 — [26..18]

[3] = 1 — [35..27]

Notes to Table 2–5:
(1) Any combination of byte enables is possible.
(2) Byte enables can be used in the same manner with 8-bit words, i.e., in ×16 and ×32 

modes.



2–24  Altera Corporation
Preliminary May 2008

Cyclone Device Handbook, Volume 1

Figure 2–15. M4K RAM Block Control Signals

Figure 2–16. M4K RAM Block LAB Row Interface
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Global Clock Network and Phase-Locked Loops

does not have dedicated clock output pins. The EP1C6 device in the 
144-pin TQFP package only supports dedicated clock outputs from 
PLL 1.

Clock Feedback

Cyclone PLLs have three modes for multiplication and/or phase shifting:

■ Zero delay buffer mode⎯The external clock output pin is phase-
aligned with the clock input pin for zero delay. 

■ Normal mode⎯If the design uses an internal PLL clock output, the 
normal mode compensates for the internal clock delay from the input 
clock pin to the IOE registers. The external clock output pin is phase 
shifted with respect to the clock input pin if connected in this mode. 
You defines which internal clock output from the PLL should be 
phase-aligned to compensate for internal clock delay.

■ No compensation mode⎯In this mode, the PLL will not compensate 
for any clock networks.

Phase Shifting

Cyclone PLLs have an advanced clock shift capability that enables 
programmable phase shifts. You can enter a phase shift (in degrees or 
time units) for each PLL clock output port or for all outputs together in 
one shift. You can perform phase shifting in time units with a resolution 
range of 125 to 250 ps. The finest resolution equals one eighth of the VCO 
period. The VCO period is a function of the frequency input and the 
multiplication and division factors. Each clock output counter can choose 
a different phase of the VCO period from up to eight taps. You can use this 
clock output counter along with an initial setting on the post-scale 
counter to achieve a phase-shift range for the entire period of the output 
clock. The phase tap feedback to the m counter can shift all outputs to a 
single phase. The Quartus II software automatically sets the phase taps 
and counter settings according to the phase shift entered.

Lock Detect Signal

The lock output indicates that there is a stable clock output signal in 
phase with the reference clock. Without any additional circuitry, the lock 
signal may toggle as the PLL begins tracking the reference clock. 
Therefore, you may need to gate the lock signal for use as a 
system-control signal. For correct operation of the lock circuit below
–20 C, fIN/N > 200 MHz.
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Programmable Duty Cycle

The programmable duty cycle allows PLLs to generate clock outputs with 
a variable duty cycle. This feature is supported on each PLL post-scale 
counter (g0, g1, e). The duty cycle setting is achieved by a low- and 
high-time count setting for the post-scale dividers. The Quartus II 
software uses the frequency input and the required multiply or divide 
rate to determine the duty cycle choices.

Control Signals

There are three control signals for clearing and enabling PLLs and their 
outputs. You can use these signals to control PLL resynchronization and 
the ability to gate PLL output clocks for low-power applications.

The pllenable signal enables and disables PLLs. When the pllenable 
signal is low, the clock output ports are driven by ground and all the PLLs 
go out of lock. When the pllenable signal goes high again, the PLLs 
relock and resynchronize to the input clocks. An input pin or LE output 
can drive the pllenable signal.

The areset signals are reset/resynchronization inputs for each PLL. 
Cyclone devices can drive these input signals from input pins or from 
LEs. When areset is driven high, the PLL counters will reset, clearing 
the PLL output and placing the PLL out of lock. When driven low again, 
the PLL will resynchronize to its input as it relocks. 

The pfdena signals control the phase frequency detector (PFD) output 
with a programmable gate. If you disable the PFD, the VCO will operate 
at its last set value of control voltage and frequency with some drift, and 
the system will continue running when the PLL goes out of lock or the 
input clock disables. By maintaining the last locked frequency, the system 
has time to store its current settings before shutting down. You can either 
use their own control signal or gated locked status signals to trigger the 
pfdena signal.

f For more information about Cyclone PLLs, refer to Using PLLs in Cyclone 
Devices chapter in the Cyclone Device Handbook.

http://www.altera.com/literature/hb/cyc/cyc_c51006.pdf
http://www.altera.com/literature/hb/cyc/cyc_c51006.pdf
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I/O Structure

Figure 2–32. Cyclone IOE in Bidirectional I/O Configuration

The Cyclone device IOE includes programmable delays to ensure zero 
hold times, minimize setup times, or increase clock to output times.

A path in which a pin directly drives a register may require a 
programmable delay to ensure zero hold time, whereas a path in which a 
pin drives a register through combinatorial logic may not require the 
delay. Programmable delays decrease input-pin-to-logic-array and IOE 
input register delays. The Quartus II Compiler can program these delays 
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I/O Structure

Slew-Rate Control

The output buffer for each Cyclone device I/O pin has a programmable 
output slew-rate control that can be configured for low noise or 
high-speed performance. A faster slew rate provides high-speed 
transitions for high-performance systems. However, these fast transitions 
may introduce noise transients into the system. A slow slew rate reduces 
system noise, but adds a nominal delay to rising and falling edges. Each 
I/O pin has an individual slew-rate control, allowing the designer to 
specify the slew rate on a pin-by-pin basis. The slew-rate control affects 
both the rising and falling edges.

Bus Hold

Each Cyclone device I/O pin provides an optional bus-hold feature. The 
bus-hold circuitry can hold the signal on an I/O pin at its last-driven 
state. Since the bus-hold feature holds the last-driven state of the pin until 
the next input signal is present, an external pull-up or pull-down resistor 
is not necessary to hold a signal level when the bus is tri-stated. 

The bus-hold circuitry also pulls undriven pins away from the input 
threshold voltage where noise can cause unintended high-frequency 
switching. The designer can select this feature individually for each I/O 
pin. The bus-hold output will drive no higher than VCCIO to prevent 
overdriving signals. If the bus-hold feature is enabled, the device cannot 
use the programmable pull-up option. Disable the bus-hold feature when 
the I/O pin is configured for differential signals.

The bus-hold circuitry uses a resistor with a nominal resistance (RBH) of 
approximately 7 kΩ to pull the signal level to the last-driven state. 
Table 4–15 on page 4–6 gives the specific sustaining current for each 
VCCIO voltage level driven through this resistor and overdrive current 
used to identify the next-driven input level. 

The bus-hold circuitry is only active after configuration. When going into 
user mode, the bus-hold circuit captures the value on the pin present at 
the end of configuration.

Programmable Pull-Up Resistor

Each Cyclone device I/O pin provides an optional programmable 
pull-up resistor during user mode. If the designer enables this feature for 
an I/O pin, the pull-up resistor (typically 25 kΩ) holds the output to the 
VCCIO level of the output pin's bank. Dedicated clock pins do not have the 
optional programmable pull-up resistor.
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Each I/O bank can support multiple standards with the same VCCIO for 
input and output pins. For example, when VCCIO is 3.3-V, a bank can 
support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs.

LVDS I/O Pins

A subset of pins in all four I/O banks supports LVDS interfacing. These 
dual-purpose LVDS pins require an external-resistor network at the 
transmitter channels in addition to 100-Ω termination resistors on 
receiver channels. These pins do not contain dedicated serialization or 
deserialization circuitry; therefore, internal logic performs serialization 
and deserialization functions.

Table 2–13 shows the total number of supported LVDS channels per 
device density.

MultiVolt I/O Interface

The Cyclone architecture supports the MultiVolt I/O interface feature, 
which allows Cyclone devices in all packages to interface with systems of 
different supply voltages. The devices have one set of VCC pins for 
internal operation and input buffers (VCCINT), and four sets for I/O 
output drivers (VCCIO).

Table 2–13. Cyclone Device LVDS Channels

Device Pin Count Number of LVDS Channels

EP1C3 100 (1)

144 34

EP1C4 324 103

400 129

EP1C6 144 29

240 72

256 72

EP1C12 240 66

256 72

324 103

EP1C20 324 95

400 129

Note to Table 2–13:
(1) EP1C3 devices in the 100-pin TQFP package do not support the LVDS I/O 

standard.
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Power Sequencing and Hot Socketing

The Cyclone VCCINT pins must always be connected to a 1.5-V power 
supply. If the VCCINT level is 1.5 V, then input pins are 1.5-V, 1.8-V, 2.5-V, 
and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.5-V, 1.8-V, 
2.5-V, or 3.3-V power supply, depending on the output requirements. The 
output levels are compatible with systems of the same voltage as the 
power supply (i.e., when VCCIO pins are connected to a 1.5-V power 
supply, the output levels are compatible with 1.5-V systems). When VCCIO 
pins are connected to a 3.3-V power supply, the output high is 3.3-V and 
is compatible with 3.3-V or 5.0-V systems. Table 2–14 summarizes 
Cyclone MultiVolt I/O support.

Power 
Sequencing and 
Hot Socketing

Because Cyclone devices can be used in a mixed-voltage environment, 
they have been designed specifically to tolerate any possible power-up 
sequence. Therefore, the VCCIO and VCCINT power supplies may be 
powered in any order. 

Signals can be driven into Cyclone devices before and during power up 
without damaging the device. In addition, Cyclone devices do not drive 
out during power up. Once operating conditions are reached and the 
device is configured, Cyclone devices operate as specified by the user.

Table 2–14. Cyclone MultiVolt I/O Support Note (1)

VCCIO (V)
Input Signal Output Signal

1.5 V 1.8 V 2.5 V 3.3 V 5.0 V 1.5 V 1.8 V 2.5 V 3.3 V 5.0 V

1.5 v v v (2) v (2) — v — — — —

1.8 v v v (2) v (2) — v (3) v — — —

2.5 — — v v — v (5) v (5) v — —

3.3 — — v (4) v v (6) v (7) v (7) v (7) v v (8)

Notes to Table 2–14:
(1) The PCI clamping diode must be disabled to drive an input with voltages higher than VCCIO.
(2) When VCCIO = 1.5-V or 1.8-V and a 2.5-V or 3.3-V input signal feeds an input pin, higher pin leakage current is 

expected. Turn on Allow voltage overdrive for LVTTL / LVCMOS input pins in the Assignments > Device > 
Device and Pin Options > Pin Placement tab when a device has this I/O combinations.

(3) When VCCIO = 1.8-V, a Cyclone device can drive a 1.5-V device with 1.8-V tolerant inputs.
(4) When VCCIO = 3.3-V and a 2.5-V input signal feeds an input pin, the VCCIO supply current will be slightly larger 

than expected.
(5) When VCCIO = 2.5-V, a Cyclone device can drive a 1.5-V or 1.8-V device with 2.5-V tolerant inputs.
(6) Cyclone devices can be 5.0-V tolerant with the use of an external resistor and the internal PCI clamp diode.
(7) When VCCIO = 3.3-V, a Cyclone device can drive a 1.5-V, 1.8-V, or 2.5-V device with 3.3-V tolerant inputs.
(8) When VCCIO = 3.3-V, a Cyclone device can drive a device with 5.0-V LVTTL inputs but not 5.0-V LVCMOS inputs.
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3. Configuration and Testing

IEEE Std. 1149.1 
(JTAG) Boundary 
Scan Support

All Cyclone® devices provide JTAG BST circuitry that complies with the 
IEEE Std. 1149.1a-1990 specification. JTAG boundary-scan testing can be 
performed either before or after, but not during configuration. Cyclone 
devices can also use the JTAG port for configuration together with either 
the Quartus® II software or hardware using either Jam Files (.jam) or Jam 
Byte-Code Files (.jbc).

Cyclone devices support reconfiguring the I/O standard settings on the 
IOE through the JTAG BST chain. The JTAG chain can update the I/O 
standard for all input and output pins any time before or during user 
mode. Designers can use this ability for JTAG testing before configuration 
when some of the Cyclone pins drive or receive from other devices on the 
board using voltage-referenced standards. Since the Cyclone device 
might not be configured before JTAG testing, the I/O pins might not be 
configured for appropriate electrical standards for chip-to-chip 
communication. Programming those I/O standards via JTAG allows 
designers to fully test I/O connection to other devices.

The JTAG pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O standards. The 
TDO pin voltage is determined by the VCCIO of the bank where it resides. 
The bank VCCIO selects whether the JTAG inputs are 1.5-V, 1.8-V, 2.5-V, or 
3.3-V compatible. 

Cyclone devices also use the JTAG port to monitor the operation of the 
device with the SignalTap® II embedded logic analyzer. Cyclone devices 
support the JTAG instructions shown in Table 3–1.

Table 3–1. Cyclone JTAG Instructions  (Part 1 of 2)

JTAG Instruction Instruction Code Description

SAMPLE/PRELOAD 00 0000 0101 Allows a snapshot of signals at the device pins to be captured and 
examined during normal device operation, and permits an initial 
data pattern to be output at the device pins. Also used by the 
SignalTap II embedded logic analyzer.

EXTEST (1) 00 0000 0000 Allows the external circuitry and board-level interconnects to be 
tested by forcing a test pattern at the output pins and capturing test 
results at the input pins.

BYPASS 11 1111 1111 Places the 1-bit bypass register between the TDI and TDO pins, 
which allows the BST data to pass synchronously through selected 
devices to adjacent devices during normal device operation.

C51003-1.4
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Operating Conditions

Table 4–5. LVCMOS Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage — 3.0 3.6 V

VIH High-level input voltage — 1.7 4.1 V

VIL Low-level input voltage — –0.5 0.7 V

VOH High-level output voltage VCCIO = 3.0, 
IOH = –0.1 mA

VCCIO – 0.2 — V

VOL Low-level output voltage VCCIO = 3.0,
IOL = 0.1 mA

— 0.2 V

Table 4–6. 2.5-V I/O Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage — 2.375 2.625 V

VIH High-level input voltage — 1.7 4.1 V

VIL Low-level input voltage — –0.5 0.7 V

VOH High-level output voltage IOH = –0.1 mA 2.1 — V

IOH = –1 mA 2.0 — V

IOH = –2 to –16 mA (11) 1.7 — V

VOL Low-level output voltage IOL = 0.1 mA — 0.2 V

IOH = 1 mA — 0.4 V

IOH = 2 to 16 mA (11) — 0.7 V

Table 4–7. 1.8-V I/O Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage — 1.65 1.95 V

VI H High-level input voltage — 0.65 ×  
VCCIO

2.25 (12) V

VIL Low-level input voltage — –0.3 0.35 ×  
VCCIO 

V

VOH High-level output voltage IOH = –2 to –8 mA (11) VCCIO – 0.45 — V

VOL Low-level output voltage IOL = 2 to 8 mA (11) — 0.45 V
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Table 4–8. 1.5-V I/O Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage — 1.4 1.6 V

VI H High-level input voltage — 0.65 ×  
VCCIO

VCCIO + 0.3
(12)

V

VIL Low-level input voltage — –0.3 0.35 ×  
VCCIO

V

VOH High-level output voltage IOH = –2 mA (11) 0.75 ×  
VCCIO

— V

VOL Low-level output voltage IOL = 2 mA (11) — 0.25 ×  
VCCIO

V

Table 4–9. 2.5-V LVDS I/O Specifications Note (13)

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO I/O supply voltage — 2.375 2.5 2.625 V

VOD Differential output voltage RL = 100 Ω 250 — 550 mV

Δ VOD Change in VOD between 
high and low

RL = 100 Ω — — 50 mV

VOS Output offset voltage RL = 100 Ω 1.125 1.25 1.375 V

Δ VOS Change in VOS between 
high and low

RL = 100 Ω — — 50 mV

VTH Differential input threshold VCM = 1.2 V –100 — 100 mV

VIN Receiver input voltage 
range

— 0.0 — 2.4 V

RL Receiver differential input 
resistor

— 90 100 110 Ω

Table 4–10. 3.3-V PCI Specifications  (Part 1 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage — 3.0 3.3 3.6 V

VIH High-level input voltage — 0.5 ×  
VCCIO

— VCCIO + 
0.5

V

VIL Low-level input voltage — –0.5 — 0.3 ×  
VCCIO

V
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VREF Reference voltage — 1.3 1.5 1.7 V

VIH High-level input voltage — VR E F + 0.2 — VCCIO + 0.3 V

VIL Low-level input voltage — –0.3 — VR E F – 0.2 V

VOH High-level output voltage IOH = –8 mA (11) VTT + 0.6 — — V

VOL Low-level output voltage IOL = 8 mA (11) — — VT T – 0.6 V

Table 4–14. SSTL-3 Class II Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage — 3.0 3.3 3.6 V

VTT Termination voltage — VR E F – 0.05 VR E F VR E F + 0.05 V

VREF Reference voltage — 1.3 1.5 1.7 V

VIH High-level input voltage — VR E F + 0.2 — VCCIO + 0.3 V

VIL Low-level input voltage — –0.3 — VR E F – 0.2 V

VOH High-level output voltage IOH = –16 mA 
(11)

VT T + 0.8 — — V

VOL Low-level output voltage IOL = 16 mA (11) — — VTT – 0.8 V

Table 4–15. Bus Hold Parameters

Parameter Conditions

VC C I O  Level

Unit1.5 V 1.8 V 2.5 V 3.3 V

Min Max Min Max Min Max Min Max

Low sustaining 
current

VIN > VIL 
(maximum)

— — 30 — 50 — 70 — μA

High sustaining 
current

VIN < VIH 
(minimum)

— — –30 — –50 — –70 — μA

Low overdrive 
current

0 V < VIN < 
VCCIO

— — — 200 — 300 — 500 μA

High overdrive 
current

0 V < VIN < 
VCCIO

— — — –200 — –300 — –500 μA

Table 4–13. SSTL-3 Class I Specifications  (Part 2 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit
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Timing Model

Tables 4–30 through 4–31 show the external timing parameters on column 
and row pins for EP1C3 devices.

tO U T C O P L L Clock-to-output delay output or bidirectional pin using IOE 
output register with global clock enhanced PLL with default 
phase setting

CLOAD = 10 pF

Notes to Table 4–29:
(1) These timing parameters are sample-tested only.
(2) These timing parameters are for IOE pins using a 3.3-V LVTTL, 24-mA setting. Designers should use the Quartus II 

software to verify the external timing for any pin.

Table 4–29. Cyclone Global Clock External I/O Timing Parameters Notes (1), (2)  (Part 2 of 2)

Symbol Parameter Conditions

Table 4–30. EP1C3 Column Pin Global Clock External I/O Timing 
Parameters

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 3.085 — 3.547 — 4.009 — ns

tI N H 0.000 — 0.000 — 0.000 — ns

tO U T C O 2.000 4.073 2.000 4.682 2.000 5.295 ns

tI N S UP L L 1.795 — 2.063 — 2.332 — ns

tI N H P L L 0.000 — 0.000 — 0.000 — ns

tO U T C O P L L 0.500 2.306 0.500 2.651 0.500 2.998 ns

Table 4–31. EP1C3 Row Pin Global Clock External I/O Timing Parameters

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 3.157 — 3.630 — 4.103 — ns

tI N H 0.000 — 0.000 — 0.000 — ns

tO U T C O 2.000 3.984 2.000 4.580 2.000 5.180 ns

tI N S UP L L 1.867 — 2.146 — 2.426 — ns

tI N H P L L 0.000 — 0.000 — 0.000 — ns

tO U T C O P L L 0.500 2.217 0.500 2.549 0.500 2.883 ns
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Tables 4–46 through 4–47 show the adder delays for the IOE 
programmable delays. These delays are controlled with the Quartus II 
software options listed in the Parameter column.

SSTL-3 class I — 1,390 — 1,598 — 1,807 ps

SSTL-3 class II — 989 — 1,137 — 1,285 ps

SSTL-2 class I — 1,965 — 2,259 — 2,554 ps

SSTL-2 class II — 1,692 — 1,945 — 2,199 ps

LVDS — 802 — 922 — 1,042 ps

Note to Tables 4–40 through 4–45:
(1) EP1C3 devices do not support the PCI I/O standard.

Table 4–45. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Row Pins  (Part 2 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

Table 4–46. Cyclone IOE Programmable Delays on Column Pins

Parameter Setting
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

Decrease input delay to 
internal cells

Off — 155 — 178 — 201 ps

Small — 2,122 — 2,543 — 2,875 ps

Medium — 2,639 — 3,034 — 3,430 ps

Large — 3,057 — 3,515 — 3,974 ps

On — 155 — 178 — 201 ps

Decrease input delay to 
input register

Off — 0 — 0 — 0 ps

On — 3,057 — 3,515 — 3,974 ps

Increase delay to output 
pin

Off — 0 — 0 — 0 ps

On — 552 — 634 — 717 ps


