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Cyclone devices are available in quad flat pack (QFP) and space-saving 
FineLine® BGA packages (see Tables 1–2 through 1–3).

Vertical migration means you can migrate a design from one device to 
another that has the same dedicated pins, JTAG pins, and power pins, and 
are subsets or supersets for a given package across device densities. The 
largest density in any package has the  highest number of power pins; you 
must use the layout for the largest planned density in a package to 
provide the necessary power pins for migration.

For I/O pin migration across densities, cross-reference the available I/O 
pins using the device pin-outs for all planned densities of a given package 
type to identify which I/O pins can be migrated. The Quartus® II 
software can automatically cross-reference and place all pins for you 
when given a device migration list. If one device has power or ground 
pins, but these same pins are user I/O on a different device that is in the 
migration path,the Quartus II software ensures the pins are not used as 
user I/O in the Quartus II software. Ensure that these pins are connected 

Total RAM bits 59,904 78,336 92,160 239,616 294,912

PLLs 1 2 2 2 2

Maximum user I/O pins (1) 104 301 185 249 301

Note to Table 1–1:
(1) This parameter includes global clock pins.

Table 1–1. Cyclone Device Features  (Part 2 of 2)

Feature EP1C3 EP1C4 EP1C6 EP1C12 EP1C20

Table 1–2. Cyclone Package Options and I/O Pin Counts

Device 100-Pin TQFP 
(1)

144-Pin TQFP 
(1), (2)

240-Pin PQFP 
(1)

256-Pin 
FineLine BGA

324-Pin 
FineLine BGA

400-Pin 
FineLine BGA

EP1C3 65 104 — — — —

EP1C4 — — — — 249 301

EP1C6 — 98 185 185 — —

EP1C12 — — 173 185 249 —

EP1C20 — — — — 233 301

Notes to Table 1–2:
(1) TQFP: thin quad flat pack.

PQFP: plastic quad flat pack.
(2) Cyclone devices support vertical migration within the same package (i.e., designers can migrate between the 

EP1C3 device in the 144-pin TQFP package and the EP1C6 device in the same package).
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Figure 2–1. Cyclone EP1C12 Device Block Diagram

The number of M4K RAM blocks, PLLs, rows, and columns vary per 
device. Table 2–1 lists the resources available in each Cyclone device.

Logic Array

PLL

IOEs

M4K Blocks

EP1C12 Device

Table 2–1. Cyclone Device Resources

Device
M4K RAM

PLLs LAB Columns LAB Rows
Columns Blocks

EP1C3 1 13 1 24 13

EP1C4 1 17 2 26 17

EP1C6 1 20 2 32 20

EP1C12 2 52 2 48 26

EP1C20 2 64 2 64 32
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Logic Elements

functions. Another special packing mode allows the register output to 
feed back into the LUT of the same LE so that the register is packed with 
its own fan-out LUT. This provides another mechanism for improved 
fitting. The LE can also drive out registered and unregistered versions of 
the LUT output.

LUT Chain and Register Chain

In addition to the three general routing outputs, the LEs within a LAB 
have LUT chain and register chain outputs. LUT chain connections allow 
LUTs within the same LAB to cascade together for wide input functions. 
Register chain outputs allow registers within the same LAB to cascade 
together. The register chain output allows a LAB to use LUTs for a single 
combinatorial function and the registers to be used for an unrelated shift 
register implementation. These resources speed up connections between 
LABs while saving local interconnect resources. “MultiTrack 
Interconnect” on page 2–12 for more information on LUT chain and 
register chain connections.

addnsub Signal

The LE's dynamic adder/subtractor feature saves logic resources by 
using one set of LEs to implement both an adder and a subtractor. This 
feature is controlled by the LAB-wide control signal addnsub. The 
addnsub signal sets the LAB to perform either A + B or A − B. The LUT 
computes addition; subtraction is computed by adding the two's 
complement of the intended subtractor. The LAB-wide signal converts to 
two's complement by inverting the B bits within the LAB and setting 
carry-in = 1 to add one to the least significant bit (LSB). The LSB of an 
adder/subtractor must be placed in the first LE of the LAB, where the 
LAB-wide addnsub signal automatically sets the carry-in to 1. The 
Quartus II Compiler automatically places and uses the adder/subtractor 
feature when using adder/subtractor parameterized functions.

LE Operating Modes

The Cyclone LE can operate in one of the following modes:

■ Normal mode
■ Dynamic arithmetic mode

Each mode uses LE resources differently. In each mode, eight available 
inputs to the LE⎯the four data inputs from the LAB local interconnect, 
carry-in0 and carry-in1 from the previous LE, the LAB carry-in 
from the previous carry-chain LAB, and the register chain connection⎯are 
directed to different destinations to implement the desired logic function. 
LAB-wide signals provide clock, asynchronous clear, asynchronous 
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Embedded 
Memory

The Cyclone embedded memory consists of columns of M4K memory 
blocks. EP1C3 and EP1C6 devices have one column of M4K blocks, while 
EP1C12 and EP1C20 devices have two columns (refer to Table 1–1 on 
page 1–1 for total RAM bits per density). Each M4K block can implement 
various types of memory with or without parity, including true dual-port, 
simple dual-port, and single-port RAM, ROM, and FIFO buffers. The 
M4K blocks support the following features:

■ 4,608 RAM bits
■ 250 MHz performance
■ True dual-port memory
■ Simple dual-port memory
■ Single-port memory
■ Byte enable
■ Parity bits
■ Shift register
■ FIFO buffer
■ ROM
■ Mixed clock mode

1 Violating the setup or hold time on the address registers could 
corrupt the memory contents. This applies to both read and 
write operations.

Memory Modes

The M4K memory blocks include input registers that synchronize writes 
and output registers to pipeline designs and improve system 
performance. M4K blocks offer a true dual-port mode to support any 
combination of two-port operations: two reads, two writes, or one read 
and one write at two different clock frequencies. Figure 2–12 shows true 
dual-port memory.

Figure 2–12. True Dual-Port Memory Configuration
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signal. The output registers can be bypassed. Pseudo-asynchronous 
reading is possible in the simple dual-port mode of M4K blocks by 
clocking the read enable and read address registers on the negative clock 
edge and bypassing the output registers.

When configured as RAM or ROM, you can use an initialization file to 
pre-load the memory contents.

Two single-port memory blocks can be implemented in a single M4K 
block as long as each of the two independent block sizes is equal to or less 
than half of the M4K block size.

The Quartus II software automatically implements larger memory by 
combining multiple M4K memory blocks. For example, two 256×16-bit 
RAM blocks can be combined to form a 256×32-bit RAM block. Memory 
performance does not degrade for memory blocks using the maximum 
number of words allowed. Logical memory blocks using less than the 
maximum number of words use physical blocks in parallel, eliminating 
any external control logic that would increase delays. To create a larger 
high-speed memory block, the Quartus II software automatically 
combines memory blocks with LE control logic.

Parity Bit Support

The M4K blocks support a parity bit for each byte. The parity bit, along 
with internal LE logic, can implement parity checking for error detection 
to ensure data integrity. You can also use parity-size data words to store 
user-specified control bits. Byte enables are also available for data input 
masking during write operations.

Shift Register Support

You can configure M4K memory blocks to implement shift registers for 
DSP applications such as pseudo-random number generators, 
multi-channel filtering, auto-correlation, and cross-correlation functions. 
These and other DSP applications require local data storage, traditionally 
implemented with standard flip-flops, which can quickly consume many 
logic cells and routing resources for large shift registers. A more efficient 
alternative is to use embedded memory as a shift register block, which 
saves logic cell and routing resources and provides a more efficient 
implementation with the dedicated circuitry.

The size of a w × m × n shift register is determined by the input data width 
(w), the length of the taps (m), and the number of taps (n). The size of a 
w × m × n shift register must be less than or equal to the maximum number 
of memory bits in the M4K block (4,608 bits). The total number of shift 
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Figure 2–15. M4K RAM Block Control Signals

Figure 2–16. M4K RAM Block LAB Row Interface
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Global Clock Network and Phase-Locked Loops

Dual-Purpose Clock Pins

Each Cyclone device except the EP1C3 device has eight dual-purpose 
clock pins, DPCLK[7..0] (two on each I/O bank). EP1C3 devices have 
five DPCLK pins in the 100-pin TQFP package. These dual-purpose pins 
can connect to the global clock network (see Figure 2–22) for high-fanout 
control signals such as clocks, asynchronous clears, presets, and clock 
enables, or protocol control signals such as TRDY and IRDY for PCI, or 
DQS signals for external memory interfaces.

Combined Resources

Each Cyclone device contains eight distinct dedicated clocking resources. 
The device uses multiplexers with these clocks to form six-bit buses to 
drive LAB row clocks, column IOE clocks, or row IOE clocks. See 
Figure 2–23. Another multiplexer at the LAB level selects two of the six 
LAB row clocks to feed the LE registers within the LAB.

Figure 2–23. Global Clock Network Multiplexers

IOE clocks have row and column block regions. Six of the eight global 
clock resources feed to these row and column regions. Figure 2–24 shows 
the I/O clock regions.
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Figure 2–24. I/O Clock Regions
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External Clock Inputs

Each PLL supports single-ended or differential inputs for source-
synchronous receivers or for general-purpose use. The dedicated clock 
pins (CLK[3..0]) feed the PLL inputs. These dual-purpose pins can also 
act as LVDS input pins. See Figure 2–25.

Table 2–8 shows the I/O standards supported by PLL input and output 
pins.

For more information on LVDS I/O support, refer to “LVDS I/O Pins” on 
page 2–54.

External Clock Outputs

Each PLL supports one differential or one single-ended output for 
source-synchronous transmitters or for general-purpose external clocks. 
If the PLL does not use these PLL_OUT pins, the pins are available for use 
as general-purpose I/O pins. The PLL_OUT pins support all I/O 
standards shown in Table 2–8.

The external clock outputs do not have their own VCC and ground voltage 
supplies. Therefore, to minimize jitter, do not place switching I/O pins 
next to these output pins. The EP1C3 device in the 100-pin TQFP package 

Table 2–8. PLL I/O Standards

I/O Standard CLK Input EXTCLK Output

3.3-V LVTTL/LVCMOS v v

2.5-V LVTTL/LVCMOS v v

1.8-V LVTTL/LVCMOS v v

1.5-V LVCMOS v v

3.3-V PCI v v

LVDS v v

SSTL-2 class I v v

SSTL-2 class II v v

SSTL-3 class I v v

SSTL-3 class II v v

Differential SSTL-2 — v
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Figure 2–31. Control Signal Selection per IOE
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I/O Structure

Figure 2–34. DDR SDRAM and FCRAM Interfacing
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I/O Structure

and DM pins to support a DDR SDRAM or FCRAM interface. I/O bank 1 
can also support a DDR SDRAM or FCRAM interface, however, the 
configuration input pins in I/O bank 1 must operate at 2.5 V. I/O bank 3 
can also support a DDR SDRAM or FCRAM interface, however, all the 
JTAG pins in I/O bank 3 must operate at 2.5 V.

Figure 2–35. Cyclone I/O Banks Notes (1), (2)

Notes to Figure 2–35:
(1) Figure 2–35 is a top view of the silicon die.
(2) Figure 2–35 is a graphic representation only. Refer to the pin list and the Quartus II software for exact pin locations.

Each I/O bank has its own VCCIO pins. A single device can support 1.5-V, 
1.8-V, 2.5-V, and 3.3-V interfaces; each individual bank can support a 
different standard with different I/O voltages. Each bank also has 
dual-purpose VREF pins to support any one of the voltage-referenced 
standards (e.g., SSTL-3) independently. If an I/O bank does not use 
voltage-referenced standards, the VREF pins are available as user I/O pins.
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Each I/O bank can support multiple standards with the same VCCIO for 
input and output pins. For example, when VCCIO is 3.3-V, a bank can 
support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs.

LVDS I/O Pins

A subset of pins in all four I/O banks supports LVDS interfacing. These 
dual-purpose LVDS pins require an external-resistor network at the 
transmitter channels in addition to 100-Ω termination resistors on 
receiver channels. These pins do not contain dedicated serialization or 
deserialization circuitry; therefore, internal logic performs serialization 
and deserialization functions.

Table 2–13 shows the total number of supported LVDS channels per 
device density.

MultiVolt I/O Interface

The Cyclone architecture supports the MultiVolt I/O interface feature, 
which allows Cyclone devices in all packages to interface with systems of 
different supply voltages. The devices have one set of VCC pins for 
internal operation and input buffers (VCCINT), and four sets for I/O 
output drivers (VCCIO).

Table 2–13. Cyclone Device LVDS Channels

Device Pin Count Number of LVDS Channels

EP1C3 100 (1)

144 34

EP1C4 324 103

400 129

EP1C6 144 29

240 72

256 72

EP1C12 240 66

256 72

324 103

EP1C20 324 95

400 129

Note to Table 2–13:
(1) EP1C3 devices in the 100-pin TQFP package do not support the LVDS I/O 

standard.
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IEEE Std. 1149.1 (JTAG) Boundary Scan Support

The Cyclone device instruction register length is 10 bits and the 
USERCODE register length is 32 bits. Tables 3–2 and 3–3 show the 
boundary-scan register length and device IDCODE information for 
Cyclone devices.

Table 3–2. Cyclone Boundary-Scan Register Length

Device Boundary-Scan Register Length

EP1C3 339

EP1C4 930

EP1C6 582

EP1C12 774

EP1C20 930

Table 3–3. 32-Bit Cyclone Device IDCODE

Device

IDCODE (32 bits) (1)

Version (4 Bits) Part Number (16 Bits) Manufacturer Identity 
(11 Bits) LSB (1 Bit) (2)

EP1C3 0000 0010 0000 1000 0001 000 0110 1110 1

EP1C4 0000 0010 0000 1000 0101 000 0110 1110 1

EP1C6 0000 0010 0000 1000 0010 000 0110 1110 1

EP1C12 0000 0010 0000 1000 0011 000 0110 1110 1

EP1C20 0000 0010 0000 1000 0100 000 0110 1110 1

Notes to Table 3–3:
(1) The most significant bit (MSB) is on the left.
(2) The IDCODE’s least significant bit (LSB) is always 1.
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Operating Conditions

Table 4–16. Cyclone Device Capacitance Note (14)

Symbol Parameter Typical Unit

CIO Input capacitance for user I/O pin 4.0 pF

CLVDS Input capacitance for dual-purpose LVDS/user I/O pin 4.7 pF

CVREF Input capacitance for dual-purpose VRE F/user I/O pin. 12.0 pF

CDPCLK Input capacitance for dual-purpose DPCLK/user I/O pin. 4.4 pF

CCLK Input capacitance for CLK pin. 4.7 pF

Notes to Tables 4–1 through 4–16:
(1) Refer to the Operating Requirements for Altera Devices Data Sheet.
(2) Conditions beyond those listed in Table 4–1 may cause permanent damage to a device. Additionally, device 

operation at the absolute maximum ratings for extended periods of time may have adverse affects on the device.
(3) Minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 4.6 V for 

input currents less than 100 mA and periods shorter than 20 ns.
(4) Maximum VCC rise time is 100 ms, and VCC must rise monotonically.
(5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are 

powered.
(6) Typical values are for TA = 25°  C, VCCINT = 1.5 V, and VCCIO = 1.5 V, 1.8 V, 2.5 V, and 3.3 V.
(7) VI = ground, no load, no toggling inputs.
(8) This value is specified for normal device operation. The value may vary during power-up. This applies for all 

VCCIO settings (3.3, 2.5, 1.8, and 1.5 V).
(9) RCONF is the measured value of internal pull-up resistance when the I/O pin is tied directly to GND. RCONF value 

will be lower if an external source drives the pin higher than VC C I O .
(10) Pin pull-up resistance values will lower if an external source drives the pin higher than VCCIO.
(11) Drive strength is programmable according to values in Cyclone Architecture chapter in the Cyclone Device Handbook.
(12) Overdrive is possible when a 1.5 V or 1.8 V and a 2.5 V or 3.3 V input signal feeds an input pin. Turn on “Allow 

voltage overdrive” for LVTTL/LVCMOS input pins in the Assignments > Device > Device and Pin Options > Pin 
Placement tab when a device has this I/O combination. However, higher leakage current is expected.

(13) The Cyclone LVDS interface requires a resistor network outside of the transmitter channels.
(14) Capacitance is sample-tested only. Capacitance is measured using time-domain reflections (TDR). Measurement 

accuracy is within ±0.5 pF.

http://www.altera.com/literature/ds/dsoprq.pdf
http://www.altera.com/literature/hb/cyc/cyc_c51002.pdf
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Power 
Consumption

Designers can use the Altera web Early Power Estimator to estimate the 
device power.

Cyclone devices require a certain amount of power-up current to 
successfully power up because of the nature of the leading-edge process 
on which they are fabricated. Table 4–17 shows the maximum power-up 
current required to power up a Cyclone device. 

Designers should select power supplies and regulators that can supply 
this amount of current when designing with Cyclone devices. This 
specification is for commercial operating conditions. Measurements were 
performed with an isolated Cyclone device on the board. Decoupling 
capacitors were not used in this measurement. To factor in the current for 
decoupling capacitors, sum up the current for each capacitor using the 
following equation:

I = C (dV/dt)

The exact amount of current that is consumed varies according to the 
process, temperature, and power ramp rate. If the power supply or 
regulator can supply more current than required, the Cyclone device may 
consume more current than the maximum current specified in Table 4–17. 
However, the device does not require any more current to successfully 
power up than what is listed in Table 4–17.

The duration of the ICCINT power-up requirement depends on the VCCINT 
voltage supply rise time. The power-up current consumption drops when 
the VCCINT supply reaches approximately 0.75 V. For example, if the 
VCCINT rise time has a linear rise of 15 ms, the current consumption spike 
drops by 7.5 ms.

Table 4–17. Cyclone Maximum Power-Up Current (ICCINT) Requirements (In-Rush Current)

Device Commercial Specification Industrial Specification Unit

EP1C3 150 180 mA

EP1C4 150 180 mA

EP1C6 175 210 mA

EP1C12 300 360 mA

EP1C20 500 600 mA

Notes to Table 4–17:
(1) The Cyclone devices (except for the EP1C20 device) meet the power up specification for Mini PCI.
(2) The lot codes 9G0082 to 9G2999, or 9G3109 and later comply to the specifications in Table 4–17 and meet the Mini 

PCI specification. Lot codes appear at the top of the device.
(3) The lot codes 9H0004 to 9H29999, or 9H3014 and later comply to the specifications in this table and meet the Mini 

PCI specification. Lot codes appear at the top of the device.
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Timing Model

Maximum Input and Output Clock Rates

Tables 4–48 and 4–49 show the maximum input clock rate for column and 
row pins in Cyclone devices.  

Table 4–47. Cyclone IOE Programmable Delays on Row Pins

Parameter Setting
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

Decrease input delay to 
internal cells

Off — 154 — 177 — 200 ps

Small — 2,212 — 2,543 — 2,875 ps

Medium — 2,639 — 3,034 — 3,430 ps

Large — 3,057 — 3,515 — 3,974 ps

On — 154 — 177 — 200 ps

Decrease input delay to input 
register

Off — 0 — 0 — 0 ps

On — 3,057 — 3,515 — 3,974 ps

Increase delay to output pin Off — 0 — 0 — 0 ps

On — 556 — 639 — 722 ps

Note to Table 4–47:
(1) EPC1C3 devices do not support the PCI I/O standard.

Table 4–48. Cyclone Maximum Input Clock Rate for Column Pins

I/O Standard -6 Speed 
Grade

-7 Speed 
Grade

-8 Speed 
Grade Unit

LVTTL 464 428 387 MHz

2.5 V 392 302 207 MHz

1.8 V 387 311 252 MHz

1.5 V 387 320 243 MHz

LVCMOS 405 374 333 MHz

SSTL-3 class I 405 356 293 MHz

SSTL-3 class II 414 365 302 MHz

SSTL-2 class I 464 428 396 MHz

SSTL-2 class II 473 432 396 MHz

LVDS 567 549 531 MHz
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5. Reference and Ordering
Information

Software Cyclone® devices are supported by the Altera® Quartus® II design 
software, which provides a comprehensive environment for system-on-a-
programmable-chip (SOPC) design. The Quartus II software includes 
HDL and schematic design entry, compilation and logic synthesis, full 
simulation and advanced timing analysis, SignalTap® II logic analysis, 
and device configuration. 

f For more information about the Quartus II software features, refer to the 
Quartus II Handbook.

The Quartus II software supports the Windows 2000/NT/98, Sun Solaris, 
Linux Red Hat v7.1 and HP-UX operating systems. It also supports 
seamless integration with industry-leading EDA tools through the 
NativeLink® interface.

Device Pin-Outs Device pin-outs for Cyclone devices are available on the Altera website 
(www.altera.com) and in the Cyclone Device Handbook.

Ordering 
Information

Figure 5–1 describes the ordering codes for Cyclone devices. For more 
information about a specific package, refer to the Package Information for 
Cyclone Devices chapter in the Cyclone Device Handbook.

C51005-1.4

http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/hb/cyc/cyc_c52006.pdf
http://www.altera.com/literature/hb/cyc/cyc_c52006.pdf
http://www.altera.com
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