

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	291
Number of Logic Elements/Cells	2910
Total RAM Bits	59904
Number of I/O	104
Number of Gates	-
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep1c3t144a8n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

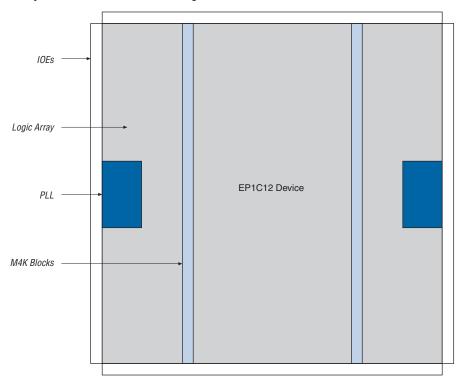


Figure 2-1. Cyclone EP1C12 Device Block Diagram

The number of M4K RAM blocks, PLLs, rows, and columns vary per device. Table 2–1 lists the resources available in each Cyclone device.

Table 2–1. Cyclone Device Resources								
Device	M4K RAM		PLLs	LAB Columns	LAD Dawe			
Device	Columns	Blocks	PLLS	LAD CUIUIIIIS	LAB Rows			
EP1C3	1	13	1	24	13			
EP1C4	1	17	2	26	17			
EP1C6	1	20	2	32	20			
EP1C12	2	52	2	48	26			
EP1C20	2	64	2	64	32			

Logic Array Blocks

Each LAB consists of 10 LEs, LE carry chains, LAB control signals, a local interconnect, look-up table (LUT) chain, and register chain connection lines. The local interconnect transfers signals between LEs in the same LAB. LUT chain connections transfer the output of one LE's LUT to the adjacent LE for fast sequential LUT connections within the same LAB. Register chain connections transfer the output of one LE's register to the adjacent LE's register within a LAB. The Quartus® II Compiler places associated logic within a LAB or adjacent LABs, allowing the use of local, LUT chain, and register chain connections for performance and area efficiency. Figure 2–2 details the Cyclone LAB.

Row Interconnect Column Interconnect Direct link interconnect from Direct link adjacent block interconnect from adjacent block Direct link Direct link interconnect to interconnect to adjacent block adjacent block LÄB Local Interconnect

Figure 2-2. Cyclone LAB Structure

LAB Interconnects

The LAB local interconnect can drive LEs within the same LAB. The LAB local interconnect is driven by column and row interconnects and LE outputs within the same LAB. Neighboring LABs, PLLs, and M4K RAM blocks from the left and right can also drive a LAB's local interconnect through the direct link connection. The direct link connection feature minimizes the use of row and column interconnects, providing higher

performance and flexibility. Each LE can drive 30 other LEs through fast local and direct link interconnects. Figure 2–3 shows the direct link connection.

Direct link interconnect from
left LAB, M4K memory
block, PLL, or IOE output

Direct link
interconnect
to left

Local
Interconnect

Local
Interconnect

Direct link interconnect from
right LAB, M4K memory
block, PLL, or IOE output

Direct link
interconnect
to right

Figure 2-3. Direct Link Connection

LAB Control Signals

Each LAB contains dedicated logic for driving control signals to its LEs. The control signals include two clocks, two clock enables, two asynchronous clears, synchronous clear, asynchronous preset/load, synchronous load, and add/subtract control signals. This gives a maximum of 10 control signals at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions.

Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked. For example, any LE in a particular LAB using the labclk1 signal will also use labclkenal. If the LAB uses both the rising and falling edges of a clock, it also uses both LAB-wide clock signals. Deasserting the clock enable signal will turn off the LAB-wide clock.

Each LAB can use two asynchronous clear signals and an asynchronous load/preset signal. The asynchronous load acts as a preset when the asynchronous load data input is tied high.

Figure 2-15. M4K RAM Block Control Signals

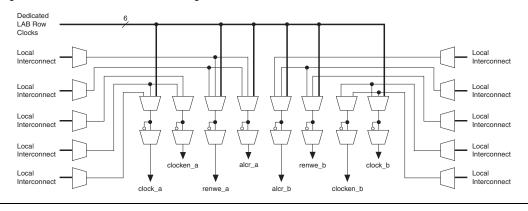



Figure 2-16. M4K RAM Block LAB Row Interface

Independent Clock Mode

The M4K memory blocks implement independent clock mode for true dual-port memory. In this mode, a separate clock is available for each port (ports A and B). Clock A controls all registers on the port A side, while clock B controls all registers on the port B side. Each port, A and B, also supports independent clock enables and asynchronous clear signals for port A and B registers. Figure 2–17 shows an M4K memory block in independent clock mode.

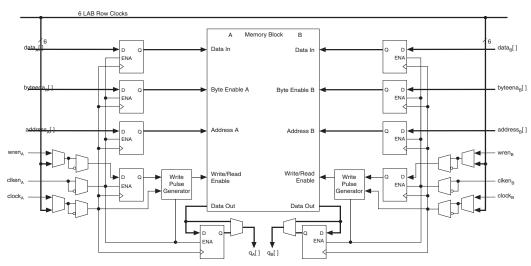
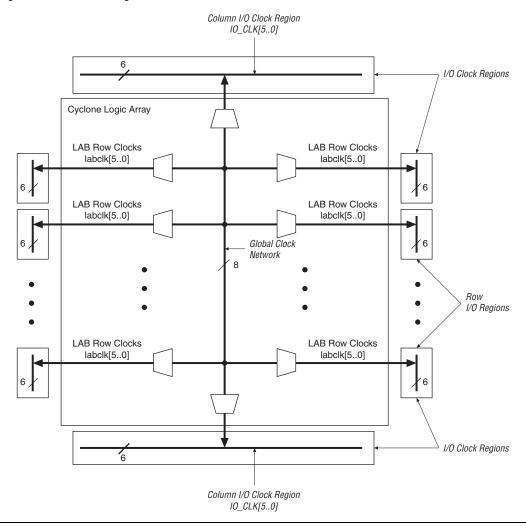


Figure 2–17. Independent Clock Mode Notes (1), (2)


Notes to Figure 2–17:

- (1) All registers shown have asynchronous clear ports.
- (2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both read and write operations.

Input/Output Clock Mode

Input/output clock mode can be implemented for both the true and simple dual-port memory modes. On each of the two ports, A or B, one clock controls all registers for inputs into the memory block: data input, wren, and address. The other clock controls the block's data output registers. Each memory block port, A or B, also supports independent clock enables and asynchronous clear signals for input and output registers. Figures 2–18 and 2–19 show the memory block in input/output clock mode.

Figure 2-24. I/O Clock Regions

PLLs

Cyclone PLLs provide general-purpose clocking with clock multiplication and phase shifting as well as outputs for differential I/O support. Cyclone devices contain two PLLs, except for the EP1C3 device, which contains one PLL.

Table 2-7. Gl	Table 2–7. Global Clock Network Sources (Part 2 of 2)								
Source		GCLKO	GCLK1	GCLK2	GCLK3	GCLK4	GCLK5	GCLK6	GCLK7
Dual-Purpose	DPCLK0 (3)	_	_	_	✓	_	_	_	_
Clock Pins	DPCLK1 (3)	_	_	✓	_	_	_	_	_
	DPCLK2	✓	_	_	_	_	_	_	_
	DPCLK3	_	_	_	_	✓	_	_	_
	DPCLK4		_	_	_	_		✓	_
	DPCLK5 (3)	_	_	_	_	_	_	_	✓
	DPCLK6	_	_	_	_	_	✓	_	_
	DPCLK7	_	✓	_	_	_	_	_	_

Notes to Table 2-7:

- (1) EP1C3 devices only have one PLL (PLL 1).
- (2) EP1C3 devices in the 100-pin TQFP package do not have dedicated clock pins CLK1 and CLK3.
- (3) EP1C3 devices in the 100-pin TQFP package do not have the DPCLK0, DPCLK1, or DPCLK5 pins.

Clock Multiplication and Division

Cyclone PLLs provide clock synthesis for PLL output ports using $m/(n \times post$ scale counter) scaling factors. The input clock is divided by a pre-scale divider, n, and is then multiplied by the m feedback factor. The control loop drives the VCO to match $f_{\rm IN} \times (m/n)$. Each output port has a unique post-scale counter to divide down the high-frequency VCO. For multiple PLL outputs with different frequencies, the VCO is set to the least-common multiple of the output frequencies that meets its frequency specifications. Then, the post-scale dividers scale down the output frequency for each output port. For example, if the output frequencies required from one PLL are 33 and 66 MHz, the VCO is set to 330 MHz (the least-common multiple in the VCO's range).

Each PLL has one pre-scale divider, n, that can range in value from 1 to 32. Each PLL also has one multiply divider, m, that can range in value from 2 to 32. Global clock outputs have two post scale G dividers for global clock outputs, and external clock outputs have an E divider for external clock output, both ranging from 1 to 32. The Quartus II software automatically chooses the appropriate scaling factors according to the input frequency, multiplication, and division values entered.

I/O Structure

IOEs support many features, including:

- Differential and single-ended I/O standards
- 3.3-V, 64- and 32-bit, 66- and 33-MHz PCI compliance
- Joint Test Action Group (JTAG) boundary-scan test (BST) support
- Output drive strength control
- Weak pull-up resistors during configuration
- Slew-rate control
- Tri-state buffers
- Bus-hold circuitry
- Programmable pull-up resistors in user mode
- Programmable input and output delays
- Open-drain outputs
- DQ and DQS I/O pins

Cyclone device IOEs contain a bidirectional I/O buffer and three registers for complete embedded bidirectional single data rate transfer. Figure 2–27 shows the Cyclone IOE structure. The IOE contains one input register, one output register, and one output enable register. You can use the input registers for fast setup times and output registers for fast clock-to-output times. Additionally, you can use the output enable (OE) register for fast clock-to-output enable timing. The Quartus II software automatically duplicates a single OE register that controls multiple output or bidirectional pins. IOEs can be used as input, output, or bidirectional pins.

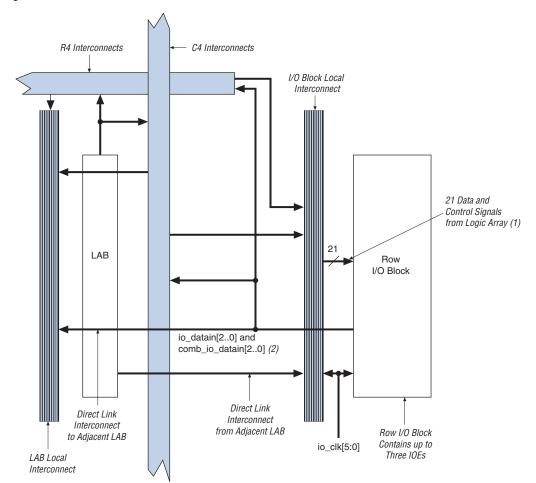


Figure 2-28. Row I/O Block Connection to the Interconnect

Notes to Figure 2–28:

- (1) The 21 data and control signals consist of three data out lines, io_dataout[2..0], three output enables, io_coe[2..0], three input clock enables, io_cce_in[2..0], three output clock enables, io_cce_out[2..0], three clocks, io_cclk[2..0], three asynchronous clear signals, io_caclr[2..0], and three synchronous clear signals, io_csclr[2..0].
- (2) Each of the three IOEs in the row I/O block can have one io_datain input (combinatorial or registered) and one comb_io_datain (combinatorial) input.

Referenced Documents

This chapter references the following document:

Using PLLs in Cyclone Devices chapter in the Cyclone Device Handbook

Document Revision History

Table 2–15 shows the revision history for this chapter.

Table 2-15. Do	Table 2–15. Document Revision History						
Date and Document Version	Changes Made	Summary of Changes					
May 2008 v1.6	Minor textual and style changes. Added "Referenced Documents" section.	_					
January 2007 v1.5	 Added document revision history. Updated Figures 2–17, 2–18, 2–19, 2–20, 2–21, and 2–32. 	_					
August 2005 v1.4	Minor updates.	_					
February 2005 v1.3	 Updated JTAG chain limits. Added test vector information. Corrected Figure 2-12. Added a note to Tables 2-17 through 2-21 regarding violating the setup or hold time. 	_					
October 2003 v1.2	Updated phase shift information.Added 64-bit PCI support information.	_					
September 2003 v1.1	Updated LVDS data rates to 640 Mbps from 311 Mbps.	_					
May 2003 v1.0	Added document to Cyclone Device Handbook.	_					

Operating Modes

The Cyclone architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. Together, the configuration and initialization processes are called command mode. Normal device operation is called user mode.

SRAM configuration elements allow Cyclone devices to be reconfigured in-circuit by loading new configuration data into the device. With real-time reconfiguration, the device is forced into command mode with a device pin. The configuration process loads different configuration data, reinitializes the device, and resumes user-mode operation. Designers can perform in-field upgrades by distributing new configuration files either within the system or remotely.

A built-in weak pull-up resistor pulls all user I/O pins to V_{CCIO} before and during device configuration.

The configuration pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O standards. The voltage level of the configuration output pins is determined by the V_{CCIO} of the bank where the pins reside. The bank V_{CCIO} selects whether the configuration inputs are 1.5-V, 1.8-V, 2.5-V, or 3.3-V compatible.

Configuration Schemes

Designers can load the configuration data for a Cyclone device with one of three configuration schemes (see Table 3–5), chosen on the basis of the target application. Designers can use a configuration device, intelligent controller, or the JTAG port to configure a Cyclone device. A low-cost configuration device can automatically configure a Cyclone device at system power-up.

Multiple Cyclone devices can be configured in any of the three configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device.

Table 3–5. Data Sources for Configuration					
Configuration Scheme Data Source					
Active serial	Low-cost serial configuration device				
Passive serial (PS)	Enhanced or EPC2 configuration device, MasterBlaster or ByteBlasterMV download cable, or serial data source				
JTAG	MasterBlaster or ByteBlasterMV download cable or a microprocessor with a Jam or JBC file				

Referenced Documents

This chapter references the following document:

- AN 39: IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices
- Jam Programming & Test Language Specification

Document Revision History

Table 3–6 shows the revision history for this chapter.

Date and Document Version	Changes Made	Summary of Changes
May 2008 v1.4	Minor textual and style changes. Added "Referenced Documents" section.	_
January 2007 v1.3	 Added document revision history. Updated handpara note below Table 3–4. 	_
August 2005 V1.2	Minor updates.	_
February 2005 V1.1	Updated JTAG chain limits. Added information concerning test vectors.	_
May 2003 v1.0	Added document to Cyclone Device Handbook.	_

Table 4–16. Cyclone Device Capacitance Note (14)							
Symbol	Parameter	Typical	Unit				
C _{IO}	Input capacitance for user I/O pin	4.0	pF				
C _{LVDS}	Input capacitance for dual-purpose LVDS/user I/O pin	4.7	pF				
C _{VREF}	Input capacitance for dual-purpose V _{REF} /user I/O pin.	12.0	pF				
C _{DPCLK}	Input capacitance for dual-purpose DPCLK/user I/O pin.	4.4	pF				
C _{CLK}	Input capacitance for CLK pin.	4.7	pF				

Notes to Tables 4–1 through 4–16:

- (1) Refer to the Operating Requirements for Altera Devices Data Sheet.
- (2) Conditions beyond those listed in Table 4–1 may cause permanent damage to a device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse affects on the device.
- (3) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 4.6 V for input currents less than 100 mA and periods shorter than 20 ns.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 1.5$ V, and $V_{CCIO} = 1.5$ V, 1.8 V, 2.5 V, and 3.3 V.
- (7) V_I = ground, no load, no toggling inputs.
- (8) This value is specified for normal device operation. The value may vary during power-up. This applies for all V_{CCIO} settings (3.3, 2.5, 1.8, and 1.5 V).
- (9) R_{CONF} is the measured value of internal pull-up resistance when the I/O pin is tied directly to GND. R_{CONF} value will be lower if an external source drives the pin higher than V_{CCIO}.
- (10) Pin pull-up resistance values will lower if an external source drives the pin higher than V_{CCIO}.
- (11) Drive strength is programmable according to values in Cyclone Architecture chapter in the Cyclone Device Handbook.
- (12) Overdrive is possible when a 1.5 V or 1.8 V and a 2.5 V or 3.3 V input signal feeds an input pin. Turn on "Allow voltage overdrive" for LVTTL/LVCMOS input pins in the Assignments > Device > Device and Pin Options > Pin Placement tab when a device has this I/O combination. However, higher leakage current is expected.
- (13) The Cyclone LVDS interface requires a resistor network outside of the transmitter channels.
- (14) Capacitance is sample-tested only. Capacitance is measured using time-domain reflections (TDR). Measurement accuracy is within ±0.5 pF.

Performance

The maximum internal logic array clock tree frequency is limited to the specifications shown in Table 4–19.

Table 4–19. Clock Tree Maximum Performance Specification											
Parameter Definition	-6 S	peed G	rade	-7 S	peed G	rade	le -8 Speed Grade				
ratatiletei	Deminion	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Clock tree f _{MAX}	Maximum frequency that the clock tree can support for clocking registered logic		_	405	_	_	320		_	275	MHz

Table 4–20 shows the Cyclone device performance for some common designs. All performance values were obtained with the Quartus II software compilation of library of parameterized modules (LPM) functions or megafunctions. These performance values are based on EP1C6 devices in 144-pin TQFP packages.

Table 4–20. Cyclone Device Performance								
			Resources Used			Performance		
Resource Used	Design Size and Function	Mode	LEs	M4K Memory Bits	M4K Memory Blocks	-6 Speed Grade (MHz)	-7 Speed Grade (MHz)	-8 Speed Grade (MHz)
LE	16-to-1 multiplexer	_	21	_	_	405.00	320.00	275.00
	32-to-1 multiplexer	_	44	_	_	317.36	284.98	260.15
	16-bit counter	_	16	_	_	405.00	320.00	275.00
	64-bit counter (1)	_	66	_	_	208.99	181.98	160.75

					sed	Performance		
Resource Used	Design Size and Function	Mode	LEs	M4K Memory Bits	M4K Memory Blocks	-6 Speed Grade (MHz)	-7 Speed Grade (MHz)	-8 Speed Grade (MHz)
M4K	RAM 128 × 36 bit	Single port	_	4,608	1	256.00	222.67	197.01
memory block	RAM 128 × 36 bit	Simple dual-port mode	_	4,608	1	255.95	222.67	196.97
	RAM 256 × 18 bit	True dual- port mode	_	4,608	1	255.95	222.67	196.97
	FIFO 128 × 36 bit	_	40	4,608	1	256.02	222.67	197.01
	Shift register 9 × 4 × 128	Shift register	11	4,536	1	255.95	222.67	196.97

Note to Table 4-20:

Internal Timing Parameters

Internal timing parameters are specified on a speed grade basis independent of device density. Tables 4–21 through 4–24 describe the Cyclone device internal timing microparameters for LEs, IOEs, M4K memory structures, and MultiTrack interconnects.

Table 4–21. LE Internal Timing Microparameter Descriptions					
Symbol	Parameter				
t _{SU}	LE register setup time before clock				
t _H	LE register hold time after clock				
t _{CO}	LE register clock-to-output delay				
t _{LUT}	LE combinatorial LUT delay for data-in to data-out				
t _{CLR}	Minimum clear pulse width				
t _{PRE}	Minimum preset pulse width				
t _{CLKHL}	Minimum clock high or low time				

⁽¹⁾ The performance numbers for this function are from an EP1C6 device in a 240-pin PQFP package.

Table 4–22. IOE Internal Timing Microparameter Descriptions						
Symbol	Parameter					
t_{SU}	IOE input and output register setup time before clock					
t _H	IOE input and output register hold time after clock					
t _{CO}	IOE input and output register clock-to-output delay					
t _{PIN2COMBOUT_R}	Row input pin to IOE combinatorial output					
t _{PIN2COMBOUT_C}	Column input pin to IOE combinatorial output					
t _{COMBIN2PIN_R}	Row IOE data input to combinatorial output pin					
t _{COMBIN2PIN_C}	Column IOE data input to combinatorial output pin					
t _{CLR}	Minimum clear pulse width					
t _{PRE}	Minimum preset pulse width					
t _{CLKHL}	Minimum clock high or low time					

Table 4–23. M4K Block Internal Timing Microparameter Descriptions							
Symbol	Parameter						
t _{M4KRC}	Synchronous read cycle time						
t _{M4KWC}	Synchronous write cycle time						
t _{M4KWERESU}	Write or read enable setup time before clock						
t _{M4KWEREH}	Write or read enable hold time after clock						
t _{M4KBESU}	Byte enable setup time before clock						
t _{M4KBEH}	Byte enable hold time after clock						
t _{M4KDATAASU}	A port data setup time before clock						
t _{M4KDATAAH}	A port data hold time after clock						
t _{M4KADDRASU}	A port address setup time before clock						
t _{M4KADDRAH}	A port address hold time after clock						
t _{M4KDATABSU}	B port data setup time before clock						
t _{M4KDATABH}	B port data hold time after clock						
t _{M4KADDRBSU}	B port address setup time before clock						
t _{M4KADDRBH}	B port address hold time after clock						
t _{M4KDATACO1}	Clock-to-output delay when using output registers						
t _{M4KDATACO2}	Clock-to-output delay without output registers						
t _{M4KCLKHL}	Minimum clock high or low time						
t _{M4KCLR}	Minimum clear pulse width						

Table 4–42. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Column Pins (Part 2 of 2)								
Standard		-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		Unit
		Min Max		Min Max		Min Max		
2.5-V LVTTL	2 mA	_	329	_	378	_	427	ps
	8 mA	_	-661	_	-761	_	-860	ps
	12 mA	_	-655	_	-754	_	-852	ps
	16 mA	_	-795	_	-915	_	-1034	ps
1.8-V LVTTL	2 mA	_	4	_	4	_	5	ps
	8 mA	_	-208	_	-240	_	-271	ps
	12 mA	_	-208	_	-240	_	-271	ps
1.5-V LVTTL	2 mA	_	2,288	_	2,631	_	2,974	ps
	4 mA	_	608	_	699	_	790	ps
	8 mA	_	292	_	335	_	379	ps
SSTL-3 class I		_	-410	_	-472	_	-533	ps
SSTL-3 class II		_	-811	_	-933	_	-1,055	ps
SSTL-2 class I		_	-485	_	-558	_	-631	ps
SSTL-2 class II		_	-758	_	-872	_	-986	ps
LVDS		_	-998	_	-1,148	_	-1,298	ps

Table 4–43. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Row Pins (Part 1 of 2)								
Chandand		-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		1114
Stanu	Standard		Max	Min	Max	Min	Max	Unit
LVCMOS	2 mA	_	0	_	0	_	0	ps
	4 mA	_	-489	_	-563	_	-636	ps
	8 mA	_	-855	_	-984	_	-1,112	ps
	12 mA	_	-993	_	-1,142	_	-1,291	ps
3.3-V LVTTL	4 mA	_	0	_	0	_	0	ps
	8 mA	_	-347	_	-400	_	-452	ps
	12 mA	_	-858	_	-987	_	-1,116	ps
	16 mA	_	-819	_	-942	_	-1,065	ps
	24 mA	_	-993	_	-1,142	_	-1,291	ps
2.5-V LVTTL	2 mA	_	329	_	378	_	427	ps
	8 mA	_	-661	_	-761	_	-860	ps
	12 mA	_	-655	_	-754	_	-852	ps
	16 mA	_	-795	_	-915	_	-1,034	ps

Table 4–45. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Row Pins (Part 2 of 2)								
1/0 0444	-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		IIi4	
I/O Standard	Min	Max	Min	Max	Min	Max	Unit	
SSTL-3 class I	_	1,390	_	1,598	_	1,807	ps	
SSTL-3 class II	_	989	_	1,137	_	1,285	ps	
SSTL-2 class I	_	1,965	_	2,259	_	2,554	ps	
SSTL-2 class II	_	1,692	_	1,945	_	2,199	ps	
LVDS	_	802	_	922	_	1,042	ps	

Note to Tables 4–40 through 4–45:

Tables 4–46 through 4–47 show the adder delays for the IOE programmable delays. These delays are controlled with the Quartus II software options listed in the Parameter column.

Parameter	Setting	-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		II m i d
		Min	Max	Min	Max	Min	Max	Unit
Decrease input delay to internal cells	Off	_	155	_	178	_	201	ps
	Small	_	2,122	_	2,543	_	2,875	ps
	Medium	_	2,639	_	3,034	_	3,430	ps
	Large	_	3,057	_	3,515	_	3,974	ps
	On	_	155	_	178	_	201	ps
Decrease input delay to input register	Off	_	0	_	0	_	0	ps
	On	_	3,057	_	3,515	_	3,974	ps
Increase delay to output pin	Off	_	0	_	0	_	0	ps
	On	_	552	_	634	_	717	ps

⁽¹⁾ EP1C3 devices do not support the PCI I/O standard.

July 2003 v1.1	Updated timing information. Timing finalized for EP1C6 and EP1C20 devices. Updated performance information. Added PLL Timing section.	_
May 2003 v1.0	Added document to Cyclone Device Handbook.	_

5. Reference and Ordering Information

C51005-1.4

Software

Cyclone® devices are supported by the Altera® Quartus® II design software, which provides a comprehensive environment for system-on-a-programmable-chip (SOPC) design. The Quartus II software includes HDL and schematic design entry, compilation and logic synthesis, full simulation and advanced timing analysis, SignalTap® II logic analysis, and device configuration.

For more information about the Quartus II software features, refer to the *Quartus II Handbook*.

The Quartus II software supports the Windows 2000/NT/98, Sun Solaris, Linux Red Hat v7.1 and HP-UX operating systems. It also supports seamless integration with industry-leading EDA tools through the NativeLink® interface.

Device Pin-Outs

Device pin-outs for Cyclone devices are available on the Altera website (www.altera.com) and in the *Cyclone Device Handbook*.

Ordering Information

Figure 5–1 describes the ordering codes for Cyclone devices. For more information about a specific package, refer to the *Package Information for Cyclone Devices* chapter in the *Cyclone Device Handbook*.