Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 291 | | Number of Logic Elements/Cells | 2910 | | Total RAM Bits | 59904 | | Number of I/O | 104 | | Number of Gates | - | | Voltage - Supply | 1.425V ~ 1.575V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 144-LQFP | | Supplier Device Package | 144-TQFP (20x20) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep1c3t144c6n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## Logic Array Blocks Each LAB consists of 10 LEs, LE carry chains, LAB control signals, a local interconnect, look-up table (LUT) chain, and register chain connection lines. The local interconnect transfers signals between LEs in the same LAB. LUT chain connections transfer the output of one LE's LUT to the adjacent LE for fast sequential LUT connections within the same LAB. Register chain connections transfer the output of one LE's register to the adjacent LE's register within a LAB. The Quartus® II Compiler places associated logic within a LAB or adjacent LABs, allowing the use of local, LUT chain, and register chain connections for performance and area efficiency. Figure 2–2 details the Cyclone LAB. Row Interconnect Column Interconnect Direct link interconnect from Direct link adjacent block interconnect from adjacent block Direct link Direct link interconnect to interconnect to adjacent block adjacent block LÄB Local Interconnect Figure 2-2. Cyclone LAB Structure ### LAB Interconnects The LAB local interconnect can drive LEs within the same LAB. The LAB local interconnect is driven by column and row interconnects and LE outputs within the same LAB. Neighboring LABs, PLLs, and M4K RAM blocks from the left and right can also drive a LAB's local interconnect through the direct link connection. The direct link connection feature minimizes the use of row and column interconnects, providing higher Figure 2-5. Cyclone LE Each LE's programmable register can be configured for D, T, JK, or SR operation. Each register has data, true asynchronous load data, clock, clock enable, clear, and asynchronous load/preset inputs. Global signals, general-purpose I/O pins, or any internal logic can drive the register's clock and clear control signals. Either general-purpose I/O pins or internal logic can drive the clock enable, preset, asynchronous load, and asynchronous data. The asynchronous load data input comes from the data3 input of the LE. For combinatorial functions, the LUT output bypasses the register and drives directly to the LE outputs. Each LE has three outputs that drive the local, row, and column routing resources. The LUT or register output can drive these three outputs independently. Two LE outputs drive column or row and direct link routing connections and one drives local interconnect resources. This allows the LUT to drive one output while the register drives another output. This feature, called register packing, improves device utilization because the device can use the register and the LUT for unrelated ### Notes to Figure 2-9: - C4 interconnects can drive R4 interconnects. - (2) This pattern is repeated for every LAB in the LAB row. The column interconnect operates similarly to the row interconnect. Each column of LABs is served by a dedicated column interconnect, which vertically routes signals to and from LABs, M4K memory blocks, and row and column IOEs. These column resources include: - LUT chain interconnects within a LAB - Register chain interconnects within a LAB - C4 interconnects traversing a distance of four blocks in an up and down direction Cyclone devices include an enhanced interconnect structure within LABs for routing LE output to LE input connections faster using LUT chain connections and register chain connections. The LUT chain connection allows the combinatorial output of an LE to directly drive the fast input of the LE right below it, bypassing the local interconnect. These resources can be used as a high-speed connection for wide fan-in functions from LE 1 to LE 10 in the same LAB. The register chain connection allows the register output of one LE to connect directly to the register input of the next LE in the LAB for fast shift registers. The Quartus II Compiler automatically takes advantage of these resources to improve utilization and performance. Figure 2–10 shows the LUT chain and register chain interconnects. Figure 2–19. Input/Output Clock Mode in Simple Dual-Port Mode Notes (1), (2) ### Notes to Figure 2-19: - (1) All registers shown except the rden register have asynchronous clear ports. - (2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both read and write operations. Table 2–6 shows the PLL features in Cyclone devices. Figure 2–25 shows a Cyclone PLL. | Table 2–6. Cyclone PLL Features | | | | | | | |-----------------------------------|--|--|--|--|--|--| | Feature | PLL Support | | | | | | | Clock multiplication and division | $m/(n \times post-scale counter)$ (1) | | | | | | | Phase shift | Down to 125-ps increments (2), (3) | | | | | | | Programmable duty cycle | Yes | | | | | | | Number of internal clock outputs | 2 | | | | | | | Number of external clock outputs | One differential or one single-ended (4) | | | | | | #### Notes to Table 2-6: - (1) The *m* counter ranges from 2 to 32. The *n* counter and the post-scale counters range from 1 to 32. - (2) The smallest phase shift is determined by the voltage-controlled oscillator (VCO) period divided by 8. - (3) For degree increments, Cyclone devices can shift all output frequencies in increments of 45°. Smaller degree increments are possible depending on the frequency and divide parameters. - (4) The EP1C3 device in the 100-pin TQFP package does not support external clock output. The EP1C6 device in the 144-pin TQFP package does not support external clock output from PLL2. Figure 2–25. Cyclone PLL Note (1) #### *Notes to Figure 2–25:* - The EP1C3 device in the 100-pin TQFP package does not support external outputs or LVDS inputs. The EP1C6 device in the 144-pin TQFP package does not support external output from PLL2. - (2) LVDS input is supported via the secondary function of the dedicated clock pins. For PLL 1, the CLK0 pin's secondary function is LVDSCLK1p and the CLK1 pin's secondary function is LVDSCLK1n. For PLL 2, the CLK2 pin's secondary function is LVDSCLK2p and the CLK3 pin's secondary function is LVDSCLK2n. - (3) PFD: phase frequency detector. Figure 2–26 shows the PLL global clock connections. Figure 2-26. Cyclone PLL Global Clock Connections ### Notes to Figure 2-26: - (1) PLL 1 supports one single-ended or LVDS input via pins CLK0 and CLK1. - (2) PLL2 supports one single-ended or LVDS input via pins CLK2 and CLK3. - (3) PLL1_OUT and PLL2_OUT support single-ended or LVDS output. If external output is not required, these pins are available as regular user I/O pins. - (4) The EP1C3 device in the 100-pin TQFP package does not support external clock output. The EP1C6 device in the 144-pin TQFP package does not support external clock output from PLL2. Table 2–7 shows the global clock network sources available in Cyclone devices. | Table 2–7. Global Clock Network Sources (Part 1 of 2) | | | | | | | | | | |---|-------------|----------|----------|----------|----------|----------|----------|----------|----------| | Sou | rce | GCLKO | GCLK1 | GCLK2 | GCLK3 | GCLK4 | GCLK5 | GCLK6 | GCLK7 | | PLL Counter | PLL1 G0 | _ | ✓ | ✓ | _ | _ | _ | _ | _ | | Output | PLL1 G1 | ✓ | _ | _ | ✓ | _ | _ | _ | _ | | | PLL2 G0 (1) | _ | _ | _ | _ | _ | ✓ | ✓ | _ | | | PLL2 G1 (1) | _ | _ | _ | _ | ✓ | _ | _ | ✓ | | Dedicated | CLK0 | ✓ | _ | ✓ | _ | _ | _ | _ | _ | | Clock Input
Pins | CLK1 (2) | _ | ✓ | _ | ✓ | _ | _ | _ | _ | | | CLK2 | _ | _ | _ | _ | ✓ | _ | ✓ | _ | | | CLK3 (2) | _ | _ | _ | _ | _ | ✓ | _ | ✓ | ### **External Clock Inputs** Each PLL supports single-ended or differential inputs for source-synchronous receivers or for general-purpose use. The dedicated clock pins (CLK[3..0]) feed the PLL inputs. These dual-purpose pins can also act as LVDS input pins. See Figure 2–25. Table 2–8 shows the I/O standards supported by PLL input and output pins. | Table 2–8. PLL I/O Standards | | | |------------------------------|-----------|---------------| | I/O Standard | CLK Input | EXTCLK Output | | 3.3-V LVTTL/LVCMOS | ✓ | ✓ | | 2.5-V LVTTL/LVCMOS | ✓ | ✓ | | 1.8-V LVTTL/LVCMOS | ✓ | ✓ | | 1.5-V LVCMOS | ✓ | ✓ | | 3.3-V PCI | ✓ | ✓ | | LVDS | ✓ | ✓ | | SSTL-2 class I | ✓ | ✓ | | SSTL-2 class II | ✓ | ✓ | | SSTL-3 class I | ✓ | ✓ | | SSTL-3 class II | ✓ | ✓ | | Differential SSTL-2 | _ | ✓ | For more information on LVDS I/O support, refer to "LVDS I/O Pins" on page 2–54. ## **External Clock Outputs** Each PLL supports one differential or one single-ended output for source-synchronous transmitters or for general-purpose external clocks. If the PLL does not use these PLL_OUT pins, the pins are available for use as general-purpose I/O pins. The PLL_OUT pins support all I/O standards shown in Table 2–8. The external clock outputs do not have their own V_{CC} and ground voltage supplies. Therefore, to minimize jitter, do not place switching I/O pins next to these output pins. The EP1C3 device in the 100-pin TQFP package The pin's datain signals can drive the logic array. The logic array drives the control and data signals, providing a flexible routing resource. The row or column IOE clocks, io_clk[5..0], provide a dedicated routing resource for low-skew, high-speed clocks. The global clock network generates the IOE clocks that feed the row or column I/O regions (see "Global Clock Network and Phase-Locked Loops" on page 2–29). Figure 2–30 illustrates the signal paths through the I/O block. Figure 2-30. Signal Path through the I/O Block Each IOE contains its own control signal selection for the following control signals: oe, ce_in, ce_out, aclr/preset, sclr/preset, clk_in, and clk_out. Figure 2–31 illustrates the control signal selection. Each I/O bank can support multiple standards with the same V_{CCIO} for input and output pins. For example, when V_{CCIO} is 3.3-V, a bank can support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs. ### LVDS I/O Pins A subset of pins in all four I/O banks supports LVDS interfacing. These dual-purpose LVDS pins require an external-resistor network at the transmitter channels in addition to 100- Ω termination resistors on receiver channels. These pins do not contain dedicated serialization or deserialization circuitry; therefore, internal logic performs serialization and deserialization functions. Table 2–13 shows the total number of supported LVDS channels per device density. | Table 2–13. Cyclone Device LVDS Channels | | | | | | | |--|-----------|-------------------------|--|--|--|--| | Device | Pin Count | Number of LVDS Channels | | | | | | EP1C3 | 100 | (1) | | | | | | | 144 | 34 | | | | | | EP1C4 | 324 | 103 | | | | | | | 400 | 129 | | | | | | EP1C6 | 144 | 29 | | | | | | | 240 | 72 | | | | | | | 256 | 72 | | | | | | EP1C12 | 240 | 66 | | | | | | | 256 | 72 | | | | | | | 324 | 103 | | | | | | EP1C20 | 324 | 95 | | | | | | | 400 | 129 | | | | | *Note to Table 2–13:* ### MultiVolt I/O Interface The Cyclone architecture supports the MultiVolt I/O interface feature, which allows Cyclone devices in all packages to interface with systems of different supply voltages. The devices have one set of V_{CC} pins for internal operation and input buffers (V_{CCINT}), and four sets for I/O output drivers (V_{CCIO}). EP1C3 devices in the 100-pin TQFP package do not support the LVDS I/O standard. ### **Operating Modes** The Cyclone architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. Together, the configuration and initialization processes are called command mode. Normal device operation is called user mode. SRAM configuration elements allow Cyclone devices to be reconfigured in-circuit by loading new configuration data into the device. With real-time reconfiguration, the device is forced into command mode with a device pin. The configuration process loads different configuration data, reinitializes the device, and resumes user-mode operation. Designers can perform in-field upgrades by distributing new configuration files either within the system or remotely. A built-in weak pull-up resistor pulls all user I/O pins to V_{CCIO} before and during device configuration. The configuration pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O standards. The voltage level of the configuration output pins is determined by the V_{CCIO} of the bank where the pins reside. The bank V_{CCIO} selects whether the configuration inputs are 1.5-V, 1.8-V, 2.5-V, or 3.3-V compatible. ## **Configuration Schemes** Designers can load the configuration data for a Cyclone device with one of three configuration schemes (see Table 3–5), chosen on the basis of the target application. Designers can use a configuration device, intelligent controller, or the JTAG port to configure a Cyclone device. A low-cost configuration device can automatically configure a Cyclone device at system power-up. # 4. DC and Switching Characteristics C51004-1.7 # Operating Conditions Cyclone® devices are offered in both commercial, industrial, and extended temperature grades. However, industrial-grade and extended-temperature-grade devices may have limited speed-grade availability. Tables 4–1 through 4–16 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for Cyclone devices. | Table 4-1 | Table 4–1. Cyclone Device Absolute Maximum Ratings Notes (1), (2) | | | | | | | | | | |--------------------|---|----------------------------|---------|---------|------|--|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | | | | V _{CCINT} | Supply voltage | With respect to ground (3) | -0.5 | 2.4 | V | | | | | | | V _{CCIO} | | | -0.5 | 4.6 | V | | | | | | | V _{CCA} | Supply voltage | With respect to ground (3) | -0.5 | 2.4 | V | | | | | | | Vı | DC input voltage | | -0.5 | 4.6 | V | | | | | | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | | | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | °C | | | | | | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | °C | | | | | | | T _J | Junction temperature | BGA packages under bias | _ | 135 | °C | | | | | | | Table 4–2. Cyclone Device Recommended Operating Conditions (Part 1 of 2) | | | | | | | | | |--|---|----------|---------|---------|------|--|--|--| | Symbol | Symbol Parameter | | Minimum | Maximum | Unit | | | | | V _{CCINT} | Supply voltage for internal logic and input buffers | (4) | 1.425 | 1.575 | V | | | | | V _{CCIO} | Supply voltage for output buffers, 3.3-V operation | (4) | 3.00 | 3.60 | V | | | | | | Supply voltage for output buffers, 2.5-V operation | (4) | 2.375 | 2.625 | V | | | | | | Supply voltage for output buffers, 1.8-V operation | (4) | 1.71 | 1.89 | V | | | | | | Supply voltage for output buffers, 1.5-V operation | (4) | 1.4 | 1.6 | V | | | | | V _I | Input voltage | (3), (5) | -0.5 | 4.1 | V | | | | Typically, the user-mode current during device operation is lower than the power-up current in Table 4–17. Altera recommends using the Cyclone Power Calculator, available on the Altera web site, to estimate the user-mode I_{CCINT} consumption and then select power supplies or regulators based on the higher value. ## **Timing Model** The DirectDrive technology and MultiTrack interconnect ensure predictable performance, accurate simulation, and accurate timing analysis across all Cyclone device densities and speed grades. This section describes and specifies the performance, internal, external, and PLL timing specifications. All specifications are representative of worst-case supply voltage and junction temperature conditions. ### **Preliminary and Final Timing** Timing models can have either preliminary or final status. The Quartus® II software issues an informational message during the design compilation if the timing models are preliminary. Table 4–18 shows the status of the Cyclone device timing models. Preliminary status means the timing model is subject to change. Initially, timing numbers are created using simulation results, process data, and other known parameters. These tests are used to make the preliminary numbers as close to the actual timing parameters as possible. Final timing numbers are based on actual device operation and testing. These numbers reflect the actual performance of the device under worst-case voltage and junction temperature conditions. | Table 4–18. Cyclone Device Timing Model Status | | | | | | | |--|-------------|-------|--|--|--|--| | Device | Preliminary | Final | | | | | | EP1C3 | _ | ✓ | | | | | | EP1C4 | _ | ✓ | | | | | | EP1C6 | _ | ✓ | | | | | | EP1C12 | _ | ✓ | | | | | | EP1C20 | _ | ✓ | | | | | ### **Performance** The maximum internal logic array clock tree frequency is limited to the specifications shown in Table 4–19. | Table 4–19. Clock Tree Maximum Performance Specification | | | | | | | | | | | | |--|---|------|----------------|-----|----------------|-----|----------------|-----|-----|-------|-------| | Darameter | Definition | -6 S | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | | Unito | | | Parameter | Deminion | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Units | | Clock tree f _{MAX} | Maximum frequency
that the clock tree
can support for
clocking registered
logic | | _ | 405 | _ | _ | 320 | | _ | 275 | MHz | Table 4–20 shows the Cyclone device performance for some common designs. All performance values were obtained with the Quartus II software compilation of library of parameterized modules (LPM) functions or megafunctions. These performance values are based on EP1C6 devices in 144-pin TQFP packages. | Table 4–20. Cyclone Device Performance | | | | | | | | | | | |--|------------------------|---|-----|-----------------------|-------------------------|----------------------------|----------------------------|----------------------------|--|--| | | | | R | esources U | sed | Performance | | | | | | Resource
Used | | | LEs | M4K
Memory
Bits | M4K
Memory
Blocks | -6 Speed
Grade
(MHz) | -7 Speed
Grade
(MHz) | -8 Speed
Grade
(MHz) | | | | LE | 16-to-1
multiplexer | _ | 21 | _ | _ | 405.00 | 320.00 | 275.00 | | | | | 32-to-1
multiplexer | _ | 44 | _ | _ | 317.36 | 284.98 | 260.15 | | | | | 16-bit counter | _ | 16 | _ | _ | 405.00 | 320.00 | 275.00 | | | | | 64-bit counter (1) | _ | 66 | _ | _ | 208.99 | 181.98 | 160.75 | | | | Table 4–24. Routing Delay Internal Timing Microparameter Descriptions | | | | | | |---|--|--|--|--|--| | Symbol Parameter | | | | | | | t _{R4} | Delay for an R4 line with average loading; covers a distance of four LAB columns | | | | | | t _{C4} | Delay for an C4 line with average loading; covers a distance of four LAB rows | | | | | | t _{LOCAL} | Local interconnect delay | | | | | Figure 4–1 shows the memory waveforms for the M4K timing parameters shown in Table 4–23. | Table 4–39. EP1C20 Row Pin Global Clock External I/O Timing Parameters | | | | | | | | | | |--|---------|---------|---------|---------|---------|-------|------|--|--| | | -6 Spee | d Grade | -7 Spee | d Grade | -8 Spee | 11 | | | | | Symbol | Min | Max | Min | Max | Min | Max | Unit | | | | t _{INSU} | 2.417 | _ | 2.779 | _ | 3.140 | _ | ns | | | | t _{INH} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | toutco | 2.000 | 3.724 | 2.000 | 4.282 | 2.000 | 4.843 | ns | | | | t _{XZ} | _ | 3.645 | _ | 4.191 | _ | 4.740 | ns | | | | t _{ZX} | _ | 3.645 | _ | 4.191 | _ | 4.740 | ns | | | | t _{INSUPLL} | 1.417 | _ | 1.629 | _ | 1.840 | _ | ns | | | | t _{INHPLL} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | toutcople | 0.500 | 1.667 | 0.500 | 1.917 | 0.500 | 2.169 | ns | | | | t _{XZPLL} | _ | 1.588 | _ | 1.826 | _ | 2.066 | ns | | | | t _{ZXPLL} | _ | 1.588 | 1 | 1.826 | _ | 2.066 | ns | | | ### **External I/O Delay Parameters** External I/O delay timing parameters for I/O standard input and output adders and programmable input and output delays are specified by speed grade independent of device density. Tables 4–40 through 4–45 show the adder delays associated with column and row I/O pins for all packages. If an I/O standard is selected other than LVTTL 4 mA with a fast slew rate, add the selected delay to the external t_{CO} and t_{SU} I/O parameters shown in Tables 4–25 through 4–28. | Table 4–40. Cyclone I/O Standard Column Pin Input Delay Adders (Part 1 of 2) | | | | | | | | |--|----------------|------|----------------|------|----------------|------|------| | I/O Standard | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | IIi4 | | i/O Stanuaru | Min | Max | Min | Max | Min | Max | Unit | | LVCMOS | _ | 0 | _ | 0 | _ | 0 | ps | | 3.3-V LVTTL | _ | 0 | _ | 0 | _ | 0 | ps | | 2.5-V LVTTL | _ | 27 | _ | 31 | _ | 35 | ps | | 1.8-V LVTTL | _ | 182 | _ | 209 | _ | 236 | ps | | 1.5-V LVTTL | _ | 278 | _ | 319 | _ | 361 | ps | | SSTL-3 class I | _ | -250 | _ | -288 | _ | -325 | ps | | SSTL-3 class II | _ | -250 | _ | -288 | _ | -325 | ps | | SSTL-2 class I | _ | -278 | _ | -320 | | -362 | ps | | Table 4–40. Cyclone I/O Standard Column Pin Input Delay Adders (Part 2 of 2) | | | | | | | | |--|----------------|------|----------------|------|----------------|------|------| | I/O Standard | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | Hnit | | I/O Standard | Min | Max | Min | Max | Min | Max | Unit | | SSTL-2 class II | | -278 | _ | -320 | _ | -362 | ps | | LVDS | | -261 | _ | -301 | _ | -340 | ps | | Table 4–41. Cyclone I/O Standard Row Pin Input Delay Adders | | | | | | | | | |---|----------------|------|----------------|------|----------------|------|-------|--| | | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | 11-24 | | | I/O Standard | Min | Max | Min | Max | Min | Max | Unit | | | LVCMOS | _ | 0 | _ | 0 | _ | 0 | ps | | | 3.3-V LVTTL | _ | 0 | _ | 0 | _ | 0 | ps | | | 2.5-V LVTTL | _ | 27 | _ | 31 | _ | 35 | ps | | | 1.8-V LVTTL | _ | 182 | _ | 209 | _ | 236 | ps | | | 1.5-V LVTTL | _ | 278 | _ | 319 | _ | 361 | ps | | | 3.3-V PCI (1) | _ | 0 | _ | 0 | _ | 0 | ps | | | SSTL-3 class I | _ | -250 | _ | -288 | _ | -325 | ps | | | SSTL-3 class II | _ | -250 | _ | -288 | _ | -325 | ps | | | SSTL-2 class I | _ | -278 | _ | -320 | _ | -362 | ps | | | SSTL-2 class II | _ | -278 | _ | -320 | _ | -362 | ps | | | LVDS | _ | -261 | _ | -301 | _ | -340 | ps | | | Stand | loud | -6 Spee | d Grade | -7 Speed Grade | | -8 Spe | ed Grade | | | |-------------|-------|---------|---------|----------------|---------|--------|----------|------|--| | Stallt | iaru | Min | Max | Min | Min Max | | Max | Unit | | | LVCMOS | 2 mA | _ | 0 | _ | 0 | _ | 0 | ps | | | | 4 mA | _ | -489 | _ | -563 | _ | -636 | ps | | | | 8 mA | _ | -855 | _ | -984 | _ | -1,112 | ps | | | | 12 mA | _ | -993 | _ | -1,142 | _ | -1,291 | ps | | | 3.3-V LVTTL | 4 mA | _ | 0 | _ | 0 | _ | 0 | ps | | | | 8 mA | _ | -347 | _ | -400 | _ | -452 | ps | | | | 12 mA | _ | -858 | _ | -987 | _ | -1,116 | ps | | | | 16 mA | _ | -819 | _ | -942 | _ | -1,065 | ps | | | | 24 mA | _ | -993 | _ | -1,142 | _ | -1,291 | ps | | | Table 4–42. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Column Pins (Part 2 of 2) | | | | | | | | | |--|-------|----------------|-------|----------------|--------|----------------|--------|------| | Standard | | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | | | Stanu | aru | Min | Max | Min | Max | Min | Max | Unit | | 2.5-V LVTTL | 2 mA | _ | 329 | _ | 378 | _ | 427 | ps | | | 8 mA | _ | -661 | _ | -761 | _ | -860 | ps | | | 12 mA | _ | -655 | _ | -754 | _ | -852 | ps | | | 16 mA | _ | -795 | _ | -915 | _ | -1034 | ps | | 1.8-V LVTTL | 2 mA | _ | 4 | _ | 4 | _ | 5 | ps | | | 8 mA | _ | -208 | _ | -240 | _ | -271 | ps | | | 12 mA | _ | -208 | _ | -240 | _ | -271 | ps | | 1.5-V LVTTL | 2 mA | _ | 2,288 | _ | 2,631 | _ | 2,974 | ps | | | 4 mA | _ | 608 | _ | 699 | _ | 790 | ps | | | 8 mA | _ | 292 | _ | 335 | _ | 379 | ps | | SSTL-3 class I | | _ | -410 | _ | -472 | _ | -533 | ps | | SSTL-3 class I | I | _ | -811 | _ | -933 | _ | -1,055 | ps | | SSTL-2 class I | | _ | -485 | _ | -558 | _ | -631 | ps | | SSTL-2 class I | I | _ | -758 | _ | -872 | _ | -986 | ps | | LVDS | | _ | -998 | _ | -1,148 | _ | -1,298 | ps | | Table 4–43. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Row Pins (Part 1 of 2) | | | | | | | | | | |---|-----------|-----|----------------|-----|----------------|-----|----------------|------|--| | Ctond | 0. | | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | | | Stand | aru | Min | Max | Min | Max | Min | Max | Unit | | | LVCMOS | 2 mA | _ | 0 | _ | 0 | _ | 0 | ps | | | | 4 mA | _ | -489 | _ | -563 | _ | -636 | ps | | | | 8 mA | _ | -855 | _ | -984 | _ | -1,112 | ps | | | | 12 mA | _ | -993 | _ | -1,142 | _ | -1,291 | ps | | | 3.3-V LVTTL | 4 mA | _ | 0 | _ | 0 | _ | 0 | ps | | | | 8 mA | _ | -347 | _ | -400 | _ | -452 | ps | | | | 12 mA | _ | -858 | _ | -987 | _ | -1,116 | ps | | | | 16 mA | _ | -819 | _ | -942 | _ | -1,065 | ps | | | | 24 mA | _ | -993 | _ | -1,142 | _ | -1,291 | ps | | | 2.5-V LVTTL | 2 mA | _ | 329 | _ | 378 | _ | 427 | ps | | | | 8 mA | _ | -661 | _ | -761 | _ | -860 | ps | | | | 12 mA | _ | -655 | _ | -754 | _ | -852 | ps | | | | 16 mA | _ | -795 | _ | -915 | _ | -1,034 | ps | | | Table 4–47. Cyclone IOE Pro | ogrammable | Delays o | n Row Pin | s | | | | | |--|------------|----------------|-----------|----------------|-------|----------------|-------|------| | Davamatav | 0 111 | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | 1114 | | Parameter | Setting | Min | Max | Min | Max | Min | Max | Unit | | Decrease input delay to internal cells | Off | _ | 154 | _ | 177 | _ | 200 | ps | | | Small | _ | 2,212 | _ | 2,543 | _ | 2,875 | ps | | | Medium | _ | 2,639 | _ | 3,034 | _ | 3,430 | ps | | | Large | _ | 3,057 | _ | 3,515 | _ | 3,974 | ps | | | On | _ | 154 | _ | 177 | _ | 200 | ps | | Decrease input delay to input | Off | _ | 0 | _ | 0 | _ | 0 | ps | | register | On | _ | 3,057 | _ | 3,515 | _ | 3,974 | ps | | Increase delay to output pin | Off | _ | 0 | _ | 0 | | 0 | ps | | | On | _ | 556 | _ | 639 | _ | 722 | ps | Note to Table 4-47: ## **Maximum Input and Output Clock Rates** Tables 4--48 and 4--49 show the maximum input clock rate for column and row pins in Cyclone devices. | Table 4–48. Cyclone Maximum Input Clock Rate for Column Pins | | | | | | | | | |--|-------------------|-------------------|-------------------|------|--|--|--|--| | I/O Standard | -6 Speed
Grade | -7 Speed
Grade | -8 Speed
Grade | Unit | | | | | | LVTTL | 464 | 428 | 387 | MHz | | | | | | 2.5 V | 392 | 302 | 207 | MHz | | | | | | 1.8 V | 387 | 311 | 252 | MHz | | | | | | 1.5 V | 387 | 320 | 243 | MHz | | | | | | LVCMOS | 405 | 374 | 333 | MHz | | | | | | SSTL-3 class I | 405 | 356 | 293 | MHz | | | | | | SSTL-3 class II | 414 | 365 | 302 | MHz | | | | | | SSTL-2 class I | 464 | 428 | 396 | MHz | | | | | | SSTL-2 class II | 473 | 432 | 396 | MHz | | | | | | LVDS | 567 | 549 | 531 | MHz | | | | | ⁽¹⁾ EPC1C3 devices do not support the PCI I/O standard. # 5. Reference and Ordering Information C51005-1.4 ### Software Cyclone® devices are supported by the Altera® Quartus® II design software, which provides a comprehensive environment for system-on-a-programmable-chip (SOPC) design. The Quartus II software includes HDL and schematic design entry, compilation and logic synthesis, full simulation and advanced timing analysis, SignalTap® II logic analysis, and device configuration. For more information about the Quartus II software features, refer to the *Quartus II Handbook*. The Quartus II software supports the Windows 2000/NT/98, Sun Solaris, Linux Red Hat v7.1 and HP-UX operating systems. It also supports seamless integration with industry-leading EDA tools through the NativeLink® interface. ### **Device Pin-Outs** Device pin-outs for Cyclone devices are available on the Altera website (www.altera.com) and in the *Cyclone Device Handbook*. ## Ordering Information Figure 5–1 describes the ordering codes for Cyclone devices. For more information about a specific package, refer to the *Package Information for Cyclone Devices* chapter in the *Cyclone Device Handbook*. Figure 5-1. Cyclone Device Packaging Ordering Information # Referenced Documents This chapter references the following documents: - Package Information for Cyclone Devices chapter in the Cyclone Device Handbook - Quartus II Handbook # Document Revision History Table 5–1 shows the revision history for this chapter. | Table 5–1. Document Revision History | | | | | | | |--------------------------------------|--|--------------------|--|--|--|--| | Date and
Document
Version | Changes Made | Summary of Changes | | | | | | May 2008
v1.4 | Minor textual and style changes. Added "Referenced Documents" section. | _ | | | | | | January 2007
v1.3 | Added document revision history. | _ | | | | | | August 2005
v1.2 | Minor updates. | _ | | | | |