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1. Introduction

Introduction The Cyclone® field programmable gate array family is based on a 1.5-V, 
0.13-μm, all-layer copper SRAM process, with densities up to 
20,060 logic elements (LEs) and up to 288 Kbits of RAM. With features like 
phase-locked loops (PLLs) for clocking and a dedicated double data rate 
(DDR) interface to meet DDR SDRAM and fast cycle RAM (FCRAM) 
memory requirements, Cyclone devices are a cost-effective solution for 
data-path applications. Cyclone devices support various I/O standards, 
including LVDS at data rates up to 640 megabits per second (Mbps), and 
66- and 33-MHz, 64- and 32-bit peripheral component interconnect (PCI), 
for interfacing with and supporting ASSP and ASIC devices. Altera also 
offers new low-cost serial configuration devices to configure Cyclone 
devices.

Features The Cyclone device family offers the following features:

■ 2,910 to 20,060 LEs, see Table 1–1
■ Up to 294,912 RAM bits (36,864 bytes)
■ Supports configuration through low-cost serial configuration device
■ Support for LVTTL, LVCMOS, SSTL-2, and SSTL-3 I/O standards
■ Support for 66- and 33-MHz, 64- and 32-bit PCI standard
■ High-speed (640 Mbps) LVDS I/O support
■ Low-speed (311 Mbps) LVDS I/O support
■ 311-Mbps RSDS I/O support
■ Up to two PLLs per device provide clock multiplication and phase 

shifting
■ Up to eight global clock lines with six clock resources available per 

logic array block (LAB) row
■ Support for external memory, including DDR SDRAM (133 MHz), 

FCRAM, and single data rate (SDR) SDRAM
■ Support for multiple intellectual property (IP) cores, including 

Altera® MegaCore® functions and Altera Megafunctions Partners 
Program (AMPPSM) megafunctions. 

Table 1–1. Cyclone Device Features  (Part 1 of 2)

Feature EP1C3 EP1C4 EP1C6 EP1C12 EP1C20

LEs 2,910 4,000 5,980 12,060 20,060

M4K RAM blocks (128 × 36 bits) 13 17 20 52 64

C51001-1.5
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Figure 2–1. Cyclone EP1C12 Device Block Diagram

The number of M4K RAM blocks, PLLs, rows, and columns vary per 
device. Table 2–1 lists the resources available in each Cyclone device.

Logic Array

PLL

IOEs

M4K Blocks

EP1C12 Device

Table 2–1. Cyclone Device Resources

Device
M4K RAM

PLLs LAB Columns LAB Rows
Columns Blocks

EP1C3 1 13 1 24 13

EP1C4 1 17 2 26 17

EP1C6 1 20 2 32 20

EP1C12 2 52 2 48 26

EP1C20 2 64 2 64 32
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Logic Array Blocks

Logic Array 
Blocks

Each LAB consists of 10 LEs, LE carry chains, LAB control signals, a local 
interconnect, look-up table (LUT) chain, and register chain connection 
lines. The local interconnect transfers signals between LEs in the same 
LAB. LUT chain connections transfer the output of one LE's LUT to the 
adjacent LE for fast sequential LUT connections within the same LAB. 
Register chain connections transfer the output of one LE's register to the 
adjacent LE's register within a LAB. The Quartus® II Compiler places 
associated logic within a LAB or adjacent LABs, allowing the use of local, 
LUT chain, and register chain connections for performance and area 
efficiency. Figure 2–2 details the Cyclone LAB.

Figure 2–2. Cyclone LAB Structure

LAB Interconnects

The LAB local interconnect can drive LEs within the same LAB. The LAB 
local interconnect is driven by column and row interconnects and LE 
outputs within the same LAB. Neighboring LABs, PLLs, and M4K RAM 
blocks from the left and right can also drive a LAB's local interconnect 
through the direct link connection. The direct link connection feature 
minimizes the use of row and column interconnects, providing higher 
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performance and flexibility. Each LE can drive 30 other LEs through fast 
local and direct link interconnects. Figure 2–3 shows the direct link 
connection.

Figure 2–3. Direct Link Connection

LAB Control Signals

Each LAB contains dedicated logic for driving control signals to its LEs. 
The control signals include two clocks, two clock enables, two 
asynchronous clears, synchronous clear, asynchronous preset/load, 
synchronous load, and add/subtract control signals. This gives a 
maximum of 10 control signals at a time. Although synchronous load and 
clear signals are generally used when implementing counters, they can 
also be used with other functions.

Each LAB can use two clocks and two clock enable signals. Each LAB's 
clock and clock enable signals are linked. For example, any LE in a 
particular LAB using the labclk1 signal will also use labclkena1. If 
the LAB uses both the rising and falling edges of a clock, it also uses both 
LAB-wide clock signals. Deasserting the clock enable signal will turn off 
the LAB-wide clock.

Each LAB can use two asynchronous clear signals and an asynchronous 
load/preset signal. The asynchronous load acts as a preset when the 
asynchronous load data input is tied high.

LAB
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Figure 2–7. LE in Dynamic Arithmetic Mode

Note to Figure 2–7:
(1) The addnsub signal is tied to the carry input for the first LE of a carry chain only.

Carry-Select Chain

The carry-select chain provides a very fast carry-select function between 
LEs in dynamic arithmetic mode. The carry-select chain uses the 
redundant carry calculation to increase the speed of carry functions. The 
LE is configured to calculate outputs for a possible carry-in of 0 and 
carry-in of 1 in parallel. The carry-in0 and carry-in1 signals from a 
lower-order bit feed forward into the higher-order bit via the parallel 
carry chain and feed into both the LUT and the next portion of the carry 
chain. Carry-select chains can begin in any LE within a LAB. 

The speed advantage of the carry-select chain is in the parallel 
pre-computation of carry chains. Since the LAB carry-in selects the 
precomputed carry chain, not every LE is in the critical path. Only the 
propagation delays between LAB carry-in generation (LE 5 and LE 10) are 
now part of the critical path. This feature allows the Cyclone architecture 
to implement high-speed counters, adders, multipliers, parity functions, 
and comparators of arbitrary width. 
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The Quartus II Compiler automatically creates carry chain logic during 
design processing, or you can create it manually during design entry. 
Parameterized functions such as LPM functions automatically take 
advantage of carry chains for the appropriate functions.

The Quartus II Compiler creates carry chains longer than 10 LEs by 
linking LABs together automatically. For enhanced fitting, a long carry 
chain runs vertically allowing fast horizontal connections to M4K 
memory blocks. A carry chain can continue as far as a full column.

Clear and Preset Logic Control

LAB-wide signals control the logic for the register's clear and preset 
signals. The LE directly supports an asynchronous clear and preset 
function. The register preset is achieved through the asynchronous load 
of a logic high. The direct asynchronous preset does not require a 
NOT-gate push-back technique. Cyclone devices support simultaneous 
preset/ asynchronous load and clear signals. An asynchronous clear 
signal takes precedence if both signals are asserted simultaneously. Each 
LAB supports up to two clears and one preset signal.

In addition to the clear and preset ports, Cyclone devices provide a 
chip-wide reset pin (DEV_CLRn) that resets all registers in the device. An 
option set before compilation in the Quartus II software controls this pin. 
This chip-wide reset overrides all other control signals.

MultiTrack 
Interconnect

In the Cyclone architecture, connections between LEs, M4K memory 
blocks, and device I/O pins are provided by the MultiTrack interconnect 
structure with DirectDriveTM technology. The MultiTrack interconnect 
consists of continuous, performance-optimized routing lines of different 
speeds used for inter- and intra-design block connectivity. The Quartus II 
Compiler automatically places critical design paths on faster 
interconnects to improve design performance.

DirectDrive technology is a deterministic routing technology that ensures 
identical routing resource usage for any function regardless of placement 
within the device. The MultiTrack interconnect and DirectDrive 
technology simplify the integration stage of block-based designing by 
eliminating the re-optimization cycles that typically follow design 
changes and additions.

The MultiTrack interconnect consists of row and column interconnects 
that span fixed distances. A routing structure with fixed length resources 
for all devices allows predictable and repeatable performance when 
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is not available in the true dual-port mode. Mixed-width configurations 
are also possible, allowing different read and write widths. Tables 2–3 
and 2–4 summarize the possible M4K RAM block configurations.

When the M4K RAM block is configured as a shift register block, you can 
create a shift register up to 4,608 bits (w × m × n).

Table 2–3. M4K RAM Block Configurations (Simple Dual-Port)

Read Port
Write Port

4K × 1 2K × 2 1K × 4 512 × 8 256 × 16 128 × 32 512 × 9 256 × 18 128 × 36

4K × 1 v v v v v v — — —

2K × 2 v v v v v v — — —

1K × 4 v v v v v v — — —

512 × 8 v v v v v v — — —

256 × 16 v v v v v v — — —

128 × 32 v v v v v v — — —

512 × 9 — — — — — — v v v

256 × 18 — — — — — — v v v

128 × 36 — — — — — — v v v

Table 2–4. M4K RAM Block Configurations (True Dual-Port)

Port A
Port B

4K × 1 2K × 2 1K × 4 512 × 8 256 × 16 512 × 9 256 × 18

4K × 1 v v v v v — —

2K × 2 v v v v v — —

1K × 4 v v v v v — —

512 × 8 v v v v v — —

256 × 16 v v v v v — —

512 × 9 — — — — — v v

256 × 18 — — — — — v v
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Figure 2–15. M4K RAM Block Control Signals

Figure 2–16. M4K RAM Block LAB Row Interface
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Figure 2–18. Input/Output Clock Mode in True Dual-Port Mode Notes (1), (2)

Notes to Figure 2–18:
(1) All registers shown have asynchronous clear ports.
(2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both 

read and write operations.
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Global Clock Network and Phase-Locked Loops

Dual-Purpose Clock Pins

Each Cyclone device except the EP1C3 device has eight dual-purpose 
clock pins, DPCLK[7..0] (two on each I/O bank). EP1C3 devices have 
five DPCLK pins in the 100-pin TQFP package. These dual-purpose pins 
can connect to the global clock network (see Figure 2–22) for high-fanout 
control signals such as clocks, asynchronous clears, presets, and clock 
enables, or protocol control signals such as TRDY and IRDY for PCI, or 
DQS signals for external memory interfaces.

Combined Resources

Each Cyclone device contains eight distinct dedicated clocking resources. 
The device uses multiplexers with these clocks to form six-bit buses to 
drive LAB row clocks, column IOE clocks, or row IOE clocks. See 
Figure 2–23. Another multiplexer at the LAB level selects two of the six 
LAB row clocks to feed the LE registers within the LAB.

Figure 2–23. Global Clock Network Multiplexers

IOE clocks have row and column block regions. Six of the eight global 
clock resources feed to these row and column regions. Figure 2–24 shows 
the I/O clock regions.
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External Clock Inputs

Each PLL supports single-ended or differential inputs for source-
synchronous receivers or for general-purpose use. The dedicated clock 
pins (CLK[3..0]) feed the PLL inputs. These dual-purpose pins can also 
act as LVDS input pins. See Figure 2–25.

Table 2–8 shows the I/O standards supported by PLL input and output 
pins.

For more information on LVDS I/O support, refer to “LVDS I/O Pins” on 
page 2–54.

External Clock Outputs

Each PLL supports one differential or one single-ended output for 
source-synchronous transmitters or for general-purpose external clocks. 
If the PLL does not use these PLL_OUT pins, the pins are available for use 
as general-purpose I/O pins. The PLL_OUT pins support all I/O 
standards shown in Table 2–8.

The external clock outputs do not have their own VCC and ground voltage 
supplies. Therefore, to minimize jitter, do not place switching I/O pins 
next to these output pins. The EP1C3 device in the 100-pin TQFP package 

Table 2–8. PLL I/O Standards

I/O Standard CLK Input EXTCLK Output

3.3-V LVTTL/LVCMOS v v

2.5-V LVTTL/LVCMOS v v

1.8-V LVTTL/LVCMOS v v

1.5-V LVCMOS v v

3.3-V PCI v v

LVDS v v

SSTL-2 class I v v

SSTL-2 class II v v

SSTL-3 class I v v

SSTL-3 class II v v

Differential SSTL-2 — v



Altera Corporation  2–41
May 2008 Preliminary

I/O Structure

Figure 2–28. Row I/O Block Connection to the Interconnect

Notes to Figure 2–28:
(1) The 21 data and control signals consist of three data out lines, io_dataout[2..0], three output enables, 

io_coe[2..0], three input clock enables, io_cce_in[2..0], three output clock enables, io_cce_out[2..0], 
three clocks, io_cclk[2..0], three asynchronous clear signals, io_caclr[2..0], and three synchronous clear 
signals, io_csclr[2..0].

(2) Each of the three IOEs in the row I/O block can have one io_datain input (combinatorial or registered) and one 
comb_io_datain (combinatorial) input.

21
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Figure 2–29. Column I/O Block Connection to the Interconnect

Notes to Figure 2–29:
(1) The 21 data and control signals consist of three data out lines, io_dataout[2..0], three output enables, 

io_coe[2..0], three input clock enables, io_cce_in[2..0], three output clock enables, io_cce_out[2..0], 
three clocks, io_cclk[2..0], three asynchronous clear signals, io_caclr[2..0], and three synchronous clear 
signals, io_csclr[2..0].

(2) Each of the three IOEs in the column I/O block can have one io_datain input (combinatorial or registered) and 
one comb_io_datain (combinatorial) input.
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I/O Structure

output pins (nSTATUS and CONF_DONE) and all the JTAG pins in I/O 
bank 3 must operate at 2.5 V because the VCCIO level of SSTL-2 is 2.5 V. 
I/O banks 1, 2, 3, and 4 support DQS signals with DQ bus modes of  × 8.

For  × 8 mode, there are up to eight groups of programmable DQS and DQ 
pins, I/O banks 1, 2, 3, and 4 each have two groups in the 324-pin and 
400-pin FineLine BGA packages. Each group consists of one DQS pin, a 
set of eight DQ pins, and one DM pin (see Figure 2–33). Each DQS pin 
drives the set of eight DQ pins within that group.

Figure 2–33. Cyclone Device DQ and DQS Groups in ×8 Mode Note (1)

Note to Figure 2–33:
(1) Each DQ group consists of one DQS pin, eight DQ pins, and one DM pin.

Table 2–10 shows the number of DQ pin groups per device.

DQ Pins DQS Pin DM Pin

Top, Bottom, Left, or Right I/O Bank

Table 2–10. DQ Pin Groups  (Part 1 of 2)

Device Package Number of  × 8 DQ 
Pin Groups

Total DQ Pin 
Count

EP1C3 100-pin TQFP (1) 3 24

144-pin TQFP 4 32

EP1C4 324-pin FineLine BGA 8 64

400-pin FineLine BGA 8 64
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I/O Structure

and DM pins to support a DDR SDRAM or FCRAM interface. I/O bank 1 
can also support a DDR SDRAM or FCRAM interface, however, the 
configuration input pins in I/O bank 1 must operate at 2.5 V. I/O bank 3 
can also support a DDR SDRAM or FCRAM interface, however, all the 
JTAG pins in I/O bank 3 must operate at 2.5 V.

Figure 2–35. Cyclone I/O Banks Notes (1), (2)

Notes to Figure 2–35:
(1) Figure 2–35 is a top view of the silicon die.
(2) Figure 2–35 is a graphic representation only. Refer to the pin list and the Quartus II software for exact pin locations.

Each I/O bank has its own VCCIO pins. A single device can support 1.5-V, 
1.8-V, 2.5-V, and 3.3-V interfaces; each individual bank can support a 
different standard with different I/O voltages. Each bank also has 
dual-purpose VREF pins to support any one of the voltage-referenced 
standards (e.g., SSTL-3) independently. If an I/O bank does not use 
voltage-referenced standards, the VREF pins are available as user I/O pins.

I/O Bank 2

I/O Bank 3

I/O Bank 4

I/O Bank 1
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4. DC and Switching
Characteristics

Operating 
Conditions

Cyclone® devices are offered in both commercial, industrial, and 
extended temperature grades. However, industrial-grade and extended-
temperature-grade devices may have limited speed-grade availability.

Tables 4–1 through 4–16 provide information on absolute maximum 
ratings, recommended operating conditions, DC operating conditions, 
and capacitance for Cyclone devices.

Table 4–1. Cyclone Device Absolute Maximum Ratings Notes (1), (2)

Symbol Parameter Conditions Minimum Maximum Unit

VCCINT Supply voltage With respect to ground (3) –0.5 2.4 V

VCCIO –0.5 4.6 V

VCCA Supply voltage With respect to ground (3) –0.5 2.4 V

VI DC input voltage –0.5 4.6 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 °C

TAMB Ambient temperature Under bias –65 135 °C

TJ Junction temperature BGA packages under bias — 135 °C

Table 4–2. Cyclone Device Recommended Operating Conditions  (Part 1 of 2)

Symbol Parameter Conditions Minimum  Maximum Unit

VCCINT Supply voltage for internal logic 
and input buffers

(4) 1.425 1.575 V

VCCIO Supply voltage for output buffers, 
3.3-V operation

(4) 3.00 3.60 V

Supply voltage for output buffers, 
2.5-V operation

(4) 2.375 2.625 V

Supply voltage for output buffers, 
1.8-V operation

(4) 1.71 1.89 V

Supply voltage for output buffers, 
1.5-V operation

(4) 1.4 1.6 V

VI Input voltage (3), (5) –0.5 4.1 V

C51004-1.7
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Operating Conditions

VOH High-level output voltage IOUT = –500 μA 0.9 ×  
VCCIO

— — V

VOL Low-level output voltage IOUT = 1,500 μA — — 0.1 ×  
VCCIO

V

Table 4–11. SSTL-2 Class I Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage — 2.375 2.5 2.625 V

VTT Termination voltage — VR E F – 0.04 VR E F VR E F + 0.04 V

VREF Reference voltage — 1.15 1.25 1.35 V

VIH High-level input voltage — VR E F + 0.18 — 3.0 V

VIL Low-level input voltage — –0.3 — VR E F – 0.18 V

VOH High-level output voltage IOH = –8.1 mA 
(11)

VTT + 0.57 — — V

VOL Low-level output voltage IOL = 8.1 mA (11) — — VT T – 0.57 V

Table 4–12. SSTL-2 Class II Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage — 2.3 2.5 2.7 V

VTT Termination voltage — VR E F – 0.04 VR E F VR E F + 0.04 V

VREF Reference voltage — 1.15 1.25 1.35 V

VIH High-level input voltage — VR E F + 0.18 — VCCIO + 0.3 V

VIL Low-level input voltage — –0.3 — VR E F – 0.18 V

VOH High-level output voltage IOH = –16.4 mA 
(11)

VTT + 0.76 — — V

VOL Low-level output voltage IOL = 16.4 mA 
(11)

— — VT T – 0.76 V

Table 4–13. SSTL-3 Class I Specifications  (Part 1 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage — 3.0 3.3 3.6 V

VTT Termination voltage — VR E F – 0.05 VR E F VR E F + 0.05 V

Table 4–10. 3.3-V PCI Specifications  (Part 2 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit
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Table 4–16. Cyclone Device Capacitance Note (14)

Symbol Parameter Typical Unit

CIO Input capacitance for user I/O pin 4.0 pF

CLVDS Input capacitance for dual-purpose LVDS/user I/O pin 4.7 pF

CVREF Input capacitance for dual-purpose VRE F/user I/O pin. 12.0 pF

CDPCLK Input capacitance for dual-purpose DPCLK/user I/O pin. 4.4 pF

CCLK Input capacitance for CLK pin. 4.7 pF

Notes to Tables 4–1 through 4–16:
(1) Refer to the Operating Requirements for Altera Devices Data Sheet.
(2) Conditions beyond those listed in Table 4–1 may cause permanent damage to a device. Additionally, device 

operation at the absolute maximum ratings for extended periods of time may have adverse affects on the device.
(3) Minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 4.6 V for 

input currents less than 100 mA and periods shorter than 20 ns.
(4) Maximum VCC rise time is 100 ms, and VCC must rise monotonically.
(5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are 

powered.
(6) Typical values are for TA = 25°  C, VCCINT = 1.5 V, and VCCIO = 1.5 V, 1.8 V, 2.5 V, and 3.3 V.
(7) VI = ground, no load, no toggling inputs.
(8) This value is specified for normal device operation. The value may vary during power-up. This applies for all 

VCCIO settings (3.3, 2.5, 1.8, and 1.5 V).
(9) RCONF is the measured value of internal pull-up resistance when the I/O pin is tied directly to GND. RCONF value 

will be lower if an external source drives the pin higher than VC C I O .
(10) Pin pull-up resistance values will lower if an external source drives the pin higher than VCCIO.
(11) Drive strength is programmable according to values in Cyclone Architecture chapter in the Cyclone Device Handbook.
(12) Overdrive is possible when a 1.5 V or 1.8 V and a 2.5 V or 3.3 V input signal feeds an input pin. Turn on “Allow 

voltage overdrive” for LVTTL/LVCMOS input pins in the Assignments > Device > Device and Pin Options > Pin 
Placement tab when a device has this I/O combination. However, higher leakage current is expected.

(13) The Cyclone LVDS interface requires a resistor network outside of the transmitter channels.
(14) Capacitance is sample-tested only. Capacitance is measured using time-domain reflections (TDR). Measurement 

accuracy is within ±0.5 pF.

http://www.altera.com/literature/ds/dsoprq.pdf
http://www.altera.com/literature/hb/cyc/cyc_c51002.pdf
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fOUT (to global clock) PLL output frequency 
(-6 speed grade)

15.625 405 MHz

PLL output frequency 
(-7 speed grade)

15.625 320 MHz

PLL output frequency 
(-8 speed grade)

15.625 275 MHz

tOUT DUTY Duty cycle for external clock 
output (when set to 50%)

45.00 55 %

tJITTER (1) Period jitter for external clock 
output

— ±300 (2) ps

tLOCK (3) Time required to lock from end 
of device configuration 

10.00 100 μs

fVCO PLL internal VCO operating 
range

500.00 1,000 MHz

- Minimum areset time 10 — ns

N, G0, G1, E Counter values 1 32 integer

Notes to Table 4–52:
(1) The tJITTER specification for the PLL[2..1]_OUT pins are dependent on the I/O pins in its VCCIO bank, how many 

of them are switching outputs, how much they toggle, and whether or not they use programmable current strength 
or slow slew rate.

(2) fOUT ≥ 100 MHz. When the PLL external clock output frequency (fOUT) is smaller than 100 MHz, the jitter 
specification is 60 mUI.

(3) fIN/N must be greater than 200 MHz to ensure correct lock detect circuit operation below –20 C. Otherwise, the PLL 
operates with the specified parameters under the specified conditions.

Table 4–52. Cyclone PLL Specifications  (Part 2 of 2)

Symbol Parameter Min Max Unit
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July 2003
v1.1

Updated timing information. Timing finalized for EP1C6 and 
EP1C20 devices. Updated performance information. Added PLL 
Timing section.

—

May 2003
v1.0

Added document to Cyclone Device Handbook. —


