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Cyclone devices are available in quad flat pack (QFP) and space-saving 
FineLine® BGA packages (see Tables 1–2 through 1–3).

Vertical migration means you can migrate a design from one device to 
another that has the same dedicated pins, JTAG pins, and power pins, and 
are subsets or supersets for a given package across device densities. The 
largest density in any package has the  highest number of power pins; you 
must use the layout for the largest planned density in a package to 
provide the necessary power pins for migration.

For I/O pin migration across densities, cross-reference the available I/O 
pins using the device pin-outs for all planned densities of a given package 
type to identify which I/O pins can be migrated. The Quartus® II 
software can automatically cross-reference and place all pins for you 
when given a device migration list. If one device has power or ground 
pins, but these same pins are user I/O on a different device that is in the 
migration path,the Quartus II software ensures the pins are not used as 
user I/O in the Quartus II software. Ensure that these pins are connected 

Total RAM bits 59,904 78,336 92,160 239,616 294,912

PLLs 1 2 2 2 2

Maximum user I/O pins (1) 104 301 185 249 301

Note to Table 1–1:
(1) This parameter includes global clock pins.

Table 1–1. Cyclone Device Features  (Part 2 of 2)

Feature EP1C3 EP1C4 EP1C6 EP1C12 EP1C20

Table 1–2. Cyclone Package Options and I/O Pin Counts

Device 100-Pin TQFP 
(1)

144-Pin TQFP 
(1), (2)

240-Pin PQFP 
(1)

256-Pin 
FineLine BGA

324-Pin 
FineLine BGA

400-Pin 
FineLine BGA

EP1C3 65 104 — — — —

EP1C4 — — — — 249 301

EP1C6 — 98 185 185 — —

EP1C12 — — 173 185 249 —

EP1C20 — — — — 233 301

Notes to Table 1–2:
(1) TQFP: thin quad flat pack.

PQFP: plastic quad flat pack.
(2) Cyclone devices support vertical migration within the same package (i.e., designers can migrate between the 

EP1C3 device in the 144-pin TQFP package and the EP1C6 device in the same package).
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2. Cyclone Architecture

Functional 
Description

Cyclone® devices contain a two-dimensional row- and column-based 
architecture to implement custom logic. Column and row interconnects 
of varying speeds provide signal interconnects between LABs and 
embedded memory blocks.

The logic array consists of LABs, with 10 LEs in each LAB. An LE is a 
small unit of logic providing efficient implementation of user logic 
functions. LABs are grouped into rows and columns across the device. 
Cyclone devices range between 2,910 to 20,060 LEs.

M4K RAM blocks are true dual-port memory blocks with 4K bits of 
memory plus parity (4,608 bits). These blocks provide dedicated true 
dual-port, simple dual-port, or single-port memory up to 36-bits wide at 
up to 250 MHz. These blocks are grouped into columns across the device 
in between certain LABs. Cyclone devices offer between 60 to 288 Kbits of 
embedded RAM.

Each Cyclone device I/O pin is fed by an I/O element (IOE) located at the 
ends of LAB rows and columns around the periphery of the device. I/O 
pins support various single-ended and differential I/O standards, such as 
the 66- and 33-MHz, 64- and 32-bit PCI standard and the LVDS I/O 
standard at up to 640 Mbps. Each IOE contains a bidirectional I/O buffer 
and three registers for registering input, output, and output-enable 
signals. Dual-purpose DQS, DQ, and DM pins along with delay chains 
(used to phase-align DDR signals) provide interface support with 
external memory devices such as DDR SDRAM, and FCRAM devices at 
up to 133 MHz (266 Mbps).

Cyclone devices provide a global clock network and up to two PLLs. The 
global clock network consists of eight global clock lines that drive 
throughout the entire device. The global clock network can provide 
clocks for all resources within the device, such as IOEs, LEs, and memory 
blocks. The global clock lines can also be used for control signals. Cyclone 
PLLs provide general-purpose clocking with clock multiplication and 
phase shifting as well as external outputs for high-speed differential I/O 
support.

Figure 2–1 shows a diagram of the Cyclone EP1C12 device.

C51002-1.6
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performance and flexibility. Each LE can drive 30 other LEs through fast 
local and direct link interconnects. Figure 2–3 shows the direct link 
connection.

Figure 2–3. Direct Link Connection

LAB Control Signals

Each LAB contains dedicated logic for driving control signals to its LEs. 
The control signals include two clocks, two clock enables, two 
asynchronous clears, synchronous clear, asynchronous preset/load, 
synchronous load, and add/subtract control signals. This gives a 
maximum of 10 control signals at a time. Although synchronous load and 
clear signals are generally used when implementing counters, they can 
also be used with other functions.

Each LAB can use two clocks and two clock enable signals. Each LAB's 
clock and clock enable signals are linked. For example, any LE in a 
particular LAB using the labclk1 signal will also use labclkena1. If 
the LAB uses both the rising and falling edges of a clock, it also uses both 
LAB-wide clock signals. Deasserting the clock enable signal will turn off 
the LAB-wide clock.

Each LAB can use two asynchronous clear signals and an asynchronous 
load/preset signal. The asynchronous load acts as a preset when the 
asynchronous load data input is tied high.
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block, PLL, or IOE output

Direct link interconnect from
left LAB, M4K memory

block, PLL, or IOE output

Local
Interconnect

Direct link
interconnect

to left



2–8  Altera Corporation
Preliminary May 2008

Cyclone Device Handbook, Volume 1

preset/load, synchronous clear, synchronous load, and clock enable 
control for the register. These LAB-wide signals are available in all LE 
modes. The addnsub control signal is allowed in arithmetic mode. 

The Quartus II software, in conjunction with parameterized functions 
such as library of parameterized modules (LPM) functions, automatically 
chooses the appropriate mode for common functions such as counters, 
adders, subtractors, and arithmetic functions. If required, you can also 
create special-purpose functions that specify which LE operating mode to 
use for optimal performance.

Normal Mode

The normal mode is suitable for general logic applications and 
combinatorial functions. In normal mode, four data inputs from the LAB 
local interconnect are inputs to a four-input LUT (see Figure 2–6). The 
Quartus II Compiler automatically selects the carry-in or the data3 
signal as one of the inputs to the LUT. Each LE can use LUT chain 
connections to drive its combinatorial output directly to the next LE in the 
LAB. Asynchronous load data for the register comes from the data3 
input of the LE. LEs in normal mode support packed registers.

Figure 2–6. LE in Normal Mode

Note to Figure 2–6:
(1) This signal is only allowed in normal mode if the LE is at the end of an adder/subtractor chain.
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Figure 2–7. LE in Dynamic Arithmetic Mode

Note to Figure 2–7:
(1) The addnsub signal is tied to the carry input for the first LE of a carry chain only.

Carry-Select Chain

The carry-select chain provides a very fast carry-select function between 
LEs in dynamic arithmetic mode. The carry-select chain uses the 
redundant carry calculation to increase the speed of carry functions. The 
LE is configured to calculate outputs for a possible carry-in of 0 and 
carry-in of 1 in parallel. The carry-in0 and carry-in1 signals from a 
lower-order bit feed forward into the higher-order bit via the parallel 
carry chain and feed into both the LUT and the next portion of the carry 
chain. Carry-select chains can begin in any LE within a LAB. 

The speed advantage of the carry-select chain is in the parallel 
pre-computation of carry chains. Since the LAB carry-in selects the 
precomputed carry chain, not every LE is in the critical path. Only the 
propagation delays between LAB carry-in generation (LE 5 and LE 10) are 
now part of the critical path. This feature allows the Cyclone architecture 
to implement high-speed counters, adders, multipliers, parity functions, 
and comparators of arbitrary width. 
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Figure 2–9. R4 Interconnect Connections

Notes to Figure 2–9:
(1) C4 interconnects can drive R4 interconnects.
(2) This pattern is repeated for every LAB in the LAB row.

The column interconnect operates similarly to the row interconnect. Each 
column of LABs is served by a dedicated column interconnect, which 
vertically routes signals to and from LABs, M4K memory blocks, and row 
and column IOEs. These column resources include:

■ LUT chain interconnects within a LAB
■ Register chain interconnects within a LAB
■ C4 interconnects traversing a distance of four blocks in an up and 

down direction

Cyclone devices include an enhanced interconnect structure within LABs 
for routing LE output to LE input connections faster using LUT chain 
connections and register chain connections. The LUT chain connection 
allows the combinatorial output of an LE to directly drive the fast input 
of the LE right below it, bypassing the local interconnect. These resources 
can be used as a high-speed connection for wide fan-in functions from 
LE 1 to LE 10 in the same LAB. The register chain connection allows the 
register output of one LE to connect directly to the register input of the 
next LE in the LAB for fast shift registers. The Quartus II Compiler 
automatically takes advantage of these resources to improve utilization 
and performance. Figure 2–10 shows the LUT chain and register chain 
interconnects.
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Embedded Memory

Figure 2–19. Input/Output Clock Mode in Simple Dual-Port Mode Notes (1), (2)

Notes to Figure 2–19:
(1) All registers shown except the rden register have asynchronous clear ports.
(2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both 

read and write operations.
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I/O Structure

Figure 2–32. Cyclone IOE in Bidirectional I/O Configuration

The Cyclone device IOE includes programmable delays to ensure zero 
hold times, minimize setup times, or increase clock to output times.

A path in which a pin directly drives a register may require a 
programmable delay to ensure zero hold time, whereas a path in which a 
pin drives a register through combinatorial logic may not require the 
delay. Programmable delays decrease input-pin-to-logic-array and IOE 
input register delays. The Quartus II Compiler can program these delays 
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I/O Structure

and DM pins to support a DDR SDRAM or FCRAM interface. I/O bank 1 
can also support a DDR SDRAM or FCRAM interface, however, the 
configuration input pins in I/O bank 1 must operate at 2.5 V. I/O bank 3 
can also support a DDR SDRAM or FCRAM interface, however, all the 
JTAG pins in I/O bank 3 must operate at 2.5 V.

Figure 2–35. Cyclone I/O Banks Notes (1), (2)

Notes to Figure 2–35:
(1) Figure 2–35 is a top view of the silicon die.
(2) Figure 2–35 is a graphic representation only. Refer to the pin list and the Quartus II software for exact pin locations.

Each I/O bank has its own VCCIO pins. A single device can support 1.5-V, 
1.8-V, 2.5-V, and 3.3-V interfaces; each individual bank can support a 
different standard with different I/O voltages. Each bank also has 
dual-purpose VREF pins to support any one of the voltage-referenced 
standards (e.g., SSTL-3) independently. If an I/O bank does not use 
voltage-referenced standards, the VREF pins are available as user I/O pins.

I/O Bank 2

I/O Bank 3

I/O Bank 4

I/O Bank 1

All I/O Banks Support
■  3.3-V LVTTL/LVCMOS 
■  2.5-V LVTTL/LVCMOS
■  1.8-V LVTTL/LVCMOS
■  1.5-V LVCMOS
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■  RSDS
■  SSTL-2 Class I and II
■  SSTL-3 Class I and II

I/O Bank 3
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the 3.3-V PCI
I/O Standard

Individual
Power Bus



Altera Corporation  3–3
May 2008 Preliminary

IEEE Std. 1149.1 (JTAG) Boundary Scan Support

The Cyclone device instruction register length is 10 bits and the 
USERCODE register length is 32 bits. Tables 3–2 and 3–3 show the 
boundary-scan register length and device IDCODE information for 
Cyclone devices.

Table 3–2. Cyclone Boundary-Scan Register Length

Device Boundary-Scan Register Length

EP1C3 339

EP1C4 930

EP1C6 582

EP1C12 774

EP1C20 930

Table 3–3. 32-Bit Cyclone Device IDCODE

Device

IDCODE (32 bits) (1)

Version (4 Bits) Part Number (16 Bits) Manufacturer Identity 
(11 Bits) LSB (1 Bit) (2)

EP1C3 0000 0010 0000 1000 0001 000 0110 1110 1

EP1C4 0000 0010 0000 1000 0101 000 0110 1110 1

EP1C6 0000 0010 0000 1000 0010 000 0110 1110 1

EP1C12 0000 0010 0000 1000 0011 000 0110 1110 1

EP1C20 0000 0010 0000 1000 0100 000 0110 1110 1

Notes to Table 3–3:
(1) The most significant bit (MSB) is on the left.
(2) The IDCODE’s least significant bit (LSB) is always 1.
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SignalTap II Embedded Logic Analyzer

1 Cyclone devices must be within the first 8 devices in a JTAG 
chain. All of these devices have the same JTAG controller. If any 
of the Cyclone devices are in the 9th or after they will fail 
configuration. This does not affect the SignalTap® II logic 
analyzer. 

f For more information on JTAG, refer to the following documents:

■ AN 39: IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices
■ Jam Programming & Test Language Specification

SignalTap II 
Embedded Logic 
Analyzer

Cyclone devices feature the SignalTap II embedded logic analyzer, which 
monitors design operation over a period of time through the IEEE 
Std. 1149.1 (JTAG) circuitry. A designer can analyze internal logic at speed 
without bringing internal signals to the I/O pins. This feature is 
particularly important for advanced packages, such as FineLine BGA 
packages, because it can be difficult to add a connection to a pin during 
the debugging process after a board is designed and manufactured.

Configuration The logic, circuitry, and interconnects in the Cyclone architecture are 
configured with CMOS SRAM elements. Altera FPGAs are 
reconfigurable and every device is tested with a high coverage 
production test program so the designer does not have to perform fault 
testing and can instead focus on simulation and design verification.

Cyclone devices are configured at system power-up with data stored in 
an Altera configuration device or provided by a system controller. The 
Cyclone device's optimized interface allows the device to act as controller 
in an active serial configuration scheme with the new low-cost serial 
configuration device. Cyclone devices can be configured in under 120 ms 
using serial data at 20 MHz. The serial configuration device can be 
programmed via the ByteBlaster II download cable, the Altera 
Programming Unit (APU), or third-party programmers.

In addition to the new low-cost serial configuration device, Altera offers 
in-system programmability (ISP)-capable configuration devices that can 
configure Cyclone devices via a serial data stream. The interface also 
enables microprocessors to treat Cyclone devices as memory and 
configure them by writing to a virtual memory location, making 
reconfiguration easy. After a Cyclone device has been configured, it can 
be reconfigured in-circuit by resetting the device and loading new data. 
Real-time changes can be made during system operation, enabling 
innovative reconfigurable computing applications.

http://www.altera.com/literature/an/an039.pdf
http://www.jedec.org/download/search/jesd71.pdf


3–6  Altera Corporation
Preliminary May 2008

Cyclone Device Handbook, Volume 1

Operating Modes

The Cyclone architecture uses SRAM configuration elements that require 
configuration data to be loaded each time the circuit powers up. The 
process of physically loading the SRAM data into the device is called 
configuration. During initialization, which occurs immediately after 
configuration, the device resets registers, enables I/O pins, and begins to 
operate as a logic device. Together, the configuration and initialization 
processes are called command mode. Normal device operation is called 
user mode.

SRAM configuration elements allow Cyclone devices to be reconfigured 
in-circuit by loading new configuration data into the device. With real-
time reconfiguration, the device is forced into command mode with a 
device pin. The configuration process loads different configuration data, 
reinitializes the device, and resumes user-mode operation. Designers can 
perform in-field upgrades by distributing new configuration files either 
within the system or remotely.

A built-in weak pull-up resistor pulls all user I/O pins to VCCIO before 
and during device configuration.

The configuration pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O 
standards. The voltage level of the configuration output pins is 
determined by the VCCIO of the bank where the pins reside. The bank 
VCCIO selects whether the configuration inputs are 1.5-V, 1.8-V, 2.5-V, or 
3.3-V compatible.

Configuration Schemes

Designers can load the configuration data for a Cyclone device with one 
of three configuration schemes (see Table 3–5), chosen on the basis of the 
target application. Designers can use a configuration device, intelligent 
controller, or the JTAG port to configure a Cyclone device. A low-cost 
configuration device can automatically configure a Cyclone device at 
system power-up.
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Referenced Documents

Multiple Cyclone devices can be configured in any of the three 
configuration schemes by connecting the configuration enable (nCE) and 
configuration enable output (nCEO) pins on each device.

Referenced 
Documents

This chapter references the following document:

■ AN 39: IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices
■ Jam Programming & Test Language Specification

Document 
Revision History

Table 3–6 shows the revision history for this chapter.

Table 3–5. Data Sources for Configuration

Configuration Scheme Data Source

Active serial Low-cost serial configuration device

Passive serial (PS) Enhanced or EPC2 configuration device, 
MasterBlaster or ByteBlasterMV download cable, 
or serial data source

JTAG MasterBlaster or ByteBlasterMV download cable 
or a microprocessor with a Jam or JBC file

Table 3–6. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

May 2008
v1.4

Minor textual and style changes. Added “Referenced 
Documents” section.

—

January 2007 
v1.3

● Added document revision history.
● Updated handpara note below Table 3–4.

—

August 2005 
V1.2

Minor updates. —

February 2005 
V1.1

Updated JTAG chain limits. Added information concerning test 
vectors.

—

May 2003 v1.0 Added document to Cyclone Device Handbook. —

http://www.altera.com/literature/an/an039.pdf
http://www.jedec.org/download/search/jesd71.pdf
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Operating Conditions

VOH High-level output voltage IOUT = –500 μA 0.9 ×  
VCCIO

— — V

VOL Low-level output voltage IOUT = 1,500 μA — — 0.1 ×  
VCCIO

V

Table 4–11. SSTL-2 Class I Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage — 2.375 2.5 2.625 V

VTT Termination voltage — VR E F – 0.04 VR E F VR E F + 0.04 V

VREF Reference voltage — 1.15 1.25 1.35 V

VIH High-level input voltage — VR E F + 0.18 — 3.0 V

VIL Low-level input voltage — –0.3 — VR E F – 0.18 V

VOH High-level output voltage IOH = –8.1 mA 
(11)

VTT + 0.57 — — V

VOL Low-level output voltage IOL = 8.1 mA (11) — — VT T – 0.57 V

Table 4–12. SSTL-2 Class II Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage — 2.3 2.5 2.7 V

VTT Termination voltage — VR E F – 0.04 VR E F VR E F + 0.04 V

VREF Reference voltage — 1.15 1.25 1.35 V

VIH High-level input voltage — VR E F + 0.18 — VCCIO + 0.3 V

VIL Low-level input voltage — –0.3 — VR E F – 0.18 V

VOH High-level output voltage IOH = –16.4 mA 
(11)

VTT + 0.76 — — V

VOL Low-level output voltage IOL = 16.4 mA 
(11)

— — VT T – 0.76 V

Table 4–13. SSTL-3 Class I Specifications  (Part 1 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage — 3.0 3.3 3.6 V

VTT Termination voltage — VR E F – 0.05 VR E F VR E F + 0.05 V

Table 4–10. 3.3-V PCI Specifications  (Part 2 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit



Altera Corporation  4–9
May 2008 Preliminary

Timing Model

Typically, the user-mode current during device operation is lower than 
the power-up current in Table 4–17. Altera recommends using the 
Cyclone Power Calculator, available on the Altera web site, to estimate 
the user-mode ICCINT consumption and then select power supplies or 
regulators based on the higher value.

Timing Model The DirectDrive technology and MultiTrack interconnect ensure 
predictable performance, accurate simulation, and accurate timing 
analysis across all Cyclone device densities and speed grades. This 
section describes and specifies the performance, internal, external, and 
PLL timing specifications. 

All specifications are representative of worst-case supply voltage and 
junction temperature conditions.

Preliminary and Final Timing

Timing models can have either preliminary or final status. The 
Quartus® II software issues an informational message during the design 
compilation if the timing models are preliminary. Table 4–18 shows the 
status of the Cyclone device timing models.

Preliminary status means the timing model is subject to change. Initially, 
timing numbers are created using simulation results, process data, and 
other known parameters. These tests are used to make the preliminary 
numbers as close to the actual timing parameters as possible. 

Final timing numbers are based on actual device operation and testing. 
These numbers reflect the actual performance of the device under 
worst-case voltage and junction temperature conditions.

Table 4–18. Cyclone Device Timing Model Status

Device Preliminary Final

EP1C3 — v

EP1C4 — v

EP1C6 — v

EP1C12 — v

EP1C20 — v
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Timing Model

Internal Timing Parameters

Internal timing parameters are specified on a speed grade basis 
independent of device density. Tables 4–21 through 4–24 describe the 
Cyclone device internal timing microparameters for LEs, IOEs, M4K 
memory structures, and MultiTrack interconnects.

M4K 
memory 
block

RAM 128 × 36 bit Single port — 4,608 1 256.00 222.67 197.01

RAM 128 × 36 bit Simple 
dual-port 
mode

— 4,608 1 255.95 222.67 196.97

RAM 256 × 18 bit True dual-
port mode

— 4,608 1 255.95 222.67 196.97

FIFO 128 × 36 bit — 40 4,608 1 256.02 222.67 197.01

Shift register 
9 × 4 × 128

Shift 
register

11 4,536 1 255.95 222.67 196.97

Note to Table 4–20:
(1) The performance numbers for this function are from an EP1C6 device in a 240-pin PQFP package.

Table 4–20. Cyclone Device Performance

Resource 
Used

Design Size and 
Function Mode

Resources Used Performance

LEs
M4K 

Memory 
Bits

M4K 
Memory 
Blocks

-6 Speed 
Grade 
(MHz)

-7 Speed 
Grade 
(MHz)

-8 Speed 
Grade 
(MHz)

Table 4–21. LE Internal Timing Microparameter Descriptions

Symbol Parameter

tSU LE register setup time before clock

tH LE register hold time after clock

tCO LE register clock-to-output delay

tLUT LE combinatorial LUT delay for data-in to data-out

tCLR Minimum clear pulse width

tPRE Minimum preset pulse width

tCLKHL Minimum clock high or low time
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1.5-V LVTTL 2 mA — 6,789 — 7,807 — 8,825 ps

4 mA — 5,109 — 5,875 — 6,641 ps

8 mA — 4,793 — 5,511 — 6,230 ps

SSTL-3 class I — 1,390 — 1,598 — 1,807 ps

SSTL-3 class II — 989 — 1,137 — 1,285 ps

SSTL-2 class I — 1,965 — 2,259 — 2,554 ps

SSTL-2 class II — 1,692 — 1,945 — 2,199 ps

LVDS — 802 — 922 — 1,042 ps

Table 4–45. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Row Pins  (Part 1 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS 2 mA — 1,800 — 2,070 — 2,340 ps

4 mA — 1,311 — 1,507 — 1,704 ps

8 mA — 945 — 1,086 — 1,228 ps

12 mA — 807 — 928 — 1,049 ps

3.3-V LVTTL 4 mA — 1,831 — 2,105 — 2,380 ps

8 mA — 1,484 — 1,705 — 1,928 ps

12 mA — 973 — 1,118 — 1,264 ps

16 mA — 1,012 — 1,163 — 1,315 ps

24 mA — 838 — 963 — 1,089 ps

2.5-V LVTTL 2 mA — 2,747 — 3,158 — 3,570 ps

8 mA — 1,757 — 2,019 — 2,283 ps

12 mA — 1,763 — 2,026 — 2,291 ps

16 mA — 1,623 — 1,865 — 2,109 ps

1.8-V LVTTL 2 mA — 5,506 — 6,331 — 7,157 ps

8 mA — 4,220 — 4,852 — 5,485 ps

12 mA — 4,008 — 4,608 — 5,209 ps

1.5-V LVTTL 2 mA — 6,789 — 7,807 — 8,825 ps

4 mA — 5,109 — 5,875 — 6,641 ps

8 mA — 4,793 — 5,511 — 6,230 ps

3.3-V PCI — 923 — 1,061 — 1,199 ps

Table 4–44. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Column Pins  (Part 2 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max



4–26  Altera Corporation
Preliminary May 2008

Cyclone Device Handbook, Volume 1

Tables 4–46 through 4–47 show the adder delays for the IOE 
programmable delays. These delays are controlled with the Quartus II 
software options listed in the Parameter column.

SSTL-3 class I — 1,390 — 1,598 — 1,807 ps

SSTL-3 class II — 989 — 1,137 — 1,285 ps

SSTL-2 class I — 1,965 — 2,259 — 2,554 ps

SSTL-2 class II — 1,692 — 1,945 — 2,199 ps

LVDS — 802 — 922 — 1,042 ps

Note to Tables 4–40 through 4–45:
(1) EP1C3 devices do not support the PCI I/O standard.

Table 4–45. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Row Pins  (Part 2 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

Table 4–46. Cyclone IOE Programmable Delays on Column Pins

Parameter Setting
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

Decrease input delay to 
internal cells

Off — 155 — 178 — 201 ps

Small — 2,122 — 2,543 — 2,875 ps

Medium — 2,639 — 3,034 — 3,430 ps

Large — 3,057 — 3,515 — 3,974 ps

On — 155 — 178 — 201 ps

Decrease input delay to 
input register

Off — 0 — 0 — 0 ps

On — 3,057 — 3,515 — 3,974 ps

Increase delay to output 
pin

Off — 0 — 0 — 0 ps

On — 552 — 634 — 717 ps
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July 2003
v1.1

Updated timing information. Timing finalized for EP1C6 and 
EP1C20 devices. Updated performance information. Added PLL 
Timing section.

—

May 2003
v1.0

Added document to Cyclone Device Handbook. —
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Figure 5–1. Cyclone Device Packaging Ordering Information

Referenced 
Documents

This chapter references the following documents:

■ Package Information for Cyclone Devices chapter in the Cyclone Device 
Handbook

■ Quartus II Handbook

Document 
Revision History

Table 5–1 shows the revision history for this chapter.

Device Type

Package Type

6, 7, or 8 , with 6 being the fastest

Number of pins for a particular package

ES:

T:
Q:
F:

Thin quad flat pack (TQFP)
Plastic quad flat pack (PQFP)
FineLine BGA

EP1C: Cyclone

3
4
6
12
20

C:
I:

Commercial temperature (tJ = 0˚ C to 85˚ C)
Industrial temperature (tJ = -40˚ C to 100˚ C)

Optional SuffixFamily Signature

Operating Temperature

Speed Grade

Pin Count

Engineering sample

7EP1C 20 C400F ES

Indicates specific device options or 
shipment method.

Table 5–1. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

May 2008
v1.4

Minor textual and style changes. Added “Referenced 
Documents” section.

—

January 2007 
v1.3

Added document revision history. —

August 2005 
v1.2

Minor updates. —
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