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Document Revision History

to the appropriate plane on the board. The Quartus II software reserves 
I/O pins as power pins as necessary for layout with the larger densities 
in the same package having more power pins.

Document 
Revision History

Table 1–4 shows the revision history for this document.

Table 1–3. Cyclone QFP and FineLine BGA Package Sizes

Dimension 100-Pin 
TQFP

144-Pin 
TQFP

240-Pin 
PQFP

256-Pin 
FineLine 

BGA

324-Pin 
FineLine 

BGA

400-Pin 
FineLine 

BGA

Pitch (mm) 0.5 0.5 0.5 1.0 1.0 1.0

Area (mm2) 256 484 1,024 289 361 441

Length × width 
(mm × mm)

16×16 22×22 34.6×34.6 17×17 19×19 21×21

Table 1–4. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

May 2008
v1.5

Minor textual and style changes. —

January 2007 
v1.4

Added document revision history. —

August 2005 
v1.3

Minor updates. —

October 2003 
v1.2

Added 64-bit PCI support information. —

September 
2003 v1.1

● Updated LVDS data rates to 640 Mbps from 311 Mbps.
● Updated RSDS feature information.

—

May 2003 v1.0 Added document to Cyclone Device Handbook. —
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performance and flexibility. Each LE can drive 30 other LEs through fast 
local and direct link interconnects. Figure 2–3 shows the direct link 
connection.

Figure 2–3. Direct Link Connection

LAB Control Signals

Each LAB contains dedicated logic for driving control signals to its LEs. 
The control signals include two clocks, two clock enables, two 
asynchronous clears, synchronous clear, asynchronous preset/load, 
synchronous load, and add/subtract control signals. This gives a 
maximum of 10 control signals at a time. Although synchronous load and 
clear signals are generally used when implementing counters, they can 
also be used with other functions.

Each LAB can use two clocks and two clock enable signals. Each LAB's 
clock and clock enable signals are linked. For example, any LE in a 
particular LAB using the labclk1 signal will also use labclkena1. If 
the LAB uses both the rising and falling edges of a clock, it also uses both 
LAB-wide clock signals. Deasserting the clock enable signal will turn off 
the LAB-wide clock.

Each LAB can use two asynchronous clear signals and an asynchronous 
load/preset signal. The asynchronous load acts as a preset when the 
asynchronous load data input is tied high.
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Logic Elements

Dynamic Arithmetic Mode

The dynamic arithmetic mode is ideal for implementing adders, counters, 
accumulators, wide parity functions, and comparators. An LE in dynamic 
arithmetic mode uses four 2-input LUTs configurable as a dynamic 
adder/subtractor. The first two 2-input LUTs compute two summations 
based on a possible carry-in of 1 or 0; the other two LUTs generate carry 
outputs for the two chains of the carry select circuitry. As shown in 
Figure 2–7, the LAB carry-in signal selects either the carry-in0 or 
carry-in1 chain. The selected chain's logic level in turn determines 
which parallel sum is generated as a combinatorial or registered output. 
For example, when implementing an adder, the sum output is the 
selection of two possible calculated sums:

data1 + data2 + carry-in0

or

data1 + data2 + carry-in1

The other two LUTs use the data1 and data2 signals to generate two 
possible carry-out signals⎯one for a carry of 1 and the other for a carry of 
0. The carry-in0 signal acts as the carry select for the carry-out0 
output and carry-in1 acts as the carry select for the carry-out1 
output. LEs in arithmetic mode can drive out registered and unregistered 
versions of the LUT output.

The dynamic arithmetic mode also offers clock enable, counter enable, 
synchronous up/down control, synchronous clear, synchronous load, 
and dynamic adder/subtractor options. The LAB local interconnect data 
inputs generate the counter enable and synchronous up/down control 
signals. The synchronous clear and synchronous load options are 
LAB-wide signals that affect all registers in the LAB. The Quartus II 
software automatically places any registers that are not used by the 
counter into other LABs. The addnsub LAB-wide signal controls 
whether the LE acts as an adder or subtractor.
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Figure 2–7. LE in Dynamic Arithmetic Mode

Note to Figure 2–7:
(1) The addnsub signal is tied to the carry input for the first LE of a carry chain only.

Carry-Select Chain

The carry-select chain provides a very fast carry-select function between 
LEs in dynamic arithmetic mode. The carry-select chain uses the 
redundant carry calculation to increase the speed of carry functions. The 
LE is configured to calculate outputs for a possible carry-in of 0 and 
carry-in of 1 in parallel. The carry-in0 and carry-in1 signals from a 
lower-order bit feed forward into the higher-order bit via the parallel 
carry chain and feed into both the LUT and the next portion of the carry 
chain. Carry-select chains can begin in any LE within a LAB. 

The speed advantage of the carry-select chain is in the parallel 
pre-computation of carry chains. Since the LAB carry-in selects the 
precomputed carry chain, not every LE is in the critical path. Only the 
propagation delays between LAB carry-in generation (LE 5 and LE 10) are 
now part of the critical path. This feature allows the Cyclone architecture 
to implement high-speed counters, adders, multipliers, parity functions, 
and comparators of arbitrary width. 
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Embedded 
Memory

The Cyclone embedded memory consists of columns of M4K memory 
blocks. EP1C3 and EP1C6 devices have one column of M4K blocks, while 
EP1C12 and EP1C20 devices have two columns (refer to Table 1–1 on 
page 1–1 for total RAM bits per density). Each M4K block can implement 
various types of memory with or without parity, including true dual-port, 
simple dual-port, and single-port RAM, ROM, and FIFO buffers. The 
M4K blocks support the following features:

■ 4,608 RAM bits
■ 250 MHz performance
■ True dual-port memory
■ Simple dual-port memory
■ Single-port memory
■ Byte enable
■ Parity bits
■ Shift register
■ FIFO buffer
■ ROM
■ Mixed clock mode

1 Violating the setup or hold time on the address registers could 
corrupt the memory contents. This applies to both read and 
write operations.

Memory Modes

The M4K memory blocks include input registers that synchronize writes 
and output registers to pipeline designs and improve system 
performance. M4K blocks offer a true dual-port mode to support any 
combination of two-port operations: two reads, two writes, or one read 
and one write at two different clock frequencies. Figure 2–12 shows true 
dual-port memory.

Figure 2–12. True Dual-Port Memory Configuration
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Embedded Memory

In addition to true dual-port memory, the M4K memory blocks support 
simple dual-port and single-port RAM. Simple dual-port memory 
supports a simultaneous read and write. Single-port memory supports 
non-simultaneous reads and writes. Figure 2–13 shows these different 
M4K RAM memory port configurations.

Figure 2–13. Simple Dual-Port and Single-Port Memory Configurations

Note to Figure 2–13:
(1) Two single-port memory blocks can be implemented in a single M4K block as long 

as each of the two independent block sizes is equal to or less than half of the M4K 
block size.

The memory blocks also enable mixed-width data ports for reading and 
writing to the RAM ports in dual-port RAM configuration. For example, 
the memory block can be written in ×1 mode at port A and read out in ×16 
mode from port B.

The Cyclone memory architecture can implement fully synchronous 
RAM by registering both the input and output signals to the M4K RAM 
block. All M4K memory block inputs are registered, providing 
synchronous write cycles. In synchronous operation, the memory block 
generates its own self-timed strobe write enable (wren) signal derived 
from a global clock. In contrast, a circuit using asynchronous RAM must 
generate the RAM wren signal while ensuring its data and address 
signals meet setup and hold time specifications relative to the wren 

data[ ]
wraddress[ ]
wren
   inclock
inclocken
inaclr

rdaddress[ ]
rden

q[ ]
outclock   
outclocken

outaclr

data[ ]
address[ ]
wren
   inclock
inclocken
inaclr

q[ ]
outclock   
outclocken

outaclr

Single-Port Memory (1)

Simple Dual-Port Memory



2–22  Altera Corporation
Preliminary May 2008

Cyclone Device Handbook, Volume 1

is not available in the true dual-port mode. Mixed-width configurations 
are also possible, allowing different read and write widths. Tables 2–3 
and 2–4 summarize the possible M4K RAM block configurations.

When the M4K RAM block is configured as a shift register block, you can 
create a shift register up to 4,608 bits (w × m × n).

Table 2–3. M4K RAM Block Configurations (Simple Dual-Port)

Read Port
Write Port

4K × 1 2K × 2 1K × 4 512 × 8 256 × 16 128 × 32 512 × 9 256 × 18 128 × 36

4K × 1 v v v v v v — — —

2K × 2 v v v v v v — — —

1K × 4 v v v v v v — — —

512 × 8 v v v v v v — — —

256 × 16 v v v v v v — — —

128 × 32 v v v v v v — — —

512 × 9 — — — — — — v v v

256 × 18 — — — — — — v v v

128 × 36 — — — — — — v v v

Table 2–4. M4K RAM Block Configurations (True Dual-Port)

Port A
Port B

4K × 1 2K × 2 1K × 4 512 × 8 256 × 16 512 × 9 256 × 18

4K × 1 v v v v v — —

2K × 2 v v v v v — —

1K × 4 v v v v v — —

512 × 8 v v v v v — —

256 × 16 v v v v v — —

512 × 9 — — — — — v v

256 × 18 — — — — — v v
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Global Clock Network and Phase-Locked Loops

Dual-Purpose Clock Pins

Each Cyclone device except the EP1C3 device has eight dual-purpose 
clock pins, DPCLK[7..0] (two on each I/O bank). EP1C3 devices have 
five DPCLK pins in the 100-pin TQFP package. These dual-purpose pins 
can connect to the global clock network (see Figure 2–22) for high-fanout 
control signals such as clocks, asynchronous clears, presets, and clock 
enables, or protocol control signals such as TRDY and IRDY for PCI, or 
DQS signals for external memory interfaces.

Combined Resources

Each Cyclone device contains eight distinct dedicated clocking resources. 
The device uses multiplexers with these clocks to form six-bit buses to 
drive LAB row clocks, column IOE clocks, or row IOE clocks. See 
Figure 2–23. Another multiplexer at the LAB level selects two of the six 
LAB row clocks to feed the LE registers within the LAB.

Figure 2–23. Global Clock Network Multiplexers

IOE clocks have row and column block regions. Six of the eight global 
clock resources feed to these row and column regions. Figure 2–24 shows 
the I/O clock regions.
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Figure 2–24. I/O Clock Regions

PLLs

Cyclone PLLs provide general-purpose clocking with clock 
multiplication and phase shifting as well as outputs for differential I/O 
support. Cyclone devices contain two PLLs, except for the EP1C3 device, 
which contains one PLL.
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I/O Structure

The pin's datain signals can drive the logic array. The logic array drives 
the control and data signals, providing a flexible routing resource. The 
row or column IOE clocks, io_clk[5..0], provide a dedicated routing 
resource for low-skew, high-speed clocks. The global clock network 
generates the IOE clocks that feed the row or column I/O regions (see 
“Global Clock Network and Phase-Locked Loops” on page 2–29). 
Figure 2–30 illustrates the signal paths through the I/O block.

Figure 2–30. Signal Path through the I/O Block

Each IOE contains its own control signal selection for the following 
control signals: oe, ce_in, ce_out, aclr/preset, sclr/preset, 
clk_in, and clk_out. Figure 2–31 illustrates the control signal 
selection.
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I/O Structure

output pins (nSTATUS and CONF_DONE) and all the JTAG pins in I/O 
bank 3 must operate at 2.5 V because the VCCIO level of SSTL-2 is 2.5 V. 
I/O banks 1, 2, 3, and 4 support DQS signals with DQ bus modes of  × 8.

For  × 8 mode, there are up to eight groups of programmable DQS and DQ 
pins, I/O banks 1, 2, 3, and 4 each have two groups in the 324-pin and 
400-pin FineLine BGA packages. Each group consists of one DQS pin, a 
set of eight DQ pins, and one DM pin (see Figure 2–33). Each DQS pin 
drives the set of eight DQ pins within that group.

Figure 2–33. Cyclone Device DQ and DQS Groups in ×8 Mode Note (1)

Note to Figure 2–33:
(1) Each DQ group consists of one DQS pin, eight DQ pins, and one DM pin.

Table 2–10 shows the number of DQ pin groups per device.

DQ Pins DQS Pin DM Pin

Top, Bottom, Left, or Right I/O Bank

Table 2–10. DQ Pin Groups  (Part 1 of 2)

Device Package Number of  × 8 DQ 
Pin Groups

Total DQ Pin 
Count

EP1C3 100-pin TQFP (1) 3 24

144-pin TQFP 4 32

EP1C4 324-pin FineLine BGA 8 64

400-pin FineLine BGA 8 64
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3. Configuration and Testing

IEEE Std. 1149.1 
(JTAG) Boundary 
Scan Support

All Cyclone® devices provide JTAG BST circuitry that complies with the 
IEEE Std. 1149.1a-1990 specification. JTAG boundary-scan testing can be 
performed either before or after, but not during configuration. Cyclone 
devices can also use the JTAG port for configuration together with either 
the Quartus® II software or hardware using either Jam Files (.jam) or Jam 
Byte-Code Files (.jbc).

Cyclone devices support reconfiguring the I/O standard settings on the 
IOE through the JTAG BST chain. The JTAG chain can update the I/O 
standard for all input and output pins any time before or during user 
mode. Designers can use this ability for JTAG testing before configuration 
when some of the Cyclone pins drive or receive from other devices on the 
board using voltage-referenced standards. Since the Cyclone device 
might not be configured before JTAG testing, the I/O pins might not be 
configured for appropriate electrical standards for chip-to-chip 
communication. Programming those I/O standards via JTAG allows 
designers to fully test I/O connection to other devices.

The JTAG pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O standards. The 
TDO pin voltage is determined by the VCCIO of the bank where it resides. 
The bank VCCIO selects whether the JTAG inputs are 1.5-V, 1.8-V, 2.5-V, or 
3.3-V compatible. 

Cyclone devices also use the JTAG port to monitor the operation of the 
device with the SignalTap® II embedded logic analyzer. Cyclone devices 
support the JTAG instructions shown in Table 3–1.

Table 3–1. Cyclone JTAG Instructions  (Part 1 of 2)

JTAG Instruction Instruction Code Description

SAMPLE/PRELOAD 00 0000 0101 Allows a snapshot of signals at the device pins to be captured and 
examined during normal device operation, and permits an initial 
data pattern to be output at the device pins. Also used by the 
SignalTap II embedded logic analyzer.

EXTEST (1) 00 0000 0000 Allows the external circuitry and board-level interconnects to be 
tested by forcing a test pattern at the output pins and capturing test 
results at the input pins.

BYPASS 11 1111 1111 Places the 1-bit bypass register between the TDI and TDO pins, 
which allows the BST data to pass synchronously through selected 
devices to adjacent devices during normal device operation.

C51003-1.4
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In the Quartus II software, there is an Auto Usercode feature where you 
can choose to use the checksum value of a programming file as the JTAG 
user code. If selected, the checksum is automatically loaded to the 
USERCODE register. Choose Assignments > Device > Device and Pin 
Options > General. Turn on Auto Usercode.

USERCODE 00 0000 0111 Selects the 32-bit USERCODE register and places it between the 
TDI and TDO pins, allowing the USERCODE to be serially shifted 
out of TDO.

IDCODE 00 0000 0110 Selects the IDCODE register and places it between TDI and TDO, 
allowing the IDCODE to be serially shifted out of TDO.

HIGHZ (1) 00 0000 1011 Places the 1-bit bypass register between the TDI and TDO pins, 
which allows the BST data to pass synchronously through selected 
devices to adjacent devices during normal device operation, while 
tri-stating all of the I/O pins.

CLAMP (1) 00 0000 1010 Places the 1-bit bypass register between the TDI and TDO pins, 
which allows the BST data to pass synchronously through selected 
devices to adjacent devices during normal device operation while 
holding I/O pins to a state defined by the data in the boundary-scan 
register.

ICR instructions — Used when configuring a Cyclone device via the JTAG port with a 
MasterBlasterTM or ByteBlasterMVTM download cable, or when 
using a Jam File or Jam Byte-Code File via an embedded 
processor.

PULSE_NCONFIG 00 0000 0001 Emulates pulsing the nCONFIG pin low to trigger reconfiguration 
even though the physical pin is unaffected.

CONFIG_IO 00 0000 1101 Allows configuration of I/O standards through the JTAG chain for 
JTAG testing. Can be executed before, after, or during 
configuration. Stops configuration if executed during configuration. 
Once issued, the CONFIG_IO instruction will hold nSTATUS low 
to reset the configuration device. nSTATUS is held low until the 
device is reconfigured.

SignalTap II 
instructions

— Monitors internal device operation with the SignalTap II embedded 
logic analyzer.

Note to Table 3–1:
(1) Bus hold and weak pull-up resistor features override the high-impedance state of HIGHZ, CLAMP, and EXTEST.

Table 3–1. Cyclone JTAG Instructions  (Part 2 of 2)

JTAG Instruction Instruction Code Description
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4. DC and Switching
Characteristics

Operating 
Conditions

Cyclone® devices are offered in both commercial, industrial, and 
extended temperature grades. However, industrial-grade and extended-
temperature-grade devices may have limited speed-grade availability.

Tables 4–1 through 4–16 provide information on absolute maximum 
ratings, recommended operating conditions, DC operating conditions, 
and capacitance for Cyclone devices.

Table 4–1. Cyclone Device Absolute Maximum Ratings Notes (1), (2)

Symbol Parameter Conditions Minimum Maximum Unit

VCCINT Supply voltage With respect to ground (3) –0.5 2.4 V

VCCIO –0.5 4.6 V

VCCA Supply voltage With respect to ground (3) –0.5 2.4 V

VI DC input voltage –0.5 4.6 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 °C

TAMB Ambient temperature Under bias –65 135 °C

TJ Junction temperature BGA packages under bias — 135 °C

Table 4–2. Cyclone Device Recommended Operating Conditions  (Part 1 of 2)

Symbol Parameter Conditions Minimum  Maximum Unit

VCCINT Supply voltage for internal logic 
and input buffers

(4) 1.425 1.575 V

VCCIO Supply voltage for output buffers, 
3.3-V operation

(4) 3.00 3.60 V

Supply voltage for output buffers, 
2.5-V operation

(4) 2.375 2.625 V

Supply voltage for output buffers, 
1.8-V operation

(4) 1.71 1.89 V

Supply voltage for output buffers, 
1.5-V operation

(4) 1.4 1.6 V

VI Input voltage (3), (5) –0.5 4.1 V

C51004-1.7
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Operating Conditions

Table 4–5. LVCMOS Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage — 3.0 3.6 V

VIH High-level input voltage — 1.7 4.1 V

VIL Low-level input voltage — –0.5 0.7 V

VOH High-level output voltage VCCIO = 3.0, 
IOH = –0.1 mA

VCCIO – 0.2 — V

VOL Low-level output voltage VCCIO = 3.0,
IOL = 0.1 mA

— 0.2 V

Table 4–6. 2.5-V I/O Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage — 2.375 2.625 V

VIH High-level input voltage — 1.7 4.1 V

VIL Low-level input voltage — –0.5 0.7 V

VOH High-level output voltage IOH = –0.1 mA 2.1 — V

IOH = –1 mA 2.0 — V

IOH = –2 to –16 mA (11) 1.7 — V

VOL Low-level output voltage IOL = 0.1 mA — 0.2 V

IOH = 1 mA — 0.4 V

IOH = 2 to 16 mA (11) — 0.7 V

Table 4–7. 1.8-V I/O Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage — 1.65 1.95 V

VI H High-level input voltage — 0.65 ×  
VCCIO

2.25 (12) V

VIL Low-level input voltage — –0.3 0.35 ×  
VCCIO 

V

VOH High-level output voltage IOH = –2 to –8 mA (11) VCCIO – 0.45 — V

VOL Low-level output voltage IOL = 2 to 8 mA (11) — 0.45 V
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Timing Model

Figure 4–1 shows the memory waveforms for the M4K timing parameters 
shown in Table 4–23.

Figure 4–1. Dual-Port RAM Timing Microparameter Waveform

Table 4–24. Routing Delay Internal Timing Microparameter Descriptions

Symbol Parameter

tR4 Delay for an R4 line with average loading; covers a distance 
of four LAB columns

tC4 Delay for an C4 line with average loading; covers a distance 
of four LAB rows

tLOCAL Local interconnect delay
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Internal timing parameters are specified on a speed grade basis 
independent of device density. Tables 4–25 through 4–28 show the 
internal timing microparameters for LEs, IOEs, TriMatrix memory 
structures, DSP blocks, and MultiTrack interconnects. 

Table 4–25. LE Internal Timing Microparameters

Symbol
-6 -7 -8

Unit
Min Max Min Max Min Max

tSU 29 — 33 — 37 — ps 

tH 12 — 13 — 15 — ps 

tCO — 173 — 198 — 224 ps 

tLUT — 454 — 522 — 590 ps 

tCLR 129 — 148 — 167 — ps 

tPRE 129 — 148 — 167 — ps 

tCLKHL 1,234 — 1,562 — 1,818 — ps 

Table 4–26. IOE Internal Timing Microparameters

Symbol
-6 -7 -8

Unit
Min Max Min Max Min Max

tSU 348 — 400 — 452 — ps

tH 0 — 0 — 0 — ps

tCO — 511 — 587 — 664 ps

tPIN2COMBOUT_R — 1,130 — 1,299 — 1,469 ps

tPIN2COMBOUT_C — 1,135 — 1,305 — 1,475 ps

tCOMBIN2PIN_R — 2,627 — 3,021 — 3,415 ps

tCOMBIN2PIN_C — 2,615 — 3,007 — 3,399 ps

tCLR 280 — 322 — 364 — ps

tPRE 280 — 322 — 364 — ps

tCLKHL 1,234 — 1,562 — 1,818 — ps
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2.5-V LVTTL 2 mA — 329 — 378 — 427 ps

8 mA — –661 — –761 — –860 ps

12 mA — –655 — –754 — –852 ps

16 mA — –795 — –915 — –1034 ps

1.8-V LVTTL 2 mA — 4 — 4 — 5 ps

8 mA — –208 — –240 — –271 ps

12 mA — –208 — –240 — –271 ps

1.5-V LVTTL 2 mA — 2,288 — 2,631 — 2,974 ps

4 mA — 608 — 699 — 790 ps

8 mA — 292 — 335 — 379 ps

SSTL-3 class I — –410 — –472 — –533 ps

SSTL-3 class II — –811 — –933 — –1,055 ps

SSTL-2 class I — –485 — –558 — –631 ps

SSTL-2 class II — –758 — –872 — –986 ps

LVDS — –998 — –1,148 — –1,298 ps

Table 4–43. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Row Pins  (Part 1 of 2)

Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS 2 mA — 0 — 0 — 0 ps

4 mA — –489 — –563 — –636 ps

8 mA — –855 — –984 — –1,112 ps

12 mA — –993 — –1,142 — –1,291 ps

3.3-V LVTTL 4 mA — 0 — 0 — 0 ps

8 mA — –347 — –400 — –452 ps

12 mA — –858 — –987 — –1,116 ps

16 mA — –819 — –942 — –1,065 ps

24 mA — –993 — –1,142 — –1,291 ps

2.5-V LVTTL 2 mA — 329 — 378 — 427 ps

8 mA — –661 — –761 — –860 ps

12 mA — –655 — –754 — –852 ps

16 mA — –795 — –915 — –1,034 ps

Table 4–42. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Column Pins  (Part 2 of 2)

Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max
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1.8-V LVTTL 2 mA — 1,290 — 1,483 — 1,677 ps

8 mA — 4 — 4 — 5 ps

12 mA — –208 — –240 — –271 ps

1.5-V LVTTL 2 mA — 2,288 — 2,631 — 2,974 ps

4 mA — 608 — 699 — 790 ps

8 mA — 292 — 335 — 379 ps

3.3-V PCI (1) — –877 — –1,009 — –1,141 ps

SSTL-3 class I — –410 — –472 — –533 ps

SSTL-3 class II — –811 — –933 — –1,055 ps

SSTL-2 class I — –485 — –558 — –631 ps

SSTL-2 class II — –758 — –872 — –986 ps

LVDS — –998 — –1,148 — –1,298 ps

Table 4–44. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Column Pins  (Part 1 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS 2 mA — 1,800 — 2,070 — 2,340 ps

4 mA — 1,311 — 1,507 — 1,704 ps

8 mA — 945 — 1,086 — 1,228 ps

12 mA — 807 — 928 — 1,049 ps

3.3-V LVTTL 4 mA — 1,831 — 2,105 — 2,380 ps

8 mA — 1,484 — 1,705 — 1,928 ps

12 mA — 973 — 1,118 — 1,264 ps

16 mA — 1,012 — 1,163 — 1,315 ps

24 mA — 838 — 963 — 1,089 ps

2.5-V LVTTL 2 mA — 2,747 — 3,158 — 3,570 ps

8 mA — 1,757 — 2,019 — 2,283 ps

12 mA — 1,763 — 2,026 — 2,291 ps

16 mA — 1,623 — 1,865 — 2,109 ps

1.8-V LVTTL 2 mA — 5,506 — 6,331 — 7,157 ps

8 mA — 4,220 — 4,852 — 5,485 ps

12 mA — 4,008 — 4,608 — 5,209 ps

Table 4–43. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Row Pins  (Part 2 of 2)

Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max
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PLL Timing

Table 4–52 describes the Cyclone FPGA PLL specifications.

Table 4–51. Cyclone Maximum Output Clock Rate for Row Pins

I/O Standard -6 Speed 
Grade

-7 Speed 
Grade

-8 Speed 
Grade Unit

LVTTL 296 285 273 MHz

2.5 V 381 366 349 MHz

1.8 V 286 277 267 MHz

1.5 V 219 208 195 MHz

LVCMOS 367 356 343 MHz

SSTL-3 class I 169 166 162 MHz

SSTL-3 class II 160 151 146 MHz

SSTL-2 class I 160 151 142 MHz

SSTL-2 class II 131 123 115 MHz

3.3-V PCI (1) 66 66 66 MHz

LVDS 320 303 275 MHz

Note to Tables 4–50 through 4–51:
(1) EP1C3 devices do not support the PCI I/O standard. These parameters are only 

available on row I/O pins.

Table 4–52. Cyclone PLL Specifications  (Part 1 of 2)

Symbol Parameter Min Max Unit

fIN Input frequency (-6 speed 
grade)

15.625 464 MHz

Input frequency (-7 speed 
grade)

15.625 428 MHz

Input frequency (-8 speed 
grade)

15.625 387 MHz

fIN DUTY Input clock duty cycle 40.00 60 %

tIN JITTER Input clock period jitter — ± 200 ps

fOUT_EXT (external PLL 
clock output)

PLL output frequency 
(-6 speed grade)

15.625 320 MHz

PLL output frequency 
(-7 speed grade)

15.625 320 MHz

PLL output frequency 
(-8 speed grade)

15.625 275 MHz


