Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 400 | | Number of Logic Elements/Cells | 4000 | | Total RAM Bits | 78336 | | Number of I/O | 301 | | Number of Gates | - | | Voltage - Supply | 1.425V ~ 1.575V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 400-BGA | | Supplier Device Package | 400-FBGA (21x21) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep1c4f400c8n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Table 1–1. Cyclone Device Features (Part 2 of 2) | | | | | | | | | |--|--------|--------|--------|---------|---------|--|--|--| | Feature | EP1C3 | EP1C4 | EP1C6 | EP1C12 | EP1C20 | | | | | Total RAM bits | 59,904 | 78,336 | 92,160 | 239,616 | 294,912 | | | | | PLLs | 1 | 2 | 2 | 2 | 2 | | | | | Maximum user I/O pins (1) | 104 | 301 | 185 | 249 | 301 | | | | Note to Table 1–1: (1) This parameter includes global clock pins. Cyclone devices are available in quad flat pack (QFP) and space-saving FineLine[®] BGA packages (see Tables 1–2 through 1–3). | Table 1–2. Cyclone Package Options and I/O Pin Counts | | | | | | | | | |---|-------------------------|------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--|--| | Device | 100-Pin TQFP (1) | 144-Pin TQFP (1), (2) | 240-Pin PQFP (1) | 256-Pin
FineLine BGA | 324-Pin
FineLine BGA | 400-Pin
FineLine BGA | | | | EP1C3 | 65 | 104 | _ | _ | _ | _ | | | | EP1C4 | _ | _ | _ | _ | 249 | 301 | | | | EP1C6 | _ | 98 | 185 | 185 | _ | _ | | | | EP1C12 | _ | _ | 173 | 185 | 249 | _ | | | | EP1C20 | _ | _ | _ | _ | 233 | 301 | | | #### *Notes to Table 1–2:* - (1) TQFP: thin quad flat pack. PQFP: plastic quad flat pack. - (2) Cyclone devices support vertical migration within the same package (i.e., designers can migrate between the EP1C3 device in the 144-pin TQFP package and the EP1C6 device in the same package). Vertical migration means you can migrate a design from one device to another that has the same dedicated pins, JTAG pins, and power pins, and are subsets or supersets for a given package across device densities. The largest density in any package has the highest number of power pins; you must use the layout for the largest planned density in a package to provide the necessary power pins for migration. For I/O pin migration across densities, cross-reference the available I/O pins using the device pin-outs for all planned densities of a given package type to identify which I/O pins can be migrated. The Quartus® II software can automatically cross-reference and place all pins for you when given a device migration list. If one device has power or ground pins, but these same pins are user I/O on a different device that is in the migration path,the Quartus II software ensures the pins are not used as user I/O in the Quartus II software. Ensure that these pins are connected ## Embedded Memory The Cyclone embedded memory consists of columns of M4K memory blocks. EP1C3 and EP1C6 devices have one column of M4K blocks, while EP1C12 and EP1C20 devices have two columns (refer to Table 1–1 on page 1–1 for total RAM bits per density). Each M4K block can implement various types of memory with or without parity, including true dual-port, simple dual-port, and single-port RAM, ROM, and FIFO buffers. The M4K blocks support the following features: - 4,608 RAM bits - 250 MHz performance - True dual-port memory - Simple dual-port memory - Single-port memory - Byte enable - Parity bits - Shift register - FIFO buffer - ROM - Mixed clock mode Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both read and write operations. ### **Memory Modes** The M4K memory blocks include input registers that synchronize writes and output registers to pipeline designs and improve system performance. M4K blocks offer a true dual-port mode to support any combination of two-port operations: two reads, two writes, or one read and one write at two different clock frequencies. Figure 2–12 shows true dual-port memory. Figure 2–12. True Dual-Port Memory Configuration signal. The output registers can be bypassed. Pseudo-asynchronous reading is possible in the simple dual-port mode of M4K blocks by clocking the read enable and read address registers on the negative clock edge and bypassing the output registers. When configured as RAM or ROM, you can use an initialization file to pre-load the memory contents. Two single-port memory blocks can be implemented in a single M4K block as long as each of the two independent block sizes is equal to or less than half of the M4K block size. The Quartus II software automatically implements larger memory by combining multiple M4K memory blocks. For example, two 256×16-bit RAM blocks can be combined to form a 256×32-bit RAM block. Memory performance does not degrade for memory blocks using the maximum number of words allowed. Logical memory blocks using less than the maximum number of words use physical blocks in parallel, eliminating any external control logic that would increase delays. To create a larger high-speed memory block, the Quartus II software automatically combines memory blocks with LE control logic. ### **Parity Bit Support** The M4K blocks support a parity bit for each byte. The parity bit, along with internal LE logic, can implement parity checking for error detection to ensure data integrity. You can also use parity-size data words to store user-specified control bits. Byte enables are also available for data input masking during write operations. ### **Shift Register Support** You can configure M4K memory blocks to implement shift registers for DSP applications such as pseudo-random number generators, multi-channel filtering, auto-correlation, and cross-correlation functions. These and other DSP applications require local data storage, traditionally implemented with standard flip-flops, which can quickly consume many logic cells and routing resources for large shift registers. A more efficient alternative is to use embedded memory as a shift register block, which saves logic cell and routing resources and provides a more efficient implementation with the dedicated circuitry. The size of a $w \times m \times n$ shift register is determined by the input data width (w), the length of the taps (m), and the number of taps (n). The size of a $w \times m \times n$ shift register must be less than or equal to the maximum number of memory bits in the M4K block (4,608 bits). The total number of shift ### **Independent Clock Mode** The M4K memory blocks implement independent clock mode for true dual-port memory. In this mode, a separate clock is available for each port (ports A and B). Clock A controls all registers on the port A side, while clock B controls all registers on the port B side. Each port, A and B, also supports independent clock enables and asynchronous clear signals for port A and B registers. Figure 2–17 shows an M4K memory block in independent clock mode. Figure 2–17. Independent Clock Mode Notes (1), (2) *Notes to Figure 2–17:* - (1) All registers shown have asynchronous clear ports. - (2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both read and write operations. ### Input/Output Clock Mode Input/output clock mode can be implemented for both the true and simple dual-port memory modes. On each of the two ports, A or B, one clock controls all registers for inputs into the memory block: data input, wren, and address. The other clock controls the block's data output registers. Each memory block port, A or B, also supports independent clock enables and asynchronous clear signals for input and output registers. Figures 2–18 and 2–19 show the memory block in input/output clock mode. Figure 2–18. Input/Output Clock Mode in True Dual-Port Mode Notes (1), (2) ### Notes to Figure 2–18: - (1) All registers shown have asynchronous clear ports. - (2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both read and write operations. The eight global clock lines in the global clock network drive throughout the entire device. The global clock network can provide clocks for all resources within the device—IOEs, LEs, and memory blocks. The global clock lines can also be used for control signals, such as clock enables and synchronous or asynchronous clears fed from the external pin, or DQS signals for DDR SDRAM or FCRAM interfaces. Internal logic can also drive the global clock network for internally generated global clocks and asynchronous clears, clock enables, or other control signals with large fanout. Figure 2–22 shows the various sources that drive the global clock network. DPCLK2 DPCLK3 Cyclone Device Global Clock Network 8 DPCLK1 _ □ DPCLK4 From logic From logic array array CLK0 [□ CLK2 PLL2 PLL1 CLK1 (3) □ CLK3 (3) (2) 2 DPCLK0 [□ DPCLK5 DPCLK7 DPCLK6 Figure 2–22. Global Clock Generation Note (1) #### *Notes to Figure 2–22:* - (1) The EP1C3 device in the 100-pin TQFP package has five DPCLK pins (DPCLK2, DPCLK3, DPCLK4, DPCLK6, and DPCLK7). - (2) EP1C3 devices only contain one PLL (PLL 1). - (3) The EP1C3 device in the 100-pin TQFP package does not have dedicated clock pins CLK1 and CLK3. Figure 2-24. I/O Clock Regions ### **PLLs** Cyclone PLLs provide general-purpose clocking with clock multiplication and phase shifting as well as outputs for differential I/O support. Cyclone devices contain two PLLs, except for the EP1C3 device, which contains one PLL. | Table 2–7. Global Clock Network Sources (Part 2 of 2) | | | | | | | | | | |---|------------|----------|----------|----------|----------|----------|----------|----------|----------| | Sou | rce | GCLKO | GCLK1 | GCLK2 | GCLK3 | GCLK4 | GCLK5 | GCLK6 | GCLK7 | | Dual-Purpose | DPCLK0 (3) | _ | _ | _ | ✓ | _ | _ | _ | _ | | Clock Pins | DPCLK1 (3) | _ | _ | ✓ | _ | _ | _ | _ | _ | | | DPCLK2 | ✓ | _ | _ | _ | _ | _ | _ | _ | | | DPCLK3 | _ | _ | _ | _ | ✓ | _ | _ | _ | | | DPCLK4 | | _ | _ | _ | _ | | ✓ | _ | | | DPCLK5 (3) | _ | _ | _ | _ | _ | _ | _ | ✓ | | | DPCLK6 | _ | _ | _ | _ | _ | ✓ | _ | _ | | | DPCLK7 | _ | ✓ | _ | _ | _ | _ | _ | _ | Notes to Table 2-7: - (1) EP1C3 devices only have one PLL (PLL 1). - (2) EP1C3 devices in the 100-pin TQFP package do not have dedicated clock pins CLK1 and CLK3. - (3) EP1C3 devices in the 100-pin TQFP package do not have the DPCLK0, DPCLK1, or DPCLK5 pins. ### **Clock Multiplication and Division** Cyclone PLLs provide clock synthesis for PLL output ports using $m/(n \times post$ scale counter) scaling factors. The input clock is divided by a pre-scale divider, n, and is then multiplied by the m feedback factor. The control loop drives the VCO to match $f_{\rm IN} \times (m/n)$. Each output port has a unique post-scale counter to divide down the high-frequency VCO. For multiple PLL outputs with different frequencies, the VCO is set to the least-common multiple of the output frequencies that meets its frequency specifications. Then, the post-scale dividers scale down the output frequency for each output port. For example, if the output frequencies required from one PLL are 33 and 66 MHz, the VCO is set to 330 MHz (the least-common multiple in the VCO's range). Each PLL has one pre-scale divider, n, that can range in value from 1 to 32. Each PLL also has one multiply divider, m, that can range in value from 2 to 32. Global clock outputs have two post scale G dividers for global clock outputs, and external clock outputs have an E divider for external clock output, both ranging from 1 to 32. The Quartus II software automatically chooses the appropriate scaling factors according to the input frequency, multiplication, and division values entered. | Table 3–1. Cyclone JTAG Instructions (Part 2 of 2) | | | | | | |--|------------------|--|--|--|--| | JTAG Instruction | Instruction Code | Description | | | | | USERCODE | 00 0000 0111 | Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO. | | | | | IDCODE | 00 0000 0110 | Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO. | | | | | HIGHZ (1) | 00 0000 1011 | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation, while tri-stating all of the I/O pins. | | | | | CLAMP (1) | 00 0000 1010 | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation while holding I/O pins to a state defined by the data in the boundary-scan register. | | | | | ICR instructions | _ | Used when configuring a Cyclone device via the JTAG port with a MasterBlaster TM or ByteBlasterMV TM download cable, or when using a Jam File or Jam Byte-Code File via an embedded processor. | | | | | PULSE_NCONFIG | 00 0000 0001 | Emulates pulsing the nCONFIG pin low to trigger reconfiguration even though the physical pin is unaffected. | | | | | CONFIG_IO | 00 0000 1101 | Allows configuration of I/O standards through the JTAG chain for JTAG testing. Can be executed before, after, or during configuration. Stops configuration if executed during configuration. Once issued, the CONFIG_IO instruction will hold nSTATUS low to reset the configuration device. nSTATUS is held low until the device is reconfigured. | | | | | SignalTap II instructions | _ | Monitors internal device operation with the SignalTap II embedded logic analyzer. | | | | #### *Note to Table 3–1:* In the Quartus II software, there is an Auto Usercode feature where you can choose to use the checksum value of a programming file as the JTAG user code. If selected, the checksum is automatically loaded to the USERCODE register. Choose Assignments > Device > Device and Pin Options > General. Turn on **Auto Usercode**. ⁽¹⁾ Bus hold and weak pull-up resistor features override the high-impedance state of HIGHZ, CLAMP, and EXTEST. Multiple Cyclone devices can be configured in any of the three configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. | Table 3–5. Data Sources for Configuration | | | | | |---|---|--|--|--| | Configuration Scheme | Data Source | | | | | Active serial | Low-cost serial configuration device | | | | | Passive serial (PS) | Enhanced or EPC2 configuration device,
MasterBlaster or ByteBlasterMV download cable,
or serial data source | | | | | JTAG | MasterBlaster or ByteBlasterMV download cable or a microprocessor with a Jam or JBC file | | | | # Referenced Documents This chapter references the following document: - AN 39: IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices - Jam Programming & Test Language Specification ## Document Revision History Table 3–6 shows the revision history for this chapter. | Date and
Document
Version | Changes Made | Summary of Changes | |---------------------------------|--|--------------------| | May 2008
v1.4 | Minor textual and style changes. Added "Referenced Documents" section. | _ | | January 2007
v1.3 | Added document revision history. Updated handpara note below Table 3–4. | _ | | August 2005
V1.2 | Minor updates. | _ | | February 2005
V1.1 | Updated JTAG chain limits. Added information concerning test vectors. | _ | | May 2003 v1.0 | Added document to Cyclone Device Handbook. | _ | # 4. DC and Switching Characteristics C51004-1.7 # Operating Conditions Cyclone® devices are offered in both commercial, industrial, and extended temperature grades. However, industrial-grade and extended-temperature-grade devices may have limited speed-grade availability. Tables 4–1 through 4–16 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for Cyclone devices. | Table 4–1. Cyclone Device Absolute Maximum Ratings Notes (1), (2) | | | | | | | | |---|----------------------------|----------------------------|---------|---------|------|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | V _{CCINT} | Supply voltage | With respect to ground (3) | -0.5 | 2.4 | V | | | | V _{CCIO} | | | -0.5 | 4.6 | V | | | | V _{CCA} | Supply voltage | With respect to ground (3) | -0.5 | 2.4 | V | | | | Vı | DC input voltage | | -0.5 | 4.6 | V | | | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | °C | | | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | °C | | | | T _J | Junction temperature | BGA packages under bias | _ | 135 | °C | | | | Table 4–2. Cyclone Device Recommended Operating Conditions (Part 1 of 2) | | | | | | | |--|---|------------|---------|---------|------|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | V _{CCINT} | Supply voltage for internal logic and input buffers | (4) | 1.425 | 1.575 | V | | | V _{CCIO} | Supply voltage for output buffers, 3.3-V operation | (4) | 3.00 | 3.60 | V | | | | Supply voltage for output buffers, 2.5-V operation | (4) | 2.375 | 2.625 | V | | | | Supply voltage for output buffers, 1.8-V operation | (4) | 1.71 | 1.89 | V | | | | Supply voltage for output buffers, 1.5-V operation | (4) | 1.4 | 1.6 | V | | | V _I | Input voltage | (3), (5) | -0.5 | 4.1 | V | | | Table 4–5. LVCMOS Specifications | | | | | | | | |----------------------------------|---------------------------|--|-------------------------|---------|------|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | V _{CCIO} | Output supply voltage | _ | 3.0 | 3.6 | V | | | | V _{IH} | High-level input voltage | _ | 1.7 | 4.1 | V | | | | V_{IL} | Low-level input voltage | _ | -0.5 | 0.7 | V | | | | V _{OH} | High-level output voltage | $V_{CCIO} = 3.0,$ $I_{OH} = -0.1 \text{ mA}$ | V _{CCIO} - 0.2 | _ | V | | | | V _{OL} | Low-level output voltage | $V_{CCIO} = 3.0,$ $I_{OL} = 0.1 \text{ mA}$ | _ | 0.2 | V | | | | Table 4–6. 2.5-V I/O Specifications | | | | | | | | |-------------------------------------|---------------------------|--|---------|---------|------|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | V _{CCIO} | Output supply voltage | _ | 2.375 | 2.625 | V | | | | V _{IH} | High-level input voltage | _ | 1.7 | 4.1 | V | | | | V _{IL} | Low-level input voltage | _ | -0.5 | 0.7 | V | | | | V _{OH} | High-level output voltage | I _{OH} = -0.1 mA | 2.1 | _ | V | | | | | | $I_{OH} = -1 \text{ mA}$ | 2.0 | _ | V | | | | | | $I_{OH} = -2 \text{ to } -16 \text{ mA } (11)$ | 1.7 | _ | V | | | | V _{OL} | Low-level output voltage | I _{OL} = 0.1 mA | _ | 0.2 | V | | | | | | I _{OH} = 1 mA | _ | 0.4 | V | | | | | | I _{OH} = 2 to 16 mA (11) | | 0.7 | V | | | | Table 4-7. | Table 4–7. 1.8-V I/O Specifications | | | | | | | | |-------------------|-------------------------------------|---|-----------------------------|-----------------------------|------|--|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | | V _{CCIO} | Output supply voltage | _ | 1.65 | 1.95 | V | | | | | V _{IH} | High-level input voltage | _ | 0.65 ×
V _{CCIO} | 2.25 (12) | V | | | | | V _{IL} | Low-level input voltage | _ | -0.3 | 0.35 ×
V _{CCIO} | V | | | | | V _{OH} | High-level output voltage | $I_{OH} = -2 \text{ to } -8 \text{ mA } (11)$ | V _{CCIO} - 0.45 | _ | V | | | | | V _{OL} | Low-level output voltage | I _{OL} = 2 to 8 mA (11) | _ | 0.45 | V | | | | ### **Performance** The maximum internal logic array clock tree frequency is limited to the specifications shown in Table 4–19. | Table 4–19. Clock Tree Maximum Performance Specification | | | | | | | | | | | | |--|---|----------------|-----|----------------|-----|----------------|-----|-----|-------|-----|--------| | Parameter | Definition | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | | Units | | | | | Deminion | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | UIIIIS | | Clock tree f _{MAX} | Maximum frequency
that the clock tree
can support for
clocking registered
logic | | _ | 405 | _ | _ | 320 | | _ | 275 | MHz | Table 4–20 shows the Cyclone device performance for some common designs. All performance values were obtained with the Quartus II software compilation of library of parameterized modules (LPM) functions or megafunctions. These performance values are based on EP1C6 devices in 144-pin TQFP packages. | Table 4-20 | Table 4–20. Cyclone Device Performance | | | | | | | | | | | | |---------------------------------------|--|------|-----|-----------------------|-------------------------|----------------------------|----------------------------|----------------------------|--|--|--|--| | | | | R | esources U | sed | Performance | | | | | | | | Resource Design Size at Used Function | | Mode | LEs | M4K
Memory
Bits | M4K
Memory
Blocks | -6 Speed
Grade
(MHz) | -7 Speed
Grade
(MHz) | -8 Speed
Grade
(MHz) | | | | | | LE | 16-to-1
multiplexer | _ | 21 | _ | _ | 405.00 | 320.00 | 275.00 | | | | | | | 32-to-1
multiplexer | _ | 44 | _ | _ | 317.36 | 284.98 | 260.15 | | | | | | | 16-bit counter | _ | 16 | _ | _ | 405.00 | 320.00 | 275.00 | | | | | | | 64-bit counter (1) | _ | 66 | _ | _ | 208.99 | 181.98 | 160.75 | | | | | | | | | R | esources U | sed | Performance | | | |------------------|-----------------------------|-----------------------------|-----|-----------------------|-------------------------|----------------------------|----------------------------|----------------------------| | Resource
Used | Design Size and
Function | Mode | LEs | M4K
Memory
Bits | M4K
Memory
Blocks | -6 Speed
Grade
(MHz) | -7 Speed
Grade
(MHz) | -8 Speed
Grade
(MHz) | | M4K | RAM 128 × 36 bit | Single port | _ | 4,608 | 1 | 256.00 | 222.67 | 197.01 | | memory
block | RAM 128 × 36 bit | Simple
dual-port
mode | _ | 4,608 | 1 | 255.95 | 222.67 | 196.97 | | | RAM 256 × 18 bit | True dual-
port mode | _ | 4,608 | 1 | 255.95 | 222.67 | 196.97 | | | FIFO 128 × 36 bit | _ | 40 | 4,608 | 1 | 256.02 | 222.67 | 197.01 | | | Shift register 9 × 4 × 128 | Shift register | 11 | 4,536 | 1 | 255.95 | 222.67 | 196.97 | Note to Table 4-20: ### **Internal Timing Parameters** Internal timing parameters are specified on a speed grade basis independent of device density. Tables 4–21 through 4–24 describe the Cyclone device internal timing microparameters for LEs, IOEs, M4K memory structures, and MultiTrack interconnects. | Table 4–21. LE Internal Timing Microparameter Descriptions | | | | | | | |--|--|--|--|--|--|--| | Symbol Parameter | | | | | | | | t _{SU} | LE register setup time before clock | | | | | | | t _H | LE register hold time after clock | | | | | | | t _{CO} | LE register clock-to-output delay | | | | | | | t _{LUT} | LE combinatorial LUT delay for data-in to data-out | | | | | | | t _{CLR} | Minimum clear pulse width | | | | | | | t _{PRE} | Minimum preset pulse width | | | | | | | t _{CLKHL} | Minimum clock high or low time | | | | | | ⁽¹⁾ The performance numbers for this function are from an EP1C6 device in a 240-pin PQFP package. | Table 4–22. IOE Internal Timing Microparameter Descriptions | | | | | | | |---|---|--|--|--|--|--| | Symbol | Parameter | | | | | | | t_{SU} | IOE input and output register setup time before clock | | | | | | | t _H | IOE input and output register hold time after clock | | | | | | | t _{CO} | IOE input and output register clock-to-output delay | | | | | | | t _{PIN2COMBOUT_R} | Row input pin to IOE combinatorial output | | | | | | | t _{PIN2COMBOUT_C} | Column input pin to IOE combinatorial output | | | | | | | t _{COMBIN2PIN_R} | Row IOE data input to combinatorial output pin | | | | | | | t _{COMBIN2PIN_C} | Column IOE data input to combinatorial output pin | | | | | | | t _{CLR} | Minimum clear pulse width | | | | | | | t _{PRE} | Minimum preset pulse width | | | | | | | t _{CLKHL} | Minimum clock high or low time | | | | | | | Table 4–23. M4 | K Block Internal Timing Microparameter Descriptions | |-------------------------|---| | Symbol | Parameter | | t _{M4KRC} | Synchronous read cycle time | | t _{M4KWC} | Synchronous write cycle time | | t _{M4KWERESU} | Write or read enable setup time before clock | | t _{M4KWEREH} | Write or read enable hold time after clock | | t _{M4KBESU} | Byte enable setup time before clock | | t _{M4KBEH} | Byte enable hold time after clock | | t _{M4KDATAASU} | A port data setup time before clock | | t _{M4KDATAAH} | A port data hold time after clock | | t _{M4KADDRASU} | A port address setup time before clock | | t _{M4KADDRAH} | A port address hold time after clock | | t _{M4KDATABSU} | B port data setup time before clock | | t _{M4KDATABH} | B port data hold time after clock | | t _{M4KADDRBSU} | B port address setup time before clock | | t _{M4KADDRBH} | B port address hold time after clock | | t _{M4KDATACO1} | Clock-to-output delay when using output registers | | t _{M4KDATACO2} | Clock-to-output delay without output registers | | t _{M4KCLKHL} | Minimum clock high or low time | | t _{M4KCLR} | Minimum clear pulse width | | Table 4–29. C | yclone Global Clock External I/O Timing Parameters No | tes (1), (2) (Part 2 of 2) | |---------------|---|-----------------------------------| | Symbol | Parameter | Conditions | | toutcople | Clock-to-output delay output or bidirectional pin using IOE output register with global clock enhanced PLL with default phase setting | C _{LOAD} = 10 pF | ### Notes to Table 4-29: - (1) These timing parameters are sample-tested only. - (2) These timing parameters are for IOE pins using a 3.3-V LVTTL, 24-mA setting. Designers should use the Quartus II software to verify the external timing for any pin. Tables 4–30 through 4–31 show the external timing parameters on column and row pins for EP1C3 devices. | Table 4–30. EP1C3 Column Pin Global Clock External I/O Timing
Parameters | | | | | | | | | | | | |---|---------|---------|---------|---------|---------|-------|------|--|--|--|--| | Cumbal | -6 Spee | d Grade | -7 Spee | d Grade | -8 Spee | | | | | | | | Symbol | Min | Max | Min | Max | Min | Max | Unit | | | | | | t _{INSU} | 3.085 | _ | 3.547 | _ | 4.009 | _ | ns | | | | | | t _{INH} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | | | toutco | 2.000 | 4.073 | 2.000 | 4.682 | 2.000 | 5.295 | ns | | | | | | t _{INSUPLL} | 1.795 | _ | 2.063 | _ | 2.332 | _ | ns | | | | | | t _{INHPLL} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | | | toutcople | 0.500 | 2.306 | 0.500 | 2.651 | 0.500 | 2.998 | ns | | | | | | Table 4–31. EP1C3 Row Pin Global Clock External I/O Timing Parameters | | | | | | | | | | | | |---|---------|---------|---------|---------|---------|-------|------|--|--|--|--| | Cumbal | -6 Spee | d Grade | -7 Spee | d Grade | -8 Spee | 11:4 | | | | | | | Symbol | Min | Max | Min | Max | Min | Max | Unit | | | | | | t _{INSU} | 3.157 | _ | 3.630 | _ | 4.103 | _ | ns | | | | | | t _{INH} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | | | t _{outco} | 2.000 | 3.984 | 2.000 | 4.580 | 2.000 | 5.180 | ns | | | | | | t _{INSUPLL} | 1.867 | _ | 2.146 | _ | 2.426 | _ | ns | | | | | | t _{INHPLL} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | | | toutcople | 0.500 | 2.217 | 0.500 | 2.549 | 0.500 | 2.883 | ns | | | | | | Table 4–47. Cyclone IOE Programmable Delays on Row Pins | | | | | | | | | | | | | |---|---------|----------------|-------|---------|---------|----------------|-------|------|--|--|--|--| | D | o | -6 Speed Grade | | -7 Spee | d Grade | -8 Speed Grade | | 11!4 | | | | | | Parameter | Setting | Min | Max | Min | Max | Min | Max | Unit | | | | | | Decrease input delay to | Off | _ | 154 | _ | 177 | _ | 200 | ps | | | | | | internal cells | Small | _ | 2,212 | _ | 2,543 | _ | 2,875 | ps | | | | | | | Medium | _ | 2,639 | _ | 3,034 | _ | 3,430 | ps | | | | | | | Large | _ | 3,057 | _ | 3,515 | _ | 3,974 | ps | | | | | | | On | _ | 154 | _ | 177 | _ | 200 | ps | | | | | | Decrease input delay to input | Off | _ | 0 | _ | 0 | _ | 0 | ps | | | | | | register | On | _ | 3,057 | _ | 3,515 | _ | 3,974 | ps | | | | | | Increase delay to output pin | Off | _ | 0 | _ | 0 | | 0 | ps | | | | | | | On | _ | 556 | _ | 639 | _ | 722 | ps | | | | | Note to Table 4-47: ## **Maximum Input and Output Clock Rates** Tables 4--48 and 4--49 show the maximum input clock rate for column and row pins in Cyclone devices. | Table 4–48. Cyclone Maximum Input Clock Rate for Column Pins | | | | | | | | | | | |--|-------------------|-------------------|-------------------|------|--|--|--|--|--|--| | I/O Standard | -6 Speed
Grade | -7 Speed
Grade | -8 Speed
Grade | Unit | | | | | | | | LVTTL | 464 | 428 | 387 | MHz | | | | | | | | 2.5 V | 392 | 302 | 207 | MHz | | | | | | | | 1.8 V | 387 | 311 | 252 | MHz | | | | | | | | 1.5 V | 387 | 320 | 243 | MHz | | | | | | | | LVCMOS | 405 | 374 | 333 | MHz | | | | | | | | SSTL-3 class I | 405 | 356 | 293 | MHz | | | | | | | | SSTL-3 class II | 414 | 365 | 302 | MHz | | | | | | | | SSTL-2 class I | 464 | 428 | 396 | MHz | | | | | | | | SSTL-2 class II | 473 | 432 | 396 | MHz | | | | | | | | LVDS | 567 | 549 | 531 | MHz | | | | | | | ⁽¹⁾ EPC1C3 devices do not support the PCI I/O standard. | Table 4–51. Cyclone Maximum Output Clock Rate for Row Pins | | | | | | | | | | | |--|-------------------|-------------------|-------------------|------|--|--|--|--|--|--| | I/O Standard | -6 Speed
Grade | -7 Speed
Grade | -8 Speed
Grade | Unit | | | | | | | | LVTTL | 296 | 285 | 273 | MHz | | | | | | | | 2.5 V | 381 | 366 | 349 | MHz | | | | | | | | 1.8 V | 286 | 277 | 267 | MHz | | | | | | | | 1.5 V | 219 | 208 | 195 | MHz | | | | | | | | LVCMOS | 367 | 356 | 343 | MHz | | | | | | | | SSTL-3 class I | 169 | 166 | 162 | MHz | | | | | | | | SSTL-3 class II | 160 | 151 | 146 | MHz | | | | | | | | SSTL-2 class I | 160 | 151 | 142 | MHz | | | | | | | | SSTL-2 class II | 131 | 123 | 115 | MHz | | | | | | | | 3.3-V PCI (1) | 66 | 66 | 66 | MHz | | | | | | | | LVDS | 320 | 303 | 275 | MHz | | | | | | | *Note to Tables 4–50 through 4–51:* ## **PLL Timing** Table 4–52 describes the Cyclone FPGA PLL specifications. | Table 4–52. Cyclone PLL Specifications (Part 1 of 2) | | | | | | |--|---------------------------------------|--------|-------|------|--| | Symbol | Parameter | Min | Max | Unit | | | f _{IN} | Input frequency (-6 speed grade) | 15.625 | 464 | MHz | | | | Input frequency (-7 speed grade) | 15.625 | 428 | MHz | | | | Input frequency (-8 speed grade) | 15.625 | 387 | MHz | | | f _{IN} DUTY | Input clock duty cycle | 40.00 | 60 | % | | | t _{IN} JITTER | Input clock period jitter | _ | ± 200 | ps | | | f _{OUT_EXT} (external PLL clock output) | PLL output frequency (-6 speed grade) | 15.625 | 320 | MHz | | | | PLL output frequency (-7 speed grade) | 15.625 | 320 | MHz | | | | PLL output frequency (-8 speed grade) | 15.625 | 275 | MHz | | ⁽¹⁾ EP1C3 devices do not support the PCI I/O standard. These parameters are only available on row I/O pins. # 5. Reference and Ordering Information C51005-1.4 ### Software Cyclone® devices are supported by the Altera® Quartus® II design software, which provides a comprehensive environment for system-on-a-programmable-chip (SOPC) design. The Quartus II software includes HDL and schematic design entry, compilation and logic synthesis, full simulation and advanced timing analysis, SignalTap® II logic analysis, and device configuration. For more information about the Quartus II software features, refer to the *Quartus II Handbook*. The Quartus II software supports the Windows 2000/NT/98, Sun Solaris, Linux Red Hat v7.1 and HP-UX operating systems. It also supports seamless integration with industry-leading EDA tools through the NativeLink® interface. ### **Device Pin-Outs** Device pin-outs for Cyclone devices are available on the Altera website (www.altera.com) and in the *Cyclone Device Handbook*. ## Ordering Information Figure 5–1 describes the ordering codes for Cyclone devices. For more information about a specific package, refer to the *Package Information for Cyclone Devices* chapter in the *Cyclone Device Handbook*. | February 2005
v1.1 | Updated Figure 5-1. | _ | |-----------------------|--|---| | May 2003
v1.0 | Added document to Cyclone Device Handbook. | _ |