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based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
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specific needs of the application.
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Figure 2–1. Cyclone EP1C12 Device Block Diagram

The number of M4K RAM blocks, PLLs, rows, and columns vary per 
device. Table 2–1 lists the resources available in each Cyclone device.

Logic Array

PLL

IOEs

M4K Blocks

EP1C12 Device

Table 2–1. Cyclone Device Resources

Device
M4K RAM

PLLs LAB Columns LAB Rows
Columns Blocks

EP1C3 1 13 1 24 13

EP1C4 1 17 2 26 17

EP1C6 1 20 2 32 20

EP1C12 2 52 2 48 26

EP1C20 2 64 2 64 32
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performance and flexibility. Each LE can drive 30 other LEs through fast 
local and direct link interconnects. Figure 2–3 shows the direct link 
connection.

Figure 2–3. Direct Link Connection

LAB Control Signals

Each LAB contains dedicated logic for driving control signals to its LEs. 
The control signals include two clocks, two clock enables, two 
asynchronous clears, synchronous clear, asynchronous preset/load, 
synchronous load, and add/subtract control signals. This gives a 
maximum of 10 control signals at a time. Although synchronous load and 
clear signals are generally used when implementing counters, they can 
also be used with other functions.

Each LAB can use two clocks and two clock enable signals. Each LAB's 
clock and clock enable signals are linked. For example, any LE in a 
particular LAB using the labclk1 signal will also use labclkena1. If 
the LAB uses both the rising and falling edges of a clock, it also uses both 
LAB-wide clock signals. Deasserting the clock enable signal will turn off 
the LAB-wide clock.

Each LAB can use two asynchronous clear signals and an asynchronous 
load/preset signal. The asynchronous load acts as a preset when the 
asynchronous load data input is tied high.
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Logic Elements

With the LAB-wide addnsub control signal, a single LE can implement a 
one-bit adder and subtractor. This saves LE resources and improves 
performance for logic functions such as DSP correlators and signed 
multipliers that alternate between addition and subtraction depending 
on data.

The LAB row clocks [5..0] and LAB local interconnect generate the 
LAB-wide control signals. The MultiTrackTM interconnect's inherent low 
skew allows clock and control signal distribution in addition to data. 
Figure 2–4 shows the LAB control signal generation circuit.

Figure 2–4. LAB-Wide Control Signals

Logic Elements The smallest unit of logic in the Cyclone architecture, the LE, is compact 
and provides advanced features with efficient logic utilization. Each LE 
contains a four-input LUT, which is a function generator that can 
implement any function of four variables. In addition, each LE contains a 
programmable register and carry chain with carry select capability. A 
single LE also supports dynamic single bit addition or subtraction mode 
selectable by a LAB-wide control signal. Each LE drives all types of 
interconnects: local, row, column, LUT chain, register chain, and direct 
link interconnects. See Figure 2–5.
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Logic Elements

Figure 2–8 shows the carry-select circuitry in a LAB for a 10-bit full adder. 
One portion of the LUT generates the sum of two bits using the input 
signals and the appropriate carry-in bit; the sum is routed to the output 
of the LE. The register can be bypassed for simple adders or used for 
accumulator functions. Another portion of the LUT generates carry-out 
bits. A LAB-wide carry-in bit selects which chain is used for the addition 
of given inputs. The carry-in signal for each chain, carry-in0 or 
carry-in1, selects the carry-out to carry forward to the carry-in signal 
of the next-higher-order bit. The final carry-out signal is routed to an LE, 
where it is fed to local, row, or column interconnects. 

Figure 2–8. Carry Select Chain
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The Quartus II Compiler automatically creates carry chain logic during 
design processing, or you can create it manually during design entry. 
Parameterized functions such as LPM functions automatically take 
advantage of carry chains for the appropriate functions.

The Quartus II Compiler creates carry chains longer than 10 LEs by 
linking LABs together automatically. For enhanced fitting, a long carry 
chain runs vertically allowing fast horizontal connections to M4K 
memory blocks. A carry chain can continue as far as a full column.

Clear and Preset Logic Control

LAB-wide signals control the logic for the register's clear and preset 
signals. The LE directly supports an asynchronous clear and preset 
function. The register preset is achieved through the asynchronous load 
of a logic high. The direct asynchronous preset does not require a 
NOT-gate push-back technique. Cyclone devices support simultaneous 
preset/ asynchronous load and clear signals. An asynchronous clear 
signal takes precedence if both signals are asserted simultaneously. Each 
LAB supports up to two clears and one preset signal.

In addition to the clear and preset ports, Cyclone devices provide a 
chip-wide reset pin (DEV_CLRn) that resets all registers in the device. An 
option set before compilation in the Quartus II software controls this pin. 
This chip-wide reset overrides all other control signals.

MultiTrack 
Interconnect

In the Cyclone architecture, connections between LEs, M4K memory 
blocks, and device I/O pins are provided by the MultiTrack interconnect 
structure with DirectDriveTM technology. The MultiTrack interconnect 
consists of continuous, performance-optimized routing lines of different 
speeds used for inter- and intra-design block connectivity. The Quartus II 
Compiler automatically places critical design paths on faster 
interconnects to improve design performance.

DirectDrive technology is a deterministic routing technology that ensures 
identical routing resource usage for any function regardless of placement 
within the device. The MultiTrack interconnect and DirectDrive 
technology simplify the integration stage of block-based designing by 
eliminating the re-optimization cycles that typically follow design 
changes and additions.

The MultiTrack interconnect consists of row and column interconnects 
that span fixed distances. A routing structure with fixed length resources 
for all devices allows predictable and repeatable performance when 
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Embedded 
Memory

The Cyclone embedded memory consists of columns of M4K memory 
blocks. EP1C3 and EP1C6 devices have one column of M4K blocks, while 
EP1C12 and EP1C20 devices have two columns (refer to Table 1–1 on 
page 1–1 for total RAM bits per density). Each M4K block can implement 
various types of memory with or without parity, including true dual-port, 
simple dual-port, and single-port RAM, ROM, and FIFO buffers. The 
M4K blocks support the following features:

■ 4,608 RAM bits
■ 250 MHz performance
■ True dual-port memory
■ Simple dual-port memory
■ Single-port memory
■ Byte enable
■ Parity bits
■ Shift register
■ FIFO buffer
■ ROM
■ Mixed clock mode

1 Violating the setup or hold time on the address registers could 
corrupt the memory contents. This applies to both read and 
write operations.

Memory Modes

The M4K memory blocks include input registers that synchronize writes 
and output registers to pipeline designs and improve system 
performance. M4K blocks offer a true dual-port mode to support any 
combination of two-port operations: two reads, two writes, or one read 
and one write at two different clock frequencies. Figure 2–12 shows true 
dual-port memory.

Figure 2–12. True Dual-Port Memory Configuration
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Read/Write Clock Mode

The M4K memory blocks implement read/write clock mode for simple 
dual-port memory. You can use up to two clocks in this mode. The write 
clock controls the block's data inputs, wraddress, and wren. The read 
clock controls the data output, rdaddress, and rden. The memory 
blocks support independent clock enables for each clock and 
asynchronous clear signals for the read- and write-side registers. 
Figure 2–20 shows a memory block in read/write clock mode.

Figure 2–20. Read/Write Clock Mode in Simple Dual-Port Mode Notes (1), (2)

Notes to Figure 2–20:
(1) All registers shown except the rden register have asynchronous clear ports.
(2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both 

read and write operations.
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Global Clock Network and Phase-Locked Loops

Single-Port Mode

The M4K memory blocks also support single-port mode, used when 
simultaneous reads and writes are not required. See Figure 2–21. A single 
M4K memory block can support up to two single-port mode RAM blocks 
if each RAM block is less than or equal to 2K bits in size.

Figure 2–21. Single-Port Mode Note (1)

Note to Figure 2–21:
(1) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both 

read and write operations.

Global Clock 
Network and 
Phase-Locked 
Loops

Cyclone devices provide a global clock network and up to two PLLs for a 
complete clock management solution.

Global Clock Network

There are four dedicated clock pins (CLK[3..0], two pins on the left side 
and two pins on the right side) that drive the global clock network, as 
shown in Figure 2–22. PLL outputs, logic array, and dual-purpose clock 
(DPCLK[7..0]) pins can also drive the global clock network.
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Global Clock Network and Phase-Locked Loops

Dual-Purpose Clock Pins

Each Cyclone device except the EP1C3 device has eight dual-purpose 
clock pins, DPCLK[7..0] (two on each I/O bank). EP1C3 devices have 
five DPCLK pins in the 100-pin TQFP package. These dual-purpose pins 
can connect to the global clock network (see Figure 2–22) for high-fanout 
control signals such as clocks, asynchronous clears, presets, and clock 
enables, or protocol control signals such as TRDY and IRDY for PCI, or 
DQS signals for external memory interfaces.

Combined Resources

Each Cyclone device contains eight distinct dedicated clocking resources. 
The device uses multiplexers with these clocks to form six-bit buses to 
drive LAB row clocks, column IOE clocks, or row IOE clocks. See 
Figure 2–23. Another multiplexer at the LAB level selects two of the six 
LAB row clocks to feed the LE registers within the LAB.

Figure 2–23. Global Clock Network Multiplexers

IOE clocks have row and column block regions. Six of the eight global 
clock resources feed to these row and column regions. Figure 2–24 shows 
the I/O clock regions.

Clock [7..0]

Column I/O Region
IO_CLK]5..0]

LAB Row Clock [5..0]

Row I/O Region
IO_CLK[5..0]

 Global Clocks [3..0]

PLL Outputs [3..0]

Dual-Purpose Clocks [7..0]

Global Clock
Network

Core Logic [7..0]



2–40  Altera Corporation
Preliminary May 2008

Cyclone Device Handbook, Volume 1

Figure 2–27. Cyclone IOE Structure

Note to Figure 2–27:
(1) There are two paths available for combinatorial inputs to the logic array. Each path 

contains a unique programmable delay chain.

The IOEs are located in I/O blocks around the periphery of the Cyclone 
device. There are up to three IOEs per row I/O block and up to three IOEs 
per column I/O block (column I/O blocks span two columns). The row 
I/O blocks drive row, column, or direct link interconnects. The column 
I/O blocks drive column interconnects. Figure 2–28 shows how a row 
I/O block connects to the logic array. Figure 2–29 shows how a column 
I/O block connects to the logic array.
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I/O Structure

Figure 2–34. DDR SDRAM and FCRAM Interfacing

Programmable Drive Strength

The output buffer for each Cyclone device I/O pin has a programmable 
drive strength control for certain I/O standards. The LVTTL and 
LVCMOS standards have several levels of drive strength that the designer 
can control. SSTL-3 class I and II, and SSTL-2 class I and II support a 
minimum setting, the lowest drive strength that guarantees the IOH/IOL 
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I/O Structure

and DM pins to support a DDR SDRAM or FCRAM interface. I/O bank 1 
can also support a DDR SDRAM or FCRAM interface, however, the 
configuration input pins in I/O bank 1 must operate at 2.5 V. I/O bank 3 
can also support a DDR SDRAM or FCRAM interface, however, all the 
JTAG pins in I/O bank 3 must operate at 2.5 V.

Figure 2–35. Cyclone I/O Banks Notes (1), (2)

Notes to Figure 2–35:
(1) Figure 2–35 is a top view of the silicon die.
(2) Figure 2–35 is a graphic representation only. Refer to the pin list and the Quartus II software for exact pin locations.

Each I/O bank has its own VCCIO pins. A single device can support 1.5-V, 
1.8-V, 2.5-V, and 3.3-V interfaces; each individual bank can support a 
different standard with different I/O voltages. Each bank also has 
dual-purpose VREF pins to support any one of the voltage-referenced 
standards (e.g., SSTL-3) independently. If an I/O bank does not use 
voltage-referenced standards, the VREF pins are available as user I/O pins.
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Figure 3–1 shows the timing requirements for the JTAG signals.

Figure 3–1. Cyclone JTAG Waveforms

Table 3–4 shows the JTAG timing parameters and values for Cyclone 
devices.

Table 3–4. Cyclone JTAG Timing Parameters and Values

Symbol Parameter Min Max Unit

tJ C P TCK clock period  100 — ns

tJ C H TCK clock high time 50 — ns

tJ C L TCK clock low time 50 — ns

tJ P S U JTAG port setup time 20 — ns

tJ P H JTAG port hold time 45 — ns

tJ P CO JTAG port clock to output — 25 ns

tJ P Z X JTAG port high impedance to valid output — 25 ns

tJ P X Z JTAG port valid output to high impedance — 25 ns

tJ S S U Capture register setup time 20 — ns

tJ S H Capture register hold time 45 — ns

tJ S CO Update register clock to output — 35 ns

tJ S Z X Update register high impedance to valid output — 35 ns

tJ S X Z Update register valid output to high impedance — 35 ns
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Operating Conditions

Table 4–5. LVCMOS Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage — 3.0 3.6 V

VIH High-level input voltage — 1.7 4.1 V

VIL Low-level input voltage — –0.5 0.7 V

VOH High-level output voltage VCCIO = 3.0, 
IOH = –0.1 mA

VCCIO – 0.2 — V

VOL Low-level output voltage VCCIO = 3.0,
IOL = 0.1 mA

— 0.2 V

Table 4–6. 2.5-V I/O Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage — 2.375 2.625 V

VIH High-level input voltage — 1.7 4.1 V

VIL Low-level input voltage — –0.5 0.7 V

VOH High-level output voltage IOH = –0.1 mA 2.1 — V

IOH = –1 mA 2.0 — V

IOH = –2 to –16 mA (11) 1.7 — V

VOL Low-level output voltage IOL = 0.1 mA — 0.2 V

IOH = 1 mA — 0.4 V

IOH = 2 to 16 mA (11) — 0.7 V

Table 4–7. 1.8-V I/O Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage — 1.65 1.95 V

VI H High-level input voltage — 0.65 ×  
VCCIO

2.25 (12) V

VIL Low-level input voltage — –0.3 0.35 ×  
VCCIO 

V

VOH High-level output voltage IOH = –2 to –8 mA (11) VCCIO – 0.45 — V

VOL Low-level output voltage IOL = 2 to 8 mA (11) — 0.45 V
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Tables 4–38 through 4–39 show the external timing parameters on column 
and row pins for EP1C20 devices.

tI N H P L L 0.000 — 0.000 — 0.000 — ns

tO U T C O P L L 0.500 1.663 0.500 1.913 0.500 2.164 ns

Table 4–37. EP1C12 Row Pin Global Clock External I/O Timing Parameters

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 2.620 — 3.012 — 3.404 — ns

tI N H 0.000 — 0.000 — 0.000 — ns

tO U T C O 2.000 3.671 2.000 4.221 2.000 4.774 ns

tI N S UP L L 1.698 — 1.951 — 2.206 — ns

tI N H P L L 0.000 — 0.000 — 0.000 — ns

tO U T C O P L L 0.500 1.536 0.500 1.767 0.500 1.998 ns

Table 4–38. EP1C20 Column Pin Global Clock External I/O Timing 
Parameters

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 2.417 — 2.779 — 3.140 — ns

tI N H 0.000 — 0.000 — 0.000 — ns

tO U T C O 2.000 3.724 2.000 4.282 2.000 4.843 ns

tI N S UP L L 1.417 — 1.629 — 1.840 — ns

tI N H P L L 0.000 — 0.000 — 0.000 — ns

tO U T C O P L L 0.500 1.667 0.500 1.917 0.500 2.169 ns

Table 4–36. EP1C12 Column Pin Global Clock External I/O Timing 
Parameters  (Part 2 of 2)

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max
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1.8-V LVTTL 2 mA — 1,290 — 1,483 — 1,677 ps

8 mA — 4 — 4 — 5 ps

12 mA — –208 — –240 — –271 ps

1.5-V LVTTL 2 mA — 2,288 — 2,631 — 2,974 ps

4 mA — 608 — 699 — 790 ps

8 mA — 292 — 335 — 379 ps

3.3-V PCI (1) — –877 — –1,009 — –1,141 ps

SSTL-3 class I — –410 — –472 — –533 ps

SSTL-3 class II — –811 — –933 — –1,055 ps

SSTL-2 class I — –485 — –558 — –631 ps

SSTL-2 class II — –758 — –872 — –986 ps

LVDS — –998 — –1,148 — –1,298 ps

Table 4–44. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Column Pins  (Part 1 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS 2 mA — 1,800 — 2,070 — 2,340 ps

4 mA — 1,311 — 1,507 — 1,704 ps

8 mA — 945 — 1,086 — 1,228 ps

12 mA — 807 — 928 — 1,049 ps

3.3-V LVTTL 4 mA — 1,831 — 2,105 — 2,380 ps

8 mA — 1,484 — 1,705 — 1,928 ps

12 mA — 973 — 1,118 — 1,264 ps

16 mA — 1,012 — 1,163 — 1,315 ps

24 mA — 838 — 963 — 1,089 ps

2.5-V LVTTL 2 mA — 2,747 — 3,158 — 3,570 ps

8 mA — 1,757 — 2,019 — 2,283 ps

12 mA — 1,763 — 2,026 — 2,291 ps

16 mA — 1,623 — 1,865 — 2,109 ps

1.8-V LVTTL 2 mA — 5,506 — 6,331 — 7,157 ps

8 mA — 4,220 — 4,852 — 5,485 ps

12 mA — 4,008 — 4,608 — 5,209 ps

Table 4–43. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Row Pins  (Part 2 of 2)

Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max
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Tables 4–46 through 4–47 show the adder delays for the IOE 
programmable delays. These delays are controlled with the Quartus II 
software options listed in the Parameter column.

SSTL-3 class I — 1,390 — 1,598 — 1,807 ps

SSTL-3 class II — 989 — 1,137 — 1,285 ps

SSTL-2 class I — 1,965 — 2,259 — 2,554 ps

SSTL-2 class II — 1,692 — 1,945 — 2,199 ps

LVDS — 802 — 922 — 1,042 ps

Note to Tables 4–40 through 4–45:
(1) EP1C3 devices do not support the PCI I/O standard.

Table 4–45. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Row Pins  (Part 2 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

Table 4–46. Cyclone IOE Programmable Delays on Column Pins

Parameter Setting
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

Decrease input delay to 
internal cells

Off — 155 — 178 — 201 ps

Small — 2,122 — 2,543 — 2,875 ps

Medium — 2,639 — 3,034 — 3,430 ps

Large — 3,057 — 3,515 — 3,974 ps

On — 155 — 178 — 201 ps

Decrease input delay to 
input register

Off — 0 — 0 — 0 ps

On — 3,057 — 3,515 — 3,974 ps

Increase delay to output 
pin

Off — 0 — 0 — 0 ps

On — 552 — 634 — 717 ps
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fOUT (to global clock) PLL output frequency 
(-6 speed grade)

15.625 405 MHz

PLL output frequency 
(-7 speed grade)

15.625 320 MHz

PLL output frequency 
(-8 speed grade)

15.625 275 MHz

tOUT DUTY Duty cycle for external clock 
output (when set to 50%)

45.00 55 %

tJITTER (1) Period jitter for external clock 
output

— ±300 (2) ps

tLOCK (3) Time required to lock from end 
of device configuration 

10.00 100 μs

fVCO PLL internal VCO operating 
range

500.00 1,000 MHz

- Minimum areset time 10 — ns

N, G0, G1, E Counter values 1 32 integer

Notes to Table 4–52:
(1) The tJITTER specification for the PLL[2..1]_OUT pins are dependent on the I/O pins in its VCCIO bank, how many 

of them are switching outputs, how much they toggle, and whether or not they use programmable current strength 
or slow slew rate.

(2) fOUT ≥ 100 MHz. When the PLL external clock output frequency (fOUT) is smaller than 100 MHz, the jitter 
specification is 60 mUI.

(3) fIN/N must be greater than 200 MHz to ensure correct lock detect circuit operation below –20 C. Otherwise, the PLL 
operates with the specified parameters under the specified conditions.

Table 4–52. Cyclone PLL Specifications  (Part 2 of 2)

Symbol Parameter Min Max Unit
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Figure 5–1. Cyclone Device Packaging Ordering Information

Referenced 
Documents

This chapter references the following documents:

■ Package Information for Cyclone Devices chapter in the Cyclone Device 
Handbook

■ Quartus II Handbook

Document 
Revision History

Table 5–1 shows the revision history for this chapter.

Device Type

Package Type

6, 7, or 8 , with 6 being the fastest

Number of pins for a particular package

ES:

T:
Q:
F:

Thin quad flat pack (TQFP)
Plastic quad flat pack (PQFP)
FineLine BGA

EP1C: Cyclone

3
4
6
12
20

C:
I:

Commercial temperature (tJ = 0˚ C to 85˚ C)
Industrial temperature (tJ = -40˚ C to 100˚ C)

Optional SuffixFamily Signature

Operating Temperature

Speed Grade

Pin Count

Engineering sample

7EP1C 20 C400F ES

Indicates specific device options or 
shipment method.

Table 5–1. Document Revision History
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May 2008
v1.4

Minor textual and style changes. Added “Referenced 
Documents” section.

—

January 2007 
v1.3

Added document revision history. —
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v1.2

Minor updates. —
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