Welcome to **E-XFL.COM** # **Understanding Embedded - FPGAs (Field Programmable Gate Array)** Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 598 | | Number of Logic Elements/Cells | 5980 | | Total RAM Bits | 92160 | | Number of I/O | 98 | | Number of Gates | - | | Voltage - Supply | 1.425V ~ 1.575V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 144-LQFP | | Supplier Device Package | 144-TQFP (20x20) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep1c6t144c6 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong to the appropriate plane on the board. The Quartus II software reserves I/O pins as power pins as necessary for layout with the larger densities in the same package having more power pins. | Table 1–3. Cyclone QFP and FineLine BGA Package Sizes | | | | | | | | | | | |--|-----------------|------------------------------|-----------|----------------------------|----------------------------|----------------------------|--|--|--|--| | Dimension | 100-Pin
TQFP | 144-Pin 240-Pin
TQFP PQFP | | 256-Pin
FineLine
BGA | 324-Pin
FineLine
BGA | 400-Pin
FineLine
BGA | | | | | | Pitch (mm) | 0.5 | 0.5 | 0.5 | 1.0 | 1.0 | 1.0 | | | | | | Area (mm²) | 256 | 484 | 1,024 | 289 | 361 | 441 | | | | | | $\begin{array}{c} \text{Length} \times \text{width} \\ \text{(mm} \times \text{mm)} \end{array}$ | 16×16 | 22×22 | 34.6×34.6 | 17×17 | 19×19 | 21×21 | | | | | # Document Revision History Table 1–4 shows the revision history for this document. | Table 1–4. Document Revision History | | | | | | | | | |--------------------------------------|---|--------------------|--|--|--|--|--|--| | Date and
Document
Version | Changes Made | Summary of Changes | | | | | | | | May 2008
v1.5 | Minor textual and style changes. | _ | | | | | | | | January 2007
v1.4 | Added document revision history. | _ | | | | | | | | August 2005
v1.3 | Minor updates. | _ | | | | | | | | October 2003
v1.2 | Added 64-bit PCI support information. | _ | | | | | | | | September
2003 v1.1 | Updated LVDS data rates to 640 Mbps from 311 Mbps. Updated RSDS feature information. | _ | | | | | | | | May 2003 v1.0 | Added document to Cyclone Device Handbook. | _ | | | | | | | # 2. Cyclone Architecture C51002-1.6 # Functional Description Cyclone® devices contain a two-dimensional row- and column-based architecture to implement custom logic. Column and row interconnects of varying speeds provide signal interconnects between LABs and embedded memory blocks. The logic array consists of LABs, with 10 LEs in each LAB. An LE is a small unit of logic providing efficient implementation of user logic functions. LABs are grouped into rows and columns across the device. Cyclone devices range between 2,910 to 20,060 LEs. M4K RAM blocks are true dual-port memory blocks with 4K bits of memory plus parity (4,608 bits). These blocks provide dedicated true dual-port, simple dual-port, or single-port memory up to 36-bits wide at up to 250 MHz. These blocks are grouped into columns across the device in between certain LABs. Cyclone devices offer between 60 to 288 Kbits of embedded RAM. Each Cyclone device I/O pin is fed by an I/O element (IOE) located at the ends of LAB rows and columns around the periphery of the device. I/O pins support various single-ended and differential I/O standards, such as the 66- and 33-MHz, 64- and 32-bit PCI standard and the LVDS I/O standard at up to 640 Mbps. Each IOE contains a bidirectional I/O buffer and three registers for registering input, output, and output-enable signals. Dual-purpose DQS, DQ, and DM pins along with delay chains (used to phase-align DDR signals) provide interface support with external memory devices such as DDR SDRAM, and FCRAM devices at up to 133 MHz (266 Mbps). Cyclone devices provide a global clock network and up to two PLLs. The global clock network consists of eight global clock lines that drive throughout the entire device. The global clock network can provide clocks for all resources within the device, such as IOEs, LEs, and memory blocks. The global clock lines can also be used for control signals. Cyclone PLLs provide general-purpose clocking with clock multiplication and phase shifting as well as external outputs for high-speed differential I/O support. Figure 2–1 shows a diagram of the Cyclone EP1C12 device. With the LAB-wide addnsub control signal, a single LE can implement a one-bit adder and subtractor. This saves LE resources and improves performance for logic functions such as DSP correlators and signed multipliers that alternate between addition and subtraction depending on data. The LAB row clocks [5..0] and LAB local interconnect generate the LAB-wide control signals. The MultiTrackTM interconnect's inherent low skew allows clock and control signal distribution in addition to data. Figure 2–4 shows the LAB control signal generation circuit. Figure 2-4. LAB-Wide Control Signals ## **Logic Elements** The smallest unit of logic in the Cyclone architecture, the LE, is compact and provides advanced features with efficient logic utilization. Each LE contains a four-input LUT, which is a function generator that can implement any function of four variables. In addition, each LE contains a programmable register and carry chain with carry select capability. A single LE also supports dynamic single bit addition or subtraction mode selectable by a LAB-wide control signal. Each LE drives all types of interconnects: local, row, column, LUT chain, register chain, and direct link interconnects. See Figure 2–5. Figure 2–10. LUT Chain and Register Chain Interconnects The C4 interconnects span four LABs or M4K blocks up or down from a source LAB. Every LAB has its own set of C4 interconnects to drive either up or down. Figure 2–11 shows the C4 interconnect connections from a LAB in a column. The C4 interconnects can drive and be driven by all types of architecture blocks, including PLLs, M4K memory blocks, and column and row IOEs. For LAB interconnection, a primary LAB or its LAB neighbor can drive a given C4 interconnect. C4 interconnects can drive each other to extend their range as well as drive row interconnects for column-to-column connections. ## Embedded Memory The Cyclone embedded memory consists of columns of M4K memory blocks. EP1C3 and EP1C6 devices have one column of M4K blocks, while EP1C12 and EP1C20 devices have two columns (refer to Table 1–1 on page 1–1 for total RAM bits per density). Each M4K block can implement various types of memory with or without parity, including true dual-port, simple dual-port, and single-port RAM, ROM, and FIFO buffers. The M4K blocks support the following features: - 4,608 RAM bits - 250 MHz performance - True dual-port memory - Simple dual-port memory - Single-port memory - Byte enable - Parity bits - Shift register - FIFO buffer - ROM - Mixed clock mode Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both read and write operations. ## **Memory Modes** The M4K memory blocks include input registers that synchronize writes and output registers to pipeline designs and improve system performance. M4K blocks offer a true dual-port mode to support any combination of two-port operations: two reads, two writes, or one read and one write at two different clock frequencies. Figure 2–12 shows true dual-port memory. Figure 2–12. True Dual-Port Memory Configuration Table 2–6 shows the PLL features in Cyclone devices. Figure 2–25 shows a Cyclone PLL. | Table 2–6. Cyclone PLL Features | | | | | | | | | |-----------------------------------|--|--|--|--|--|--|--|--| | Feature | PLL Support | | | | | | | | | Clock multiplication and division | $m/(n \times post-scale counter)$ (1) | | | | | | | | | Phase shift | Down to 125-ps increments (2), (3) | | | | | | | | | Programmable duty cycle | Yes | | | | | | | | | Number of internal clock outputs | 2 | | | | | | | | | Number of external clock outputs | One differential or one single-ended (4) | | | | | | | | ### Notes to Table 2-6: - (1) The *m* counter ranges from 2 to 32. The *n* counter and the post-scale counters range from 1 to 32. - (2) The smallest phase shift is determined by the voltage-controlled oscillator (VCO) period divided by 8. - (3) For degree increments, Cyclone devices can shift all output frequencies in increments of 45°. Smaller degree increments are possible depending on the frequency and divide parameters. - (4) The EP1C3 device in the 100-pin TQFP package does not support external clock output. The EP1C6 device in the 144-pin TQFP package does not support external clock output from PLL2. Figure 2–25. Cyclone PLL Note (1) ### *Notes to Figure 2–25:* - The EP1C3 device in the 100-pin TQFP package does not support external outputs or LVDS inputs. The EP1C6 device in the 144-pin TQFP package does not support external output from PLL2. - (2) LVDS input is supported via the secondary function of the dedicated clock pins. For PLL 1, the CLK0 pin's secondary function is LVDSCLK1p and the CLK1 pin's secondary function is LVDSCLK1n. For PLL 2, the CLK2 pin's secondary function is LVDSCLK2p and the CLK3 pin's secondary function is LVDSCLK2n. - (3) PFD: phase frequency detector. Figure 2–26 shows the PLL global clock connections. Figure 2-26. Cyclone PLL Global Clock Connections ## Notes to Figure 2-26: - (1) PLL 1 supports one single-ended or LVDS input via pins CLK0 and CLK1. - (2) PLL2 supports one single-ended or LVDS input via pins CLK2 and CLK3. - (3) PLL1_OUT and PLL2_OUT support single-ended or LVDS output. If external output is not required, these pins are available as regular user I/O pins. - (4) The EP1C3 device in the 100-pin TQFP package does not support external clock output. The EP1C6 device in the 144-pin TQFP package does not support external clock output from PLL2. Table 2–7 shows the global clock network sources available in Cyclone devices. | Table 2-7. GI | Table 2–7. Global Clock Network Sources (Part 1 of 2) | | | | | | | | | | |---------------------|---|----------|----------|----------|----------|----------|----------|----------|----------|--| | Sou | rce | GCLKO | GCLK1 | GCLK2 | GCLK3 | GCLK4 | GCLK5 | GCLK6 | GCLK7 | | | PLL Counter | PLL1 G0 | _ | ✓ | ✓ | _ | _ | _ | _ | _ | | | Output | PLL1 G1 | ✓ | _ | _ | ✓ | _ | _ | _ | _ | | | | PLL2 G0 (1) | _ | _ | _ | _ | _ | ✓ | ✓ | _ | | | | PLL2 G1 (1) | _ | _ | _ | _ | ✓ | _ | _ | ✓ | | | Dedicated | CLK0 | ✓ | _ | ✓ | _ | _ | _ | _ | _ | | | Clock Input
Pins | CLK1 (2) | _ | ✓ | _ | ✓ | _ | _ | _ | _ | | | | CLK2 | _ | _ | _ | _ | ✓ | _ | ✓ | _ | | | | CLK3 (2) | _ | _ | _ | _ | _ | ✓ | _ | ✓ | | | Table 2–7. Global Clock Network Sources (Part 2 of 2) | | | | | | | | | | |---|------------|----------|----------|----------|----------|----------|----------|----------|----------| | Sou | rce | GCLKO | GCLK1 | GCLK2 | GCLK3 | GCLK4 | GCLK5 | GCLK6 | GCLK7 | | Dual-Purpose | DPCLK0 (3) | _ | _ | _ | ✓ | _ | _ | _ | _ | | Clock Pins | DPCLK1 (3) | _ | _ | ✓ | _ | _ | _ | _ | _ | | | DPCLK2 | ✓ | _ | _ | _ | _ | _ | _ | _ | | | DPCLK3 | _ | _ | _ | _ | ✓ | _ | _ | _ | | | DPCLK4 | | _ | _ | _ | _ | | ✓ | _ | | | DPCLK5 (3) | _ | _ | _ | _ | _ | _ | _ | ✓ | | | DPCLK6 | _ | _ | _ | _ | _ | ✓ | _ | _ | | | DPCLK7 | _ | ✓ | _ | _ | _ | _ | _ | _ | Notes to Table 2-7: - (1) EP1C3 devices only have one PLL (PLL 1). - (2) EP1C3 devices in the 100-pin TQFP package do not have dedicated clock pins CLK1 and CLK3. - (3) EP1C3 devices in the 100-pin TQFP package do not have the DPCLK0, DPCLK1, or DPCLK5 pins. ## **Clock Multiplication and Division** Cyclone PLLs provide clock synthesis for PLL output ports using $m/(n \times post$ scale counter) scaling factors. The input clock is divided by a pre-scale divider, n, and is then multiplied by the m feedback factor. The control loop drives the VCO to match $f_{\rm IN} \times (m/n)$. Each output port has a unique post-scale counter to divide down the high-frequency VCO. For multiple PLL outputs with different frequencies, the VCO is set to the least-common multiple of the output frequencies that meets its frequency specifications. Then, the post-scale dividers scale down the output frequency for each output port. For example, if the output frequencies required from one PLL are 33 and 66 MHz, the VCO is set to 330 MHz (the least-common multiple in the VCO's range). Each PLL has one pre-scale divider, n, that can range in value from 1 to 32. Each PLL also has one multiply divider, m, that can range in value from 2 to 32. Global clock outputs have two post scale G dividers for global clock outputs, and external clock outputs have an E divider for external clock output, both ranging from 1 to 32. The Quartus II software automatically chooses the appropriate scaling factors according to the input frequency, multiplication, and division values entered. Figure 2-29. Column I/O Block Connection to the Interconnect ## Notes to Figure 2-29: - (1) The 21 data and control signals consist of three data out lines, io_dataout[2..0], three output enables, io_coe[2..0], three input clock enables, io_cce_in[2..0], three output clock enables, io_cce_out[2..0], three clocks, io_cclk[2..0], three asynchronous clear signals, io_caclr[2..0], and three synchronous clear signals, io_csclr[2..0]. - (2) Each of the three IOEs in the column I/O block can have one io_datain input (combinatorial or registered) and one comb io datain (combinatorial) input. Figure 2-34. DDR SDRAM and FCRAM Interfacing ## **Programmable Drive Strength** The output buffer for each Cyclone device I/O pin has a programmable drive strength control for certain I/O standards. The LVTTL and LVCMOS standards have several levels of drive strength that the designer can control. SSTL-3 class I and II, and SSTL-2 class I and II support a minimum setting, the lowest drive strength that guarantees the $\rm I_{OH}/I_{OL}$ # 3. Configuration and Testing C51003-1.4 # IEEE Std. 1149.1 (JTAG) Boundary Scan Support All Cyclone[®] devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1a-1990 specification. JTAG boundary-scan testing can be performed either before or after, but not during configuration. Cyclone devices can also use the JTAG port for configuration together with either the Quartus[®] II software or hardware using either Jam Files (.jam) or Jam Byte-Code Files (.jbc). Cyclone devices support reconfiguring the I/O standard settings on the IOE through the JTAG BST chain. The JTAG chain can update the I/O standard for all input and output pins any time before or during user mode. Designers can use this ability for JTAG testing before configuration when some of the Cyclone pins drive or receive from other devices on the board using voltage-referenced standards. Since the Cyclone device might not be configured before JTAG testing, the I/O pins might not be configured for appropriate electrical standards for chip-to-chip communication. Programming those I/O standards via JTAG allows designers to fully test I/O connection to other devices. The JTAG pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O standards. The TDO pin voltage is determined by the $V_{\rm CCIO}$ of the bank where it resides. The bank $V_{\rm CCIO}$ selects whether the JTAG inputs are 1.5-V, 1.8-V, 2.5-V, or 3.3-V compatible. Cyclone devices also use the JTAG port to monitor the operation of the device with the SignalTap® II embedded logic analyzer. Cyclone devices support the JTAG instructions shown in Table 3–1. | Table 3–1. Cyclone JTAG Instructions (Part 1 of 2) | | | | | | | | | |--|------------------|---|--|--|--|--|--|--| | JTAG Instruction | Instruction Code | Description | | | | | | | | SAMPLE/PRELOAD | 00 0000 0101 | Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap II embedded logic analyzer. | | | | | | | | EXTEST (1) | 00 0000 0000 | Allows the external circuitry and board-level interconnects to be tested by forcing a test pattern at the output pins and capturing test results at the input pins. | | | | | | | | BYPASS | 11 1111 1111 | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation. | | | | | | | The Cyclone device instruction register length is 10 bits and the USERCODE register length is 32 bits. Tables 3–2 and 3–3 show the boundary-scan register length and device IDCODE information for Cyclone devices. | Table 3–2. Cyclone Boundary-Scan Register Length | | | | | | | | |--|-----|--|--|--|--|--|--| | Device Boundary-Scan Register Leng | | | | | | | | | EP1C3 | 339 | | | | | | | | EP1C4 | 930 | | | | | | | | EP1C6 | 582 | | | | | | | | EP1C12 | 774 | | | | | | | | EP1C20 | 930 | | | | | | | | Table 3–3. 32-Bit Cyclone Device IDCODE | | | | | | | | | | | |---|----------------------|-----------------------|------------------------------------|-----------------|--|--|--|--|--|--| | | IDCODE (32 bits) (1) | | | | | | | | | | | Device | Version (4 Bits) | Part Number (16 Bits) | Manufacturer Identity
(11 Bits) | LSB (1 Bit) (2) | | | | | | | | EP1C3 | 0000 | 0010 0000 1000 0001 | 000 0110 1110 | 1 | | | | | | | | EP1C4 | 0000 | 0010 0000 1000 0101 | 000 0110 1110 | 1 | | | | | | | | EP1C6 | 0000 | 0010 0000 1000 0010 | 000 0110 1110 | 1 | | | | | | | | EP1C12 | 0000 | 0010 0000 1000 0011 | 000 0110 1110 | 1 | | | | | | | | EP1C20 | 0000 | 0010 0000 1000 0100 | 000 0110 1110 | 1 | | | | | | | ## Notes to Table 3-3: - (1) The most significant bit (MSB) is on the left. - (2) The IDCODE's least significant bit (LSB) is always 1. # 4. DC and Switching Characteristics C51004-1.7 # Operating Conditions Cyclone® devices are offered in both commercial, industrial, and extended temperature grades. However, industrial-grade and extended-temperature-grade devices may have limited speed-grade availability. Tables 4–1 through 4–16 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for Cyclone devices. | Table 4-1 | Table 4–1. Cyclone Device Absolute Maximum Ratings Notes (1), (2) | | | | | | | | | | |--------------------|---|----------------------------|---------|---------|------|--|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | | | | V _{CCINT} | Supply voltage | With respect to ground (3) | -0.5 | 2.4 | V | | | | | | | V _{CCIO} | | | -0.5 | 4.6 | V | | | | | | | V _{CCA} | Supply voltage | With respect to ground (3) | -0.5 | 2.4 | V | | | | | | | Vı | DC input voltage | | -0.5 | 4.6 | V | | | | | | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | | | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | °C | | | | | | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | °C | | | | | | | T _J | Junction temperature | BGA packages under bias | _ | 135 | °C | | | | | | | Table 4–2. Cyclone Device Recommended Operating Conditions (Part 1 of 2) | | | | | | | | | | |--|---|------------|---------|---------|------|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | | | V _{CCINT} | Supply voltage for internal logic and input buffers | (4) | 1.425 | 1.575 | V | | | | | | V _{CCIO} | Supply voltage for output buffers, 3.3-V operation | (4) | 3.00 | 3.60 | V | | | | | | | Supply voltage for output buffers, 2.5-V operation | (4) | 2.375 | 2.625 | V | | | | | | | Supply voltage for output buffers, 1.8-V operation | (4) | 1.71 | 1.89 | V | | | | | | | Supply voltage for output buffers, 1.5-V operation | (4) | 1.4 | 1.6 | V | | | | | | V _I | Input voltage | (3), (5) | -0.5 | 4.1 | V | | | | | ## **Performance** The maximum internal logic array clock tree frequency is limited to the specifications shown in Table 4–19. | Table 4–19. Clock Tree Maximum Performance Specification | | | | | | | | | | | | |--|---|----------------|-----|----------------|-----|----------------|-----|-----|-------|-----|-------| | Parameter | Definition | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | | Unito | | | | | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Units | | Clock tree f _{MAX} | Maximum frequency
that the clock tree
can support for
clocking registered
logic | | _ | 405 | _ | _ | 320 | | _ | 275 | MHz | Table 4–20 shows the Cyclone device performance for some common designs. All performance values were obtained with the Quartus II software compilation of library of parameterized modules (LPM) functions or megafunctions. These performance values are based on EP1C6 devices in 144-pin TQFP packages. | Table 4-20 | Table 4–20. Cyclone Device Performance | | | | | | | | | |------------------|--|------|----------------|-----------------------|-------------------------|----------------------------|----------------------------|----------------------------|--| | | | | Resources Used | | | F | Performanc | е | | | Resource
Used | Design Size and
Function | Mode | LEs | M4K
Memory
Bits | M4K
Memory
Blocks | -6 Speed
Grade
(MHz) | -7 Speed
Grade
(MHz) | -8 Speed
Grade
(MHz) | | | LE | 16-to-1
multiplexer | _ | 21 | _ | _ | 405.00 | 320.00 | 275.00 | | | | 32-to-1
multiplexer | _ | 44 | _ | _ | 317.36 | 284.98 | 260.15 | | | | 16-bit counter | _ | 16 | _ | _ | 405.00 | 320.00 | 275.00 | | | | 64-bit counter (1) | _ | 66 | _ | _ | 208.99 | 181.98 | 160.75 | | | Table 4–36. EP1C12 Column Pin Global Clock External I/O Timing
Parameters (Part 2 of 2) | | | | | | | | |--|---------|---------|----------------|-----|---------|------|-------| | Symbol | -6 Spee | d Grade | -7 Speed Grade | | -8 Spee | Unit | | | Syllibol | Min | Max | Min | Max | Min | Max | Ullit | 0.000 0.500 1.913 0.000 0.500 ns ns 2.164 0.000 0.500 1.663 tinhpll t_{OUTCOPLL} | Table 4-37 | Table 4–37. EP1C12 Row Pin Global Clock External I/O Timing Parameters | | | | | | | | | | |----------------------|--|---------|------------------|-------|---------|-------|------|--|--|--| | Cumbal | -6 Spee | d Grade | e -7 Speed Grade | | -8 Spee | IImia | | | | | | Symbol | Min | Max | Min | Max | Min | Max | Unit | | | | | t _{INSU} | 2.620 | _ | 3.012 | _ | 3.404 | _ | ns | | | | | t _{INH} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | | toutco | 2.000 | 3.671 | 2.000 | 4.221 | 2.000 | 4.774 | ns | | | | | t _{INSUPLL} | 1.698 | _ | 1.951 | _ | 2.206 | _ | ns | | | | | t _{INHPLL} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | | toutcople | 0.500 | 1.536 | 0.500 | 1.767 | 0.500 | 1.998 | ns | | | | Tables 4–38 through 4–39 show the external timing parameters on column and row pins for EP1C20 devices. | | Table 4–38. EP1C20 Column Pin Global Clock External I/O Timing
Parameters | | | | | | | | | |----------------------|--|-------|---------|---------|---------|-------|------|--|--| | Cumbal | -6 Speed Grade | | -7 Spee | d Grade | -8 Spee | | | | | | Symbol | Min | Max | Min | Max | Min | Max | Unit | | | | t _{INSU} | 2.417 | _ | 2.779 | _ | 3.140 | _ | ns | | | | t _{INH} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | t _{outco} | 2.000 | 3.724 | 2.000 | 4.282 | 2.000 | 4.843 | ns | | | | t _{INSUPLL} | 1.417 | _ | 1.629 | _ | 1.840 | _ | ns | | | | t _{INHPLL} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | toutcople | 0.500 | 1.667 | 0.500 | 1.917 | 0.500 | 2.169 | ns | | | | Table 4-39 | Table 4–39. EP1C20 Row Pin Global Clock External I/O Timing Parameters | | | | | | | | | |----------------------|--|---------|---------|---------|---------|---------|-------|--|--| | Cumbal | -6 Spee | d Grade | -7 Spee | d Grade | -8 Spee | d Grade | Unit | | | | Symbol | Min | Max | Min | Max | Min | Max | UIIIL | | | | t _{INSU} | 2.417 | _ | 2.779 | _ | 3.140 | _ | ns | | | | t _{INH} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | toutco | 2.000 | 3.724 | 2.000 | 4.282 | 2.000 | 4.843 | ns | | | | t _{XZ} | _ | 3.645 | _ | 4.191 | _ | 4.740 | ns | | | | t _{ZX} | _ | 3.645 | _ | 4.191 | _ | 4.740 | ns | | | | t _{INSUPLL} | 1.417 | _ | 1.629 | _ | 1.840 | _ | ns | | | | t _{INHPLL} | 0.000 | _ | 0.000 | _ | 0.000 | _ | ns | | | | toutcople | 0.500 | 1.667 | 0.500 | 1.917 | 0.500 | 2.169 | ns | | | | t _{XZPLL} | _ | 1.588 | _ | 1.826 | _ | 2.066 | ns | | | | t _{ZXPLL} | | 1.588 | _ | 1.826 | _ | 2.066 | ns | | | ## **External I/O Delay Parameters** External I/O delay timing parameters for I/O standard input and output adders and programmable input and output delays are specified by speed grade independent of device density. Tables 4–40 through 4–45 show the adder delays associated with column and row I/O pins for all packages. If an I/O standard is selected other than LVTTL 4 mA with a fast slew rate, add the selected delay to the external t_{CO} and t_{SU} I/O parameters shown in Tables 4–25 through 4–28. | Table 4–40. Cyclone I/O Standard Column Pin Input Delay Adders (Part 1 of 2) | | | | | | | | | |--|----------------|------|-------------|---------|---------|---------|------|--| | I/O Standard | -6 Speed Grade | | -7 Spee | d Grade | -8 Spee | II.a.is | | | | i/O Stanuaru | Min | Max | Max Min Max | | Min | Max | Unit | | | LVCMOS | _ | 0 | _ | 0 | _ | 0 | ps | | | 3.3-V LVTTL | _ | 0 | _ | 0 | _ | 0 | ps | | | 2.5-V LVTTL | _ | 27 | _ | 31 | _ | 35 | ps | | | 1.8-V LVTTL | _ | 182 | _ | 209 | _ | 236 | ps | | | 1.5-V LVTTL | _ | 278 | _ | 319 | _ | 361 | ps | | | SSTL-3 class I | _ | -250 | _ | -288 | _ | -325 | ps | | | SSTL-3 class II | _ | -250 | _ | -288 | _ | -325 | ps | | | SSTL-2 class I | _ | -278 | _ | -320 | | -362 | ps | | | Table 4-44. 0 | Table 4–44. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Column Pins (Part 2 of 2) | | | | | | | | | |----------------|--|----------------|-------|---------|---------|---------|-------|------|--| | I/O Standard | | -6 Speed Grade | | -7 Spee | d Grade | -8 Spee | 11 | | | | i/U Star | iuaru | Min | Max | Min | Max | Min | Max | Unit | | | 1.5-V LVTTL | 2 mA | _ | 6,789 | _ | 7,807 | _ | 8,825 | ps | | | | 4 mA | _ | 5,109 | _ | 5,875 | _ | 6,641 | ps | | | | 8 mA | _ | 4,793 | _ | 5,511 | _ | 6,230 | ps | | | SSTL-3 class I | | _ | 1,390 | _ | 1,598 | _ | 1,807 | ps | | | SSTL-3 class I | I | _ | 989 | _ | 1,137 | _ | 1,285 | ps | | | SSTL-2 class I | | _ | 1,965 | _ | 2,259 | _ | 2,554 | ps | | | SSTL-2 class I | I | _ | 1,692 | _ | 1,945 | | 2,199 | ps | | | LVDS | · | _ | 802 | _ | 922 | _ | 1,042 | ps | | | | | -6 Snor | ed Grade | -7 Sno | ad Grada | -8 Sno | ad Grado | | |-------------|-------|---------|----------|----------------|----------|----------------|----------|------| | I/O Sta | ndard | -o spec | tu ulaut | -7 Speed Grade | | -8 Speed Grade | | Unit | | , | | | Max | Min | Max | Min | Max | | | LVCMOS | 2 mA | _ | 1,800 | _ | 2,070 | _ | 2,340 | ps | | | 4 mA | _ | 1,311 | _ | 1,507 | _ | 1,704 | ps | | | 8 mA | _ | 945 | _ | 1,086 | _ | 1,228 | ps | | | 12 mA | _ | 807 | _ | 928 | _ | 1,049 | ps | | 3.3-V LVTTL | 4 mA | _ | 1,831 | _ | 2,105 | _ | 2,380 | ps | | | 8 mA | _ | 1,484 | _ | 1,705 | _ | 1,928 | ps | | | 12 mA | _ | 973 | _ | 1,118 | _ | 1,264 | ps | | | 16 mA | _ | 1,012 | _ | 1,163 | _ | 1,315 | ps | | | 24 mA | _ | 838 | _ | 963 | _ | 1,089 | ps | | 2.5-V LVTTL | 2 mA | _ | 2,747 | _ | 3,158 | _ | 3,570 | ps | | | 8 mA | _ | 1,757 | _ | 2,019 | _ | 2,283 | ps | | | 12 mA | _ | 1,763 | _ | 2,026 | _ | 2,291 | ps | | | 16 mA | _ | 1,623 | _ | 1,865 | _ | 2,109 | ps | | 1.8-V LVTTL | 2 mA | _ | 5,506 | _ | 6,331 | _ | 7,157 | ps | | | 8 mA | _ | 4,220 | _ | 4,852 | _ | 5,485 | ps | | | 12 mA | _ | 4,008 | _ | 4,608 | _ | 5,209 | ps | | 1.5-V LVTTL | 2 mA | _ | 6,789 | _ | 7,807 | _ | 8,825 | ps | | | 4 mA | _ | 5,109 | _ | 5,875 | _ | 6,641 | ps | | | 8 mA | _ | 4,793 | _ | 5,511 | _ | 6,230 | ps | | 3.3-V PCI | | _ | 923 | _ | 1,061 | _ | 1,199 | ps | | Table 4–45. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Row Pins (Part 2 of 2) | | | | | | | | |---|---------|----------------|-----|----------------|-----|----------------|------| | L/O Otandard | -6 Spec | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | | I/O Standard | Min | Max | Min | Max | Min | Max | Unit | | SSTL-3 class I | _ | 1,390 | _ | 1,598 | _ | 1,807 | ps | | SSTL-3 class II | _ | 989 | _ | 1,137 | _ | 1,285 | ps | | SSTL-2 class I | _ | 1,965 | _ | 2,259 | _ | 2,554 | ps | | SSTL-2 class II | _ | 1,692 | _ | 1,945 | _ | 2,199 | ps | | LVDS | _ | 802 | _ | 922 | _ | 1,042 | ps | *Note to Tables 4–40 through 4–45:* Tables 4–46 through 4–47 show the adder delays for the IOE programmable delays. These delays are controlled with the Quartus II software options listed in the Parameter column. | Parameter | Setting | -6 Spee | -6 Speed Grade | | -7 Speed Grade | | d Grade | 11:4 | |--|---------|---------|----------------|-----|----------------|-----|---------|------| | rataillelet | | Min | Max | Min | Max | Min | Max | Unit | | Decrease input delay to internal cells | Off | _ | 155 | _ | 178 | _ | 201 | ps | | | Small | _ | 2,122 | _ | 2,543 | _ | 2,875 | ps | | | Medium | _ | 2,639 | _ | 3,034 | _ | 3,430 | ps | | | Large | _ | 3,057 | _ | 3,515 | _ | 3,974 | ps | | | On | _ | 155 | _ | 178 | _ | 201 | ps | | Decrease input delay to | Off | _ | 0 | _ | 0 | _ | 0 | ps | | input register | On | _ | 3,057 | _ | 3,515 | _ | 3,974 | ps | | Increase delay to output | Off | _ | 0 | _ | 0 | _ | 0 | ps | | pin | On | _ | 552 | _ | 634 | _ | 717 | ps | ⁽¹⁾ EP1C3 devices do not support the PCI I/O standard. # 5. Reference and Ordering Information C51005-1.4 ## Software Cyclone® devices are supported by the Altera® Quartus® II design software, which provides a comprehensive environment for system-on-a-programmable-chip (SOPC) design. The Quartus II software includes HDL and schematic design entry, compilation and logic synthesis, full simulation and advanced timing analysis, SignalTap® II logic analysis, and device configuration. For more information about the Quartus II software features, refer to the *Quartus II Handbook*. The Quartus II software supports the Windows 2000/NT/98, Sun Solaris, Linux Red Hat v7.1 and HP-UX operating systems. It also supports seamless integration with industry-leading EDA tools through the NativeLink® interface. ## **Device Pin-Outs** Device pin-outs for Cyclone devices are available on the Altera website (www.altera.com) and in the *Cyclone Device Handbook*. ## Ordering Information Figure 5–1 describes the ordering codes for Cyclone devices. For more information about a specific package, refer to the *Package Information for Cyclone Devices* chapter in the *Cyclone Device Handbook*. | February 2005
v1.1 | Updated Figure 5-1. | _ | |-----------------------|--|---| | May 2003
v1.0 | Added document to Cyclone Device Handbook. | _ |