Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 598 | | Number of Logic Elements/Cells | 5980 | | Total RAM Bits | 92160 | | Number of I/O | 98 | | Number of Gates | - | | Voltage - Supply | 1.425V ~ 1.575V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 144-LQFP | | Supplier Device Package | 144-TQFP (20x20) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep1c6t144c7n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong performance and flexibility. Each LE can drive 30 other LEs through fast local and direct link interconnects. Figure 2–3 shows the direct link connection. Direct link interconnect from left LAB, M4K memory block, PLL, or IOE output Direct link interconnect to left Local Interconnect Local Interconnect Direct link interconnect from right LAB, M4K memory block, PLL, or IOE output Direct link interconnect to right Figure 2-3. Direct Link Connection ### **LAB Control Signals** Each LAB contains dedicated logic for driving control signals to its LEs. The control signals include two clocks, two clock enables, two asynchronous clears, synchronous clear, asynchronous preset/load, synchronous load, and add/subtract control signals. This gives a maximum of 10 control signals at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions. Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked. For example, any LE in a particular LAB using the labclk1 signal will also use labclkenal. If the LAB uses both the rising and falling edges of a clock, it also uses both LAB-wide clock signals. Deasserting the clock enable signal will turn off the LAB-wide clock. Each LAB can use two asynchronous clear signals and an asynchronous load/preset signal. The asynchronous load acts as a preset when the asynchronous load data input is tied high. With the LAB-wide addnsub control signal, a single LE can implement a one-bit adder and subtractor. This saves LE resources and improves performance for logic functions such as DSP correlators and signed multipliers that alternate between addition and subtraction depending on data. The LAB row clocks [5..0] and LAB local interconnect generate the LAB-wide control signals. The MultiTrackTM interconnect's inherent low skew allows clock and control signal distribution in addition to data. Figure 2–4 shows the LAB control signal generation circuit. Figure 2-4. LAB-Wide Control Signals # **Logic Elements** The smallest unit of logic in the Cyclone architecture, the LE, is compact and provides advanced features with efficient logic utilization. Each LE contains a four-input LUT, which is a function generator that can implement any function of four variables. In addition, each LE contains a programmable register and carry chain with carry select capability. A single LE also supports dynamic single bit addition or subtraction mode selectable by a LAB-wide control signal. Each LE drives all types of interconnects: local, row, column, LUT chain, register chain, and direct link interconnects. See Figure 2–5. #### Dynamic Arithmetic Mode The dynamic arithmetic mode is ideal for implementing adders, counters, accumulators, wide parity functions, and comparators. An LE in dynamic arithmetic mode uses four 2-input LUTs configurable as a dynamic adder/subtractor. The first two 2-input LUTs compute two summations based on a possible carry-in of 1 or 0; the other two LUTs generate carry outputs for the two chains of the carry select circuitry. As shown in Figure 2–7, the LAB carry-in signal selects either the carry-in0 or carry-in1 chain. The selected chain's logic level in turn determines which parallel sum is generated as a combinatorial or registered output. For example, when implementing an adder, the sum output is the selection of two possible calculated sums: ``` data1 + data2 + carry-in0 or data1 + data2 + carry-in1 ``` The other two LUTs use the data1 and data2 signals to generate two possible carry-out signals—one for a carry of 1 and the other for a carry of 0. The carry-in0 signal acts as the carry select for the carry-out0 output and carry-in1 acts as the carry select for the carry-out1 output. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output. The dynamic arithmetic mode also offers clock enable, counter enable, synchronous up/down control, synchronous clear, synchronous load, and dynamic adder/subtractor options. The LAB local interconnect data inputs generate the counter enable and synchronous up/down control signals. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. The Quartus II software automatically places any registers that are not used by the counter into other LABs. The addnsub LAB-wide signal controls whether the LE acts as an adder or subtractor. Figure 2–8 shows the carry-select circuitry in a LAB for a 10-bit full adder. One portion of the LUT generates the sum of two bits using the input signals and the appropriate carry-in bit; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for accumulator functions. Another portion of the LUT generates carry-out bits. A LAB-wide carry-in bit selects which chain is used for the addition of given inputs. The carry-in signal for each chain, carry-in0 or carry-in1, selects the carry-out to carry forward to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it is fed to local, row, or column interconnects. Figure 2-8. Carry Select Chain The Quartus II Compiler automatically creates carry chain logic during design processing, or you can create it manually during design entry. Parameterized functions such as LPM functions automatically take advantage of carry chains for the appropriate functions. The Quartus II Compiler creates carry chains longer than 10 LEs by linking LABs together automatically. For enhanced fitting, a long carry chain runs vertically allowing fast horizontal connections to M4K memory blocks. A carry chain can continue as far as a full column. #### Clear and Preset Logic Control LAB-wide signals control the logic for the register's clear and preset signals. The LE directly supports an asynchronous clear and preset function. The register preset is achieved through the asynchronous load of a logic high. The direct asynchronous preset does not require a NOT-gate push-back technique. Cyclone devices support simultaneous preset/ asynchronous load and clear signals. An asynchronous clear signal takes precedence if both signals are asserted simultaneously. Each LAB supports up to two clears and one preset signal. In addition to the clear and preset ports, Cyclone devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. An option set before compilation in the Quartus II software controls this pin. This chip-wide reset overrides all other control signals. # MultiTrack Interconnect In the Cyclone architecture, connections between LEs, M4K memory blocks, and device I/O pins are provided by the MultiTrack interconnect structure with DirectDriveTM technology. The MultiTrack interconnect consists of continuous, performance-optimized routing lines of different speeds used for inter- and intra-design block connectivity. The Quartus II Compiler automatically places critical design paths on faster interconnects to improve design performance. DirectDrive technology is a deterministic routing technology that ensures identical routing resource usage for any function regardless of placement within the device. The MultiTrack interconnect and DirectDrive technology simplify the integration stage of block-based designing by eliminating the re-optimization cycles that typically follow design changes and additions. The MultiTrack interconnect consists of row and column interconnects that span fixed distances. A routing structure with fixed length resources for all devices allows predictable and repeatable performance when Figure 2-15. M4K RAM Block Control Signals Figure 2-16. M4K RAM Block LAB Row Interface Figure 2–18. Input/Output Clock Mode in True Dual-Port Mode Notes (1), (2) #### Notes to Figure 2–18: - (1) All registers shown have asynchronous clear ports. - (2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both read and write operations. Figure 2–26 shows the PLL global clock connections. Figure 2-26. Cyclone PLL Global Clock Connections #### Notes to Figure 2-26: - (1) PLL 1 supports one single-ended or LVDS input via pins CLK0 and CLK1. - (2) PLL2 supports one single-ended or LVDS input via pins CLK2 and CLK3. - (3) PLL1_OUT and PLL2_OUT support single-ended or LVDS output. If external output is not required, these pins are available as regular user I/O pins. - (4) The EP1C3 device in the 100-pin TQFP package does not support external clock output. The EP1C6 device in the 144-pin TQFP package does not support external clock output from PLL2. Table 2–7 shows the global clock network sources available in Cyclone devices. | Table 2–7. Global Clock Network Sources (Part 1 of 2) | | | | | | | | | | |---|-------------|----------|----------|----------|----------|----------|----------|----------|----------| | Source | | GCLKO | GCLK1 | GCLK2 | GCLK3 | GCLK4 | GCLK5 | GCLK6 | GCLK7 | | PLL Counter | PLL1 G0 | _ | ✓ | ✓ | _ | _ | _ | _ | _ | | Output | PLL1 G1 | ✓ | _ | _ | ✓ | _ | _ | _ | _ | | | PLL2 G0 (1) | _ | _ | _ | _ | _ | ✓ | ✓ | _ | | | PLL2 G1 (1) | _ | _ | _ | _ | ✓ | _ | _ | ✓ | | Dedicated | CLK0 | ✓ | _ | ✓ | _ | _ | _ | _ | _ | | Clock Input
Pins | CLK1 (2) | _ | ✓ | _ | ✓ | _ | _ | _ | _ | | | CLK2 | _ | _ | _ | _ | ✓ | _ | ✓ | _ | | | CLK3 (2) | _ | _ | _ | _ | _ | ✓ | _ | ✓ | | Table 2–7. Global Clock Network Sources (Part 2 of 2) | | | | | | | | | | | |-------------------------------------------------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|--| | Source | | GCLKO | GCLK1 | GCLK2 | GCLK3 | GCLK4 | GCLK5 | GCLK6 | GCLK7 | | | Dual-Purpose | DPCLK0 (3) | _ | _ | _ | ✓ | _ | _ | _ | _ | | | Clock Pins | DPCLK1 (3) | _ | _ | ✓ | _ | _ | _ | _ | _ | | | | DPCLK2 | ✓ | _ | _ | _ | _ | _ | _ | _ | | | | DPCLK3 | _ | _ | _ | _ | ✓ | _ | _ | _ | | | | DPCLK4 | | _ | _ | _ | _ | | ✓ | _ | | | | DPCLK5 (3) | _ | _ | _ | _ | _ | _ | _ | ✓ | | | | DPCLK6 | _ | _ | _ | _ | _ | ✓ | _ | _ | | | | DPCLK7 | _ | ✓ | _ | _ | _ | _ | _ | _ | | Notes to Table 2-7: - (1) EP1C3 devices only have one PLL (PLL 1). - (2) EP1C3 devices in the 100-pin TQFP package do not have dedicated clock pins CLK1 and CLK3. - (3) EP1C3 devices in the 100-pin TQFP package do not have the DPCLK0, DPCLK1, or DPCLK5 pins. #### **Clock Multiplication and Division** Cyclone PLLs provide clock synthesis for PLL output ports using $m/(n \times post$ scale counter) scaling factors. The input clock is divided by a pre-scale divider, n, and is then multiplied by the m feedback factor. The control loop drives the VCO to match $f_{\rm IN} \times (m/n)$. Each output port has a unique post-scale counter to divide down the high-frequency VCO. For multiple PLL outputs with different frequencies, the VCO is set to the least-common multiple of the output frequencies that meets its frequency specifications. Then, the post-scale dividers scale down the output frequency for each output port. For example, if the output frequencies required from one PLL are 33 and 66 MHz, the VCO is set to 330 MHz (the least-common multiple in the VCO's range). Each PLL has one pre-scale divider, n, that can range in value from 1 to 32. Each PLL also has one multiply divider, m, that can range in value from 2 to 32. Global clock outputs have two post scale G dividers for global clock outputs, and external clock outputs have an E divider for external clock output, both ranging from 1 to 32. The Quartus II software automatically chooses the appropriate scaling factors according to the input frequency, multiplication, and division values entered. #### **External Clock Inputs** Each PLL supports single-ended or differential inputs for source-synchronous receivers or for general-purpose use. The dedicated clock pins (CLK[3..0]) feed the PLL inputs. These dual-purpose pins can also act as LVDS input pins. See Figure 2–25. Table 2–8 shows the I/O standards supported by PLL input and output pins. | Table 2–8. PLL I/O Standards | | | |------------------------------|-----------|---------------| | I/O Standard | CLK Input | EXTCLK Output | | 3.3-V LVTTL/LVCMOS | ✓ | ✓ | | 2.5-V LVTTL/LVCMOS | ✓ | ✓ | | 1.8-V LVTTL/LVCMOS | ✓ | ✓ | | 1.5-V LVCMOS | ✓ | ✓ | | 3.3-V PCI | ✓ | ✓ | | LVDS | ✓ | ✓ | | SSTL-2 class I | ✓ | ✓ | | SSTL-2 class II | ✓ | ✓ | | SSTL-3 class I | ✓ | ✓ | | SSTL-3 class II | ✓ | ✓ | | Differential SSTL-2 | _ | ✓ | For more information on LVDS I/O support, refer to "LVDS I/O Pins" on page 2–54. # **External Clock Outputs** Each PLL supports one differential or one single-ended output for source-synchronous transmitters or for general-purpose external clocks. If the PLL does not use these PLL_OUT pins, the pins are available for use as general-purpose I/O pins. The PLL_OUT pins support all I/O standards shown in Table 2–8. The external clock outputs do not have their own V_{CC} and ground voltage supplies. Therefore, to minimize jitter, do not place switching I/O pins next to these output pins. The EP1C3 device in the 100-pin TQFP package Figure 2-29. Column I/O Block Connection to the Interconnect #### Notes to Figure 2-29: - (1) The 21 data and control signals consist of three data out lines, io_dataout[2..0], three output enables, io_coe[2..0], three input clock enables, io_cce_in[2..0], three output clock enables, io_cce_out[2..0], three clocks, io_cclk[2..0], three asynchronous clear signals, io_caclr[2..0], and three synchronous clear signals, io_csclr[2..0]. - (2) Each of the three IOEs in the column I/O block can have one io_datain input (combinatorial or registered) and one comb io datain (combinatorial) input. to automatically minimize setup time while providing a zero hold time. Programmable delays can increase the register-to-pin delays for output registers. Table 2–9 shows the programmable delays for Cyclone devices. | Table 2–9. Cyclone Programmable Delay Chain | | | | | | | |---------------------------------------------|-----------------------------------------|--|--|--|--|--| | Programmable Delays | Quartus II Logic Option | | | | | | | Input pin to logic array delay | Decrease input delay to internal cells | | | | | | | Input pin to input register delay | Decrease input delay to input registers | | | | | | | Output pin delay | Increase delay to output pin | | | | | | There are two paths in the IOE for a combinatorial input to reach the logic array. Each of the two paths can have a different delay. This allows you adjust delays from the pin to internal LE registers that reside in two different areas of the device. The designer sets the two combinatorial input delays by selecting different delays for two different paths under the **Decrease input delay to internal cells** logic option in the Quartus II software. When the input signal requires two different delays for the combinatorial input, the input register in the IOE is no longer available. The IOE registers in Cyclone devices share the same source for clear or preset. The designer can program preset or clear for each individual IOE. The designer can also program the registers to power up high or low after configuration is complete. If programmed to power up low, an asynchronous clear can control the registers. If programmed to power up high, an asynchronous preset can control the registers. This feature prevents the inadvertent activation of another device's active-low input upon power up. If one register in an IOE uses a preset or clear signal then all registers in the IOE must use that same signal if they require preset or clear. Additionally a synchronous reset signal is available to the designer for the IOE registers. # **External RAM Interfacing** Cyclone devices support DDR SDRAM and FCRAM interfaces at up to 133 MHz through dedicated circuitry. #### DDR SDRAM and FCRAM Cyclone devices have dedicated circuitry for interfacing with DDR SDRAM. All I/O banks support DDR SDRAM and FCRAM I/O pins. However, the configuration input pins in bank 1 must operate at 2.5 V because the SSTL-2 $\rm V_{CCIO}$ level is 2.5 V. Additionally, the configuration Figure 2-34. DDR SDRAM and FCRAM Interfacing # **Programmable Drive Strength** The output buffer for each Cyclone device I/O pin has a programmable drive strength control for certain I/O standards. The LVTTL and LVCMOS standards have several levels of drive strength that the designer can control. SSTL-3 class I and II, and SSTL-2 class I and II support a minimum setting, the lowest drive strength that guarantees the $\rm I_{OH}/I_{OL}$ | Table 4–16. Cyclone Device Capacitance Note (14) | | | | | | | | | |----------------------------------------------------|--------------------------------------------------------------------|---------|------|--|--|--|--|--| | Symbol | Parameter | Typical | Unit | | | | | | | C _{IO} | Input capacitance for user I/O pin | 4.0 | pF | | | | | | | C _{LVDS} | Input capacitance for dual-purpose LVDS/user I/O pin | 4.7 | pF | | | | | | | C _{VREF} | Input capacitance for dual-purpose V _{REF} /user I/O pin. | 12.0 | pF | | | | | | | C _{DPCLK} | Input capacitance for dual-purpose DPCLK/user I/O pin. | 4.4 | pF | | | | | | | C _{CLK} | Input capacitance for CLK pin. | 4.7 | pF | | | | | | #### *Notes to Tables 4–1 through 4–16:* - (1) Refer to the Operating Requirements for Altera Devices Data Sheet. - (2) Conditions beyond those listed in Table 4–1 may cause permanent damage to a device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse affects on the device. - (3) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 4.6 V for input currents less than 100 mA and periods shorter than 20 ns. - (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. - (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - (6) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 1.5$ V, and $V_{CCIO} = 1.5$ V, 1.8 V, 2.5 V, and 3.3 V. - (7) V_I = ground, no load, no toggling inputs. - (8) This value is specified for normal device operation. The value may vary during power-up. This applies for all V_{CCIO} settings (3.3, 2.5, 1.8, and 1.5 V). - (9) R_{CONF} is the measured value of internal pull-up resistance when the I/O pin is tied directly to GND. R_{CONF} value will be lower if an external source drives the pin higher than V_{CCIO}. - (10) Pin pull-up resistance values will lower if an external source drives the pin higher than V_{CCIO}. - (11) Drive strength is programmable according to values in Cyclone Architecture chapter in the Cyclone Device Handbook. - (12) Overdrive is possible when a 1.5 V or 1.8 V and a 2.5 V or 3.3 V input signal feeds an input pin. Turn on "Allow voltage overdrive" for LVTTL/LVCMOS input pins in the Assignments > Device > Device and Pin Options > Pin Placement tab when a device has this I/O combination. However, higher leakage current is expected. - (13) The Cyclone LVDS interface requires a resistor network outside of the transmitter channels. - (14) Capacitance is sample-tested only. Capacitance is measured using time-domain reflections (TDR). Measurement accuracy is within ±0.5 pF. | Table 4–22. IOE Internal Timing Microparameter Descriptions | | | | | | | |-------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--| | Symbol | Parameter | | | | | | | t_{SU} | IOE input and output register setup time before clock | | | | | | | t _H | IOE input and output register hold time after clock | | | | | | | t _{CO} | IOE input and output register clock-to-output delay | | | | | | | t _{PIN2COMBOUT_R} | Row input pin to IOE combinatorial output | | | | | | | t _{PIN2COMBOUT_C} | Column input pin to IOE combinatorial output | | | | | | | t _{COMBIN2PIN_R} | Row IOE data input to combinatorial output pin | | | | | | | t _{COMBIN2PIN_C} | Column IOE data input to combinatorial output pin | | | | | | | t _{CLR} | Minimum clear pulse width | | | | | | | t _{PRE} | Minimum preset pulse width | | | | | | | t _{CLKHL} | Minimum clock high or low time | | | | | | | Table 4–23. M4 | Table 4–23. M4K Block Internal Timing Microparameter Descriptions | | | | | | | |-------------------------|-------------------------------------------------------------------|--|--|--|--|--|--| | Symbol | Parameter | | | | | | | | t _{M4KRC} | Synchronous read cycle time | | | | | | | | t _{M4KWC} | Synchronous write cycle time | | | | | | | | t _{M4KWERESU} | Write or read enable setup time before clock | | | | | | | | t _{M4KWEREH} | Write or read enable hold time after clock | | | | | | | | t _{M4KBESU} | Byte enable setup time before clock | | | | | | | | t _{M4KBEH} | Byte enable hold time after clock | | | | | | | | t _{M4KDATAASU} | A port data setup time before clock | | | | | | | | t _{M4KDATAAH} | A port data hold time after clock | | | | | | | | t _{M4KADDRASU} | A port address setup time before clock | | | | | | | | t _{M4KADDRAH} | A port address hold time after clock | | | | | | | | t _{M4KDATABSU} | B port data setup time before clock | | | | | | | | t _{M4KDATABH} | B port data hold time after clock | | | | | | | | t _{M4KADDRBSU} | B port address setup time before clock | | | | | | | | t _{M4KADDRBH} | B port address hold time after clock | | | | | | | | t _{M4KDATACO1} | Clock-to-output delay when using output registers | | | | | | | | t _{M4KDATACO2} | Clock-to-output delay without output registers | | | | | | | | t _{M4KCLKHL} | Minimum clock high or low time | | | | | | | | t _{M4KCLR} | Minimum clear pulse width | | | | | | | | Cumbal | - | 6 | - | 7 | - | | | |-------------------------|-------|-------|-------|-------|-------|-------|------| | Symbol | Min | Max | Min | Max | Min | Max | Unit | | t _{M4KRC} | _ | 4,379 | | 5,035 | | 5,691 | ps | | t _{M4KWC} | _ | 2,910 | | 3,346 | | 3,783 | ps | | t _{M4KWERESU} | 72 | _ | 82 | _ | 93 | _ | ps | | t _{M4KWEREH} | 43 | _ | 49 | _ | 55 | _ | ps | | t _{M4KBESU} | 72 | _ | 82 | _ | 93 | _ | ps | | t _{M4KBEH} | 43 | _ | 49 | _ | 55 | _ | ps | | t _{M4KDATAASU} | 72 | _ | 82 | _ | 93 | _ | ps | | t _{M4KDATAAH} | 43 | _ | 49 | _ | 55 | _ | ps | | t _{M4KADDRASU} | 72 | _ | 82 | _ | 93 | _ | ps | | t _{M4KADDRAH} | 43 | _ | 49 | _ | 55 | _ | ps | | t _{M4KDATABSU} | 72 | _ | 82 | _ | 93 | _ | ps | | t _{M4KDATABH} | 43 | _ | 49 | _ | 55 | _ | ps | | t _{M4KADDRBSU} | 72 | _ | 82 | _ | 93 | _ | ps | | t _{M4KADDRBH} | 43 | _ | 49 | _ | 55 | _ | ps | | t _{M4KDATACO1} | _ | 621 | _ | 714 | _ | 807 | ps | | t _{M4KDATACO2} | _ | 4,351 | _ | 5,003 | _ | 5,656 | ps | | t _{M4KCLKHL} | 1,234 | _ | 1,562 | _ | 1,818 | _ | ps | | t _{M4KCLR} | 286 | _ | 328 | | 371 | | ps | | Table 4–28. Routing Delay Internal Timing Microparameters | | | | | | | | | | |-----------------------------------------------------------|-----|-----|-----|-----|-----|-----|------|--|--| | Symbol | -6 | | - | 7 | - | 11 | | | | | | Min | Max | Min | Max | Min | Max | Unit | | | | t _{R4} | _ | 261 | _ | 300 | _ | 339 | ps | | | | t _{C4} | _ | 338 | _ | 388 | _ | 439 | ps | | | | t _{LOCAL} | _ | 244 | _ | 281 | _ | 318 | ps | | | # **External Timing Parameters** External timing parameters are specified by device density and speed grade. Figure 4–2 shows the timing model for bidirectional IOE pin timing. All registers are within the IOE. | Table 4–42. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Column Pins (Part 2 of 2) | | | | | | | | | | |------------------------------------------------------------------------------------------------------|-------|----------------|-------|---------|----------|---------|--------|------|--| | Standard | | -6 Speed Grade | | -7 Spec | ed Grade | -8 Spee | 11-24 | | | | | | Min | Max | Min | Max | Min | Max | Unit | | | 2.5-V LVTTL | 2 mA | _ | 329 | _ | 378 | _ | 427 | ps | | | | 8 mA | _ | -661 | _ | -761 | _ | -860 | ps | | | | 12 mA | _ | -655 | _ | -754 | _ | -852 | ps | | | | 16 mA | _ | -795 | _ | -915 | _ | -1034 | ps | | | 1.8-V LVTTL | 2 mA | _ | 4 | _ | 4 | _ | 5 | ps | | | | 8 mA | _ | -208 | _ | -240 | _ | -271 | ps | | | | 12 mA | _ | -208 | _ | -240 | _ | -271 | ps | | | 1.5-V LVTTL | 2 mA | _ | 2,288 | _ | 2,631 | _ | 2,974 | ps | | | | 4 mA | _ | 608 | _ | 699 | _ | 790 | ps | | | | 8 mA | _ | 292 | _ | 335 | _ | 379 | ps | | | SSTL-3 class I | | _ | -410 | _ | -472 | _ | -533 | ps | | | SSTL-3 class II | | _ | -811 | _ | -933 | _ | -1,055 | ps | | | SSTL-2 class I | | _ | -485 | _ | -558 | _ | -631 | ps | | | SSTL-2 class II | | _ | -758 | _ | -872 | _ | -986 | ps | | | LVDS | | _ | -998 | _ | -1,148 | _ | -1,298 | ps | | | Table 4–43. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Row Pins (Part 1 of 2) | | | | | | | | | | | |---------------------------------------------------------------------------------------------------|-------|----------------|------|---------|---------|---------|--------|------|--|--| | | | -6 Speed Grade | | -7 Spee | d Grade | -8 Spee | 1114 | | | | | Stand | aru | Min | Max | Min | Max | Min | Max | Unit | | | | LVCMOS | 2 mA | _ | 0 | _ | 0 | _ | 0 | ps | | | | | 4 mA | _ | -489 | _ | -563 | _ | -636 | ps | | | | | 8 mA | _ | -855 | _ | -984 | _ | -1,112 | ps | | | | | 12 mA | _ | -993 | _ | -1,142 | _ | -1,291 | ps | | | | 3.3-V LVTTL | 4 mA | _ | 0 | _ | 0 | _ | 0 | ps | | | | | 8 mA | _ | -347 | _ | -400 | _ | -452 | ps | | | | | 12 mA | _ | -858 | _ | -987 | _ | -1,116 | ps | | | | | 16 mA | _ | -819 | _ | -942 | _ | -1,065 | ps | | | | | 24 mA | _ | -993 | _ | -1,142 | _ | -1,291 | ps | | | | 2.5-V LVTTL | 2 mA | _ | 329 | _ | 378 | _ | 427 | ps | | | | | 8 mA | _ | -661 | _ | -761 | _ | -860 | ps | | | | | 12 mA | _ | -655 | _ | -754 | _ | -852 | ps | | | | | 16 mA | _ | -795 | _ | -915 | _ | -1,034 | ps | | | | Table 4–43. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Row Pins (Part 2 of 2) | | | | | | | | | |---------------------------------------------------------------------------------------------------|-------|----------------|-------|----------------|--------|----------------|--------|-------| | Standard | | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | 11-24 | | | | Min | Max | Min | Max | Min | Max | Unit | | 1.8-V LVTTL | 2 mA | _ | 1,290 | _ | 1,483 | _ | 1,677 | ps | | | 8 mA | _ | 4 | _ | 4 | _ | 5 | ps | | | 12 mA | _ | -208 | _ | -240 | _ | -271 | ps | | 1.5-V LVTTL | 2 mA | _ | 2,288 | _ | 2,631 | _ | 2,974 | ps | | | 4 mA | _ | 608 | _ | 699 | _ | 790 | ps | | | 8 mA | _ | 292 | _ | 335 | _ | 379 | ps | | 3.3-V PCI (1) | | _ | -877 | _ | -1,009 | _ | -1,141 | ps | | SSTL-3 class I | | _ | -410 | _ | -472 | _ | -533 | ps | | SSTL-3 class II | | _ | -811 | _ | -933 | _ | -1,055 | ps | | SSTL-2 class I | | _ | -485 | _ | -558 | _ | -631 | ps | | SSTL-2 class II | | _ | -758 | _ | -872 | _ | -986 | ps | | LVDS | | _ | -998 | _ | -1,148 | _ | -1,298 | ps | | Table 4–44. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Column Pins (Part 1 of 2) | | | | | | | | | |------------------------------------------------------------------------------------------------------|-------|----------------|-------|----------------|-------|----------------|-------|------| | I/O Standard | | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | | | | | Min | Max | Min | Max | Min | Max | Unit | | LVCMOS | 2 mA | _ | 1,800 | _ | 2,070 | _ | 2,340 | ps | | | 4 mA | _ | 1,311 | _ | 1,507 | _ | 1,704 | ps | | | 8 mA | _ | 945 | _ | 1,086 | _ | 1,228 | ps | | | 12 mA | _ | 807 | _ | 928 | _ | 1,049 | ps | | 3.3-V LVTTL | 4 mA | _ | 1,831 | _ | 2,105 | _ | 2,380 | ps | | | 8 mA | _ | 1,484 | _ | 1,705 | _ | 1,928 | ps | | | 12 mA | _ | 973 | _ | 1,118 | _ | 1,264 | ps | | | 16 mA | _ | 1,012 | _ | 1,163 | _ | 1,315 | ps | | | 24 mA | _ | 838 | _ | 963 | _ | 1,089 | ps | | 2.5-V LVTTL | 2 mA | _ | 2,747 | _ | 3,158 | _ | 3,570 | ps | | | 8 mA | _ | 1,757 | _ | 2,019 | _ | 2,283 | ps | | | 12 mA | _ | 1,763 | _ | 2,026 | _ | 2,291 | ps | | | 16 mA | _ | 1,623 | _ | 1,865 | _ | 2,109 | ps | | 1.8-V LVTTL | 2 mA | _ | 5,506 | _ | 6,331 | _ | 7,157 | ps | | | 8 mA | _ | 4,220 | _ | 4,852 | _ | 5,485 | ps | | | 12 mA | _ | 4,008 | _ | 4,608 | _ | 5,209 | ps | | Table 4-44. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Column Pins (Part 2 of 2) | | | | | | | | | |------------------------------------------------------------------------------------------------------|------|----------------|-------|----------------|-------|----------------|-------|------| | I/O Standard | | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | 11 | | | | Min | Max | Min | Max | Min | Max | Unit | | 1.5-V LVTTL | 2 mA | _ | 6,789 | _ | 7,807 | _ | 8,825 | ps | | | 4 mA | _ | 5,109 | _ | 5,875 | _ | 6,641 | ps | | | 8 mA | _ | 4,793 | _ | 5,511 | _ | 6,230 | ps | | SSTL-3 class I | | _ | 1,390 | _ | 1,598 | _ | 1,807 | ps | | SSTL-3 class II | | _ | 989 | _ | 1,137 | _ | 1,285 | ps | | SSTL-2 class I | | _ | 1,965 | _ | 2,259 | _ | 2,554 | ps | | SSTL-2 class II | | _ | 1,692 | _ | 1,945 | | 2,199 | ps | | LVDS | | _ | 802 | _ | 922 | _ | 1,042 | ps | | | | -6 Snor | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | |--------------|-----------|----------------|----------------|----------------|----------------|----------------|----------------|------| | I/O Standard | | -o speed drade | | -1 Speen drade | | -o Speeu Graue | | Unit | | | | Min | Max | Min | Max | Min | Max | | | LVCMOS | 2 mA | _ | 1,800 | _ | 2,070 | _ | 2,340 | ps | | | 4 mA | _ | 1,311 | _ | 1,507 | _ | 1,704 | ps | | | 8 mA | _ | 945 | _ | 1,086 | _ | 1,228 | ps | | | 12 mA | _ | 807 | _ | 928 | _ | 1,049 | ps | | 3.3-V LVTTL | 4 mA | _ | 1,831 | _ | 2,105 | _ | 2,380 | ps | | | 8 mA | _ | 1,484 | _ | 1,705 | _ | 1,928 | ps | | | 12 mA | _ | 973 | _ | 1,118 | _ | 1,264 | ps | | | 16 mA | _ | 1,012 | _ | 1,163 | _ | 1,315 | ps | | | 24 mA | _ | 838 | _ | 963 | _ | 1,089 | ps | | 2.5-V LVTTL | 2 mA | _ | 2,747 | _ | 3,158 | _ | 3,570 | ps | | | 8 mA | _ | 1,757 | _ | 2,019 | _ | 2,283 | ps | | | 12 mA | _ | 1,763 | _ | 2,026 | _ | 2,291 | ps | | | 16 mA | _ | 1,623 | _ | 1,865 | _ | 2,109 | ps | | 1.8-V LVTTL | 2 mA | _ | 5,506 | _ | 6,331 | _ | 7,157 | ps | | | 8 mA | _ | 4,220 | _ | 4,852 | _ | 5,485 | ps | | | 12 mA | _ | 4,008 | _ | 4,608 | _ | 5,209 | ps | | 1.5-V LVTTL | 2 mA | _ | 6,789 | _ | 7,807 | _ | 8,825 | ps | | | 4 mA | _ | 5,109 | _ | 5,875 | _ | 6,641 | ps | | | 8 mA | _ | 4,793 | _ | 5,511 | _ | 6,230 | ps | | 3.3-V PCI | 3.3-V PCI | | 923 | _ | 1,061 | _ | 1,199 | ps | Figure 5-1. Cyclone Device Packaging Ordering Information # Referenced Documents This chapter references the following documents: - Package Information for Cyclone Devices chapter in the Cyclone Device Handbook - Quartus II Handbook # Document Revision History Table 5–1 shows the revision history for this chapter. | Table 5–1. Document Revision History | | | | | | | |--------------------------------------|------------------------------------------------------------------------|--------------------|--|--|--|--| | Date and
Document
Version | Changes Made | Summary of Changes | | | | | | May 2008
v1.4 | Minor textual and style changes. Added "Referenced Documents" section. | _ | | | | | | January 2007
v1.3 | Added document revision history. | _ | | | | | | August 2005
v1.2 | Minor updates. | _ | | | | |