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Logic Elements

Figure 2–8 shows the carry-select circuitry in a LAB for a 10-bit full adder. 
One portion of the LUT generates the sum of two bits using the input 
signals and the appropriate carry-in bit; the sum is routed to the output 
of the LE. The register can be bypassed for simple adders or used for 
accumulator functions. Another portion of the LUT generates carry-out 
bits. A LAB-wide carry-in bit selects which chain is used for the addition 
of given inputs. The carry-in signal for each chain, carry-in0 or 
carry-in1, selects the carry-out to carry forward to the carry-in signal 
of the next-higher-order bit. The final carry-out signal is routed to an LE, 
where it is fed to local, row, or column interconnects. 

Figure 2–8. Carry Select Chain
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The Quartus II Compiler automatically creates carry chain logic during 
design processing, or you can create it manually during design entry. 
Parameterized functions such as LPM functions automatically take 
advantage of carry chains for the appropriate functions.

The Quartus II Compiler creates carry chains longer than 10 LEs by 
linking LABs together automatically. For enhanced fitting, a long carry 
chain runs vertically allowing fast horizontal connections to M4K 
memory blocks. A carry chain can continue as far as a full column.

Clear and Preset Logic Control

LAB-wide signals control the logic for the register's clear and preset 
signals. The LE directly supports an asynchronous clear and preset 
function. The register preset is achieved through the asynchronous load 
of a logic high. The direct asynchronous preset does not require a 
NOT-gate push-back technique. Cyclone devices support simultaneous 
preset/ asynchronous load and clear signals. An asynchronous clear 
signal takes precedence if both signals are asserted simultaneously. Each 
LAB supports up to two clears and one preset signal.

In addition to the clear and preset ports, Cyclone devices provide a 
chip-wide reset pin (DEV_CLRn) that resets all registers in the device. An 
option set before compilation in the Quartus II software controls this pin. 
This chip-wide reset overrides all other control signals.

MultiTrack 
Interconnect

In the Cyclone architecture, connections between LEs, M4K memory 
blocks, and device I/O pins are provided by the MultiTrack interconnect 
structure with DirectDriveTM technology. The MultiTrack interconnect 
consists of continuous, performance-optimized routing lines of different 
speeds used for inter- and intra-design block connectivity. The Quartus II 
Compiler automatically places critical design paths on faster 
interconnects to improve design performance.

DirectDrive technology is a deterministic routing technology that ensures 
identical routing resource usage for any function regardless of placement 
within the device. The MultiTrack interconnect and DirectDrive 
technology simplify the integration stage of block-based designing by 
eliminating the re-optimization cycles that typically follow design 
changes and additions.

The MultiTrack interconnect consists of row and column interconnects 
that span fixed distances. A routing structure with fixed length resources 
for all devices allows predictable and repeatable performance when 
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MultiTrack Interconnect

migrating through different device densities. Dedicated row 
interconnects route signals to and from LABs, PLLs, and M4K memory 
blocks within the same row. These row resources include:

■ Direct link interconnects between LABs and adjacent blocks
■ R4 interconnects traversing four blocks to the right or left

The direct link interconnect allows a LAB or M4K memory block to drive 
into the local interconnect of its left and right neighbors. Only one side of 
a PLL block interfaces with direct link and row interconnects. The direct 
link interconnect provides fast communication between adjacent LABs 
and/or blocks without using row interconnect resources.

The R4 interconnects span four LABs, or two LABs and one M4K RAM 
block. These resources are used for fast row connections in a four-LAB 
region. Every LAB has its own set of R4 interconnects to drive either left 
or right. Figure 2–9 shows R4 interconnect connections from a LAB. R4 
interconnects can drive and be driven by M4K memory blocks, PLLs, and 
row IOEs. For LAB interfacing, a primary LAB or LAB neighbor can drive 
a given R4 interconnect. For R4 interconnects that drive to the right, the 
primary LAB and right neighbor can drive on to the interconnect. For R4 
interconnects that drive to the left, the primary LAB and its left neighbor 
can drive on to the interconnect. R4 interconnects can drive other R4 
interconnects to extend the range of LABs they can drive. R4 
interconnects can also drive C4 interconnects for connections from one 
row to another. 



2–14  Altera Corporation
Preliminary May 2008

Cyclone Device Handbook, Volume 1

Figure 2–9. R4 Interconnect Connections

Notes to Figure 2–9:
(1) C4 interconnects can drive R4 interconnects.
(2) This pattern is repeated for every LAB in the LAB row.

The column interconnect operates similarly to the row interconnect. Each 
column of LABs is served by a dedicated column interconnect, which 
vertically routes signals to and from LABs, M4K memory blocks, and row 
and column IOEs. These column resources include:

■ LUT chain interconnects within a LAB
■ Register chain interconnects within a LAB
■ C4 interconnects traversing a distance of four blocks in an up and 

down direction

Cyclone devices include an enhanced interconnect structure within LABs 
for routing LE output to LE input connections faster using LUT chain 
connections and register chain connections. The LUT chain connection 
allows the combinatorial output of an LE to directly drive the fast input 
of the LE right below it, bypassing the local interconnect. These resources 
can be used as a high-speed connection for wide fan-in functions from 
LE 1 to LE 10 in the same LAB. The register chain connection allows the 
register output of one LE to connect directly to the register input of the 
next LE in the LAB for fast shift registers. The Quartus II Compiler 
automatically takes advantage of these resources to improve utilization 
and performance. Figure 2–10 shows the LUT chain and register chain 
interconnects.
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Figure 2–10. LUT Chain and Register Chain Interconnects

The C4 interconnects span four LABs or M4K blocks up or down from a 
source LAB. Every LAB has its own set of C4 interconnects to drive either 
up or down. Figure 2–11 shows the C4 interconnect connections from a 
LAB in a column. The C4 interconnects can drive and be driven by all 
types of architecture blocks, including PLLs, M4K memory blocks, and 
column and row IOEs. For LAB interconnection, a primary LAB or its 
LAB neighbor can drive a given C4 interconnect. C4 interconnects can 
drive each other to extend their range as well as drive row interconnects 
for column-to-column connections. 
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Figure 2–11. C4 Interconnect Connections Note (1)

Note to Figure 2–11:
(1) Each C4 interconnect can drive either up or down four rows.
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The eight global clock lines in the global clock network drive throughout 
the entire device. The global clock network can provide clocks for all 
resources within the device—IOEs, LEs, and memory blocks. The global 
clock lines can also be used for control signals, such as clock enables and 
synchronous or asynchronous clears fed from the external pin, or DQS 
signals for DDR SDRAM or FCRAM interfaces. Internal logic can also 
drive the global clock network for internally generated global clocks and 
asynchronous clears, clock enables, or other control signals with large 
fanout. Figure 2–22 shows the various sources that drive the global clock 
network.

Figure 2–22. Global Clock Generation Note (1)

Notes to Figure 2–22:
(1) The EP1C3 device in the 100-pin TQFP package has five DPCLK pins (DPCLK2, DPCLK3, DPCLK4, DPCLK6, and 

DPCLK7).
(2) EP1C3 devices only contain one PLL (PLL 1).
(3) The EP1C3 device in the 100-pin TQFP package does not have dedicated clock pins CLK1 and CLK3.
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I/O Structure

The pin's datain signals can drive the logic array. The logic array drives 
the control and data signals, providing a flexible routing resource. The 
row or column IOE clocks, io_clk[5..0], provide a dedicated routing 
resource for low-skew, high-speed clocks. The global clock network 
generates the IOE clocks that feed the row or column I/O regions (see 
“Global Clock Network and Phase-Locked Loops” on page 2–29). 
Figure 2–30 illustrates the signal paths through the I/O block.

Figure 2–30. Signal Path through the I/O Block

Each IOE contains its own control signal selection for the following 
control signals: oe, ce_in, ce_out, aclr/preset, sclr/preset, 
clk_in, and clk_out. Figure 2–31 illustrates the control signal 
selection.
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of the standard. Using minimum settings provides signal slew rate 
control to reduce system noise and signal overshoot. Table 2–11 shows the 
possible settings for the I/O standards with drive strength control.

Open-Drain Output

Cyclone devices provide an optional open-drain (equivalent to an 
open-collector) output for each I/O pin. This open-drain output enables 
the device to provide system-level control signals (e.g., interrupt and 
write-enable signals) that can be asserted by any of several devices.

Table 2–11. Programmable Drive Strength Note (1)

I/O Standard IOH/IOL Current Strength Setting (mA)

LVTTL (3.3 V) 4

8

12

16

24(2)

LVCMOS (3.3 V) 2

4

8

12(2)

LVTTL (2.5 V) 2

8

12

16(2)

LVTTL (1.8 V) 2

8

12(2)

LVCMOS (1.5 V) 2

4

8(2)

Notes to Table 2–11:
(1) SSTL-3 class I and II, SSTL-2 class I and II, and 3.3-V PCI I/O Standards do not 

support programmable drive strength.
(2) This is the default current strength setting in the Quartus II software.
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SignalTap II Embedded Logic Analyzer

1 Cyclone devices must be within the first 8 devices in a JTAG 
chain. All of these devices have the same JTAG controller. If any 
of the Cyclone devices are in the 9th or after they will fail 
configuration. This does not affect the SignalTap® II logic 
analyzer. 

f For more information on JTAG, refer to the following documents:

■ AN 39: IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices
■ Jam Programming & Test Language Specification

SignalTap II 
Embedded Logic 
Analyzer

Cyclone devices feature the SignalTap II embedded logic analyzer, which 
monitors design operation over a period of time through the IEEE 
Std. 1149.1 (JTAG) circuitry. A designer can analyze internal logic at speed 
without bringing internal signals to the I/O pins. This feature is 
particularly important for advanced packages, such as FineLine BGA 
packages, because it can be difficult to add a connection to a pin during 
the debugging process after a board is designed and manufactured.

Configuration The logic, circuitry, and interconnects in the Cyclone architecture are 
configured with CMOS SRAM elements. Altera FPGAs are 
reconfigurable and every device is tested with a high coverage 
production test program so the designer does not have to perform fault 
testing and can instead focus on simulation and design verification.

Cyclone devices are configured at system power-up with data stored in 
an Altera configuration device or provided by a system controller. The 
Cyclone device's optimized interface allows the device to act as controller 
in an active serial configuration scheme with the new low-cost serial 
configuration device. Cyclone devices can be configured in under 120 ms 
using serial data at 20 MHz. The serial configuration device can be 
programmed via the ByteBlaster II download cable, the Altera 
Programming Unit (APU), or third-party programmers.

In addition to the new low-cost serial configuration device, Altera offers 
in-system programmability (ISP)-capable configuration devices that can 
configure Cyclone devices via a serial data stream. The interface also 
enables microprocessors to treat Cyclone devices as memory and 
configure them by writing to a virtual memory location, making 
reconfiguration easy. After a Cyclone device has been configured, it can 
be reconfigured in-circuit by resetting the device and loading new data. 
Real-time changes can be made during system operation, enabling 
innovative reconfigurable computing applications.

http://www.altera.com/literature/an/an039.pdf
http://www.jedec.org/download/search/jesd71.pdf
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Operating Conditions

Table 4–5. LVCMOS Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage — 3.0 3.6 V

VIH High-level input voltage — 1.7 4.1 V

VIL Low-level input voltage — –0.5 0.7 V

VOH High-level output voltage VCCIO = 3.0, 
IOH = –0.1 mA

VCCIO – 0.2 — V

VOL Low-level output voltage VCCIO = 3.0,
IOL = 0.1 mA

— 0.2 V

Table 4–6. 2.5-V I/O Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage — 2.375 2.625 V

VIH High-level input voltage — 1.7 4.1 V

VIL Low-level input voltage — –0.5 0.7 V

VOH High-level output voltage IOH = –0.1 mA 2.1 — V

IOH = –1 mA 2.0 — V

IOH = –2 to –16 mA (11) 1.7 — V

VOL Low-level output voltage IOL = 0.1 mA — 0.2 V

IOH = 1 mA — 0.4 V

IOH = 2 to 16 mA (11) — 0.7 V

Table 4–7. 1.8-V I/O Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage — 1.65 1.95 V

VI H High-level input voltage — 0.65 ×  
VCCIO

2.25 (12) V

VIL Low-level input voltage — –0.3 0.35 ×  
VCCIO 

V

VOH High-level output voltage IOH = –2 to –8 mA (11) VCCIO – 0.45 — V

VOL Low-level output voltage IOL = 2 to 8 mA (11) — 0.45 V
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Operating Conditions

Table 4–16. Cyclone Device Capacitance Note (14)

Symbol Parameter Typical Unit

CIO Input capacitance for user I/O pin 4.0 pF

CLVDS Input capacitance for dual-purpose LVDS/user I/O pin 4.7 pF

CVREF Input capacitance for dual-purpose VRE F/user I/O pin. 12.0 pF

CDPCLK Input capacitance for dual-purpose DPCLK/user I/O pin. 4.4 pF

CCLK Input capacitance for CLK pin. 4.7 pF

Notes to Tables 4–1 through 4–16:
(1) Refer to the Operating Requirements for Altera Devices Data Sheet.
(2) Conditions beyond those listed in Table 4–1 may cause permanent damage to a device. Additionally, device 

operation at the absolute maximum ratings for extended periods of time may have adverse affects on the device.
(3) Minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 4.6 V for 

input currents less than 100 mA and periods shorter than 20 ns.
(4) Maximum VCC rise time is 100 ms, and VCC must rise monotonically.
(5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are 

powered.
(6) Typical values are for TA = 25°  C, VCCINT = 1.5 V, and VCCIO = 1.5 V, 1.8 V, 2.5 V, and 3.3 V.
(7) VI = ground, no load, no toggling inputs.
(8) This value is specified for normal device operation. The value may vary during power-up. This applies for all 

VCCIO settings (3.3, 2.5, 1.8, and 1.5 V).
(9) RCONF is the measured value of internal pull-up resistance when the I/O pin is tied directly to GND. RCONF value 

will be lower if an external source drives the pin higher than VC C I O .
(10) Pin pull-up resistance values will lower if an external source drives the pin higher than VCCIO.
(11) Drive strength is programmable according to values in Cyclone Architecture chapter in the Cyclone Device Handbook.
(12) Overdrive is possible when a 1.5 V or 1.8 V and a 2.5 V or 3.3 V input signal feeds an input pin. Turn on “Allow 

voltage overdrive” for LVTTL/LVCMOS input pins in the Assignments > Device > Device and Pin Options > Pin 
Placement tab when a device has this I/O combination. However, higher leakage current is expected.

(13) The Cyclone LVDS interface requires a resistor network outside of the transmitter channels.
(14) Capacitance is sample-tested only. Capacitance is measured using time-domain reflections (TDR). Measurement 

accuracy is within ±0.5 pF.

http://www.altera.com/literature/ds/dsoprq.pdf
http://www.altera.com/literature/hb/cyc/cyc_c51002.pdf
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Timing Model

Internal Timing Parameters

Internal timing parameters are specified on a speed grade basis 
independent of device density. Tables 4–21 through 4–24 describe the 
Cyclone device internal timing microparameters for LEs, IOEs, M4K 
memory structures, and MultiTrack interconnects.

M4K 
memory 
block

RAM 128 × 36 bit Single port — 4,608 1 256.00 222.67 197.01

RAM 128 × 36 bit Simple 
dual-port 
mode

— 4,608 1 255.95 222.67 196.97

RAM 256 × 18 bit True dual-
port mode

— 4,608 1 255.95 222.67 196.97

FIFO 128 × 36 bit — 40 4,608 1 256.02 222.67 197.01

Shift register 
9 × 4 × 128

Shift 
register

11 4,536 1 255.95 222.67 196.97

Note to Table 4–20:
(1) The performance numbers for this function are from an EP1C6 device in a 240-pin PQFP package.

Table 4–20. Cyclone Device Performance

Resource 
Used

Design Size and 
Function Mode

Resources Used Performance

LEs
M4K 

Memory 
Bits

M4K 
Memory 
Blocks

-6 Speed 
Grade 
(MHz)

-7 Speed 
Grade 
(MHz)

-8 Speed 
Grade 
(MHz)

Table 4–21. LE Internal Timing Microparameter Descriptions

Symbol Parameter

tSU LE register setup time before clock

tH LE register hold time after clock

tCO LE register clock-to-output delay

tLUT LE combinatorial LUT delay for data-in to data-out

tCLR Minimum clear pulse width

tPRE Minimum preset pulse width

tCLKHL Minimum clock high or low time
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Timing Model

Figure 4–1 shows the memory waveforms for the M4K timing parameters 
shown in Table 4–23.

Figure 4–1. Dual-Port RAM Timing Microparameter Waveform

Table 4–24. Routing Delay Internal Timing Microparameter Descriptions

Symbol Parameter

tR4 Delay for an R4 line with average loading; covers a distance 
of four LAB columns

tC4 Delay for an C4 line with average loading; covers a distance 
of four LAB rows

tLOCAL Local interconnect delay

wrclock

wren

wraddress

data-in

reg_data-out

an-1 an a0 a1 a2 a3 a4 a5

din-1 din din4 din5

rdclock
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doutn-2 doutn-1 doutn

doutn-1 doutn dout0

tWERESU tWEREH

tDATACO1

tDATACO2

tDATASU

tDATAH

tWEREH tWERESU

tWADDRSU tWADDRH

dout0

tRC
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Figure 4–2. External Timing in Cyclone Devices

All external I/O timing parameters shown are for 3.3-V LVTTL I/O 
standard with the maximum current strength and fast slew rate. For 
external I/O timing using standards other than LVTTL or for different 
current strengths, use the I/O standard input and output delay adders in 
Tables 4–40 through 4–44.

Table 4–29 shows the external I/O timing parameters when using global 
clock networks.

PRN

CLRN

D Q

PRN

CLRN

D Q

PRN

CLRN

D Q

Dedicated
Clock

Bidirectional
Pin

Output Register

Input Register

OE Register

tXZ
tZX
tINSU
tINH
tOUTCO

Table 4–29. Cyclone Global Clock External I/O Timing Parameters Notes (1), (2)  (Part 1 of 2)

Symbol Parameter Conditions

tI N S U Setup time for input or bidirectional pin using IOE input 
register with global clock fed by CLK pin

—

tI N H Hold time for input or bidirectional pin using IOE input 
register with global clock fed by CLK pin

—

tO U T C O Clock-to-output delay output or bidirectional pin using IOE 
output register with global clock fed by CLK pin

CLOAD = 10 pF

tI N S U P L L Setup time for input or bidirectional pin using IOE input 
register with global clock fed by Enhanced PLL with default 
phase setting

—

tI N H P L L Hold time for input or bidirectional pin using IOE input 
register with global clock fed by enhanced PLL with default 
phase setting

—
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SSTL-2 class II –278 — –320 — –362 ps

LVDS –261 — –301 — –340 ps

Table 4–41. Cyclone I/O Standard Row Pin Input Delay Adders

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS — 0 — 0 — 0 ps

3.3-V LVTTL — 0 — 0 — 0 ps

2.5-V LVTTL — 27 — 31 — 35 ps

1.8-V LVTTL — 182 — 209 — 236 ps

1.5-V LVTTL — 278 — 319 — 361 ps

3.3-V PCI (1) — 0 — 0 — 0 ps

SSTL-3 class I — –250 — –288 — –325 ps

SSTL-3 class II — –250 — –288 — –325 ps

SSTL-2 class I — –278 — –320 — –362 ps

SSTL-2 class II — –278 — –320 — –362 ps

LVDS — –261 — –301 — –340 ps

Table 4–42. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Column Pins  (Part 1 of 2)

Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS 2 mA — 0 — 0 — 0 ps

4 mA — –489 — –563 — –636 ps

8 mA — –855 — –984 — –1,112 ps

12 mA — –993 — –1,142 — –1,291 ps

3.3-V LVTTL 4 mA — 0 — 0 — 0 ps

8 mA — –347 — –400 — –452 ps

12 mA — –858 — –987 — –1,116 ps

16 mA — –819 — –942 — –1,065 ps

24 mA — –993 — –1,142 — –1,291 ps

Table 4–40. Cyclone I/O Standard Column Pin Input Delay Adders  (Part 2 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max
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Tables 4–46 through 4–47 show the adder delays for the IOE 
programmable delays. These delays are controlled with the Quartus II 
software options listed in the Parameter column.

SSTL-3 class I — 1,390 — 1,598 — 1,807 ps

SSTL-3 class II — 989 — 1,137 — 1,285 ps

SSTL-2 class I — 1,965 — 2,259 — 2,554 ps

SSTL-2 class II — 1,692 — 1,945 — 2,199 ps

LVDS — 802 — 922 — 1,042 ps

Note to Tables 4–40 through 4–45:
(1) EP1C3 devices do not support the PCI I/O standard.

Table 4–45. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Row Pins  (Part 2 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

Table 4–46. Cyclone IOE Programmable Delays on Column Pins

Parameter Setting
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

Decrease input delay to 
internal cells

Off — 155 — 178 — 201 ps

Small — 2,122 — 2,543 — 2,875 ps

Medium — 2,639 — 3,034 — 3,430 ps

Large — 3,057 — 3,515 — 3,974 ps

On — 155 — 178 — 201 ps

Decrease input delay to 
input register

Off — 0 — 0 — 0 ps

On — 3,057 — 3,515 — 3,974 ps

Increase delay to output 
pin

Off — 0 — 0 — 0 ps

On — 552 — 634 — 717 ps
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Timing Model

Maximum Input and Output Clock Rates

Tables 4–48 and 4–49 show the maximum input clock rate for column and 
row pins in Cyclone devices.  

Table 4–47. Cyclone IOE Programmable Delays on Row Pins

Parameter Setting
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

Decrease input delay to 
internal cells

Off — 154 — 177 — 200 ps

Small — 2,212 — 2,543 — 2,875 ps

Medium — 2,639 — 3,034 — 3,430 ps

Large — 3,057 — 3,515 — 3,974 ps

On — 154 — 177 — 200 ps

Decrease input delay to input 
register

Off — 0 — 0 — 0 ps

On — 3,057 — 3,515 — 3,974 ps

Increase delay to output pin Off — 0 — 0 — 0 ps

On — 556 — 639 — 722 ps

Note to Table 4–47:
(1) EPC1C3 devices do not support the PCI I/O standard.

Table 4–48. Cyclone Maximum Input Clock Rate for Column Pins

I/O Standard -6 Speed 
Grade

-7 Speed 
Grade

-8 Speed 
Grade Unit

LVTTL 464 428 387 MHz

2.5 V 392 302 207 MHz

1.8 V 387 311 252 MHz

1.5 V 387 320 243 MHz

LVCMOS 405 374 333 MHz

SSTL-3 class I 405 356 293 MHz

SSTL-3 class II 414 365 302 MHz

SSTL-2 class I 464 428 396 MHz

SSTL-2 class II 473 432 396 MHz

LVDS 567 549 531 MHz
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Referenced 
Document

This chapter references the following documents:

■ Cyclone Architecture chapter in the Cyclone Device Handbook
■ Operating Requirements for Altera Devices Data Sheet

Document 
Revision History

Table 4–53 shows the revision history for this chapter.

Table 4–53. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

May 2008
v1.7

Minor textual and style changes. Added “Referenced Document” 
section.

—

January 2007 
v1.6

● Added document revision history.
● Added new row for VCCA details in Table 4–1.
● Updated RCONF information in Table 4–3.
● Added new Note (12) on voltage overdrive information to 

Table 4–7 and Table 4–8.
● Updated Note (9) on RCONF information to Table 4–3.
● Updated information in “External I/O Delay Parameters” 

section.
● Updated speed grade information in Table 4–46 and 

Table 4–47.

● Updated LVDS information in Table 4–51.

—

August 2005 
v1.5

Minor updates. —

February 2005 
v1.4

● Updated information on Undershoot voltage. Updated Table 
4-2.

● Updated Table 4-3.
● Updated the undershoot voltage from 0.5 V to 2.0 V in Note 3 

of Table 4-16.
● Updated Table 4-17.

—

January 2004
v.1.3

● Added extended-temperature grade device information. 
Updated Table 4-2.

● Updated IC C 0 information in Table 4-3.

—

October 2003
v.1.2

● Added clock tree information in Table 4-19.
● Finalized timing information for EP1C3 and EP1C12 devices. 

Updated timing information in Tables 4-25 through 4-26 and 
Tables 4-30 through 4-51.

● Updated PLL specifications in Table 4-52.

—

http://www.altera.com/literature/hb/cyc/cyc_c51002.pdf
http://www.altera.com/literature/ds/dsoprq.pdf
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