

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC G2_LE
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	266MHz
Co-Processors/DSP	Communications; RISC CPM
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	·
Ethernet	10/100Mbps (3)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	·
Package / Case	516-BBGA
Supplier Device Package	516-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8270czqmiba

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This figure shows the block diagram of the SoC. Shaded portions are SoC-specific; see the notes below the figure.

Notes:

¹ MPC8280 only (not on MPC8270, the VR package, nor the ZQ package)

² MPC8280 has 2 serial interface (SI) blocks and 8 TDM ports. MPC8270 and the VR and ZQ packages have only 1 SI block and 4 TDM ports (TDM2[A–D]).

³ MPC8280, MPC8275VR, MPC8275ZQ only (not on MPC8270, MPC8270VR, nor MPC8270ZQ)

Figure 1. SoC Block Diagram

1.1 Features

The major features of the SoC are as follows:

- Dual-issue integer (G2_LE) core
 - A core version of the EC603e microprocessor
 - System core microprocessor supporting frequencies of 166–450 MHz
 - Separate 16 KB data and instruction caches:
 - Four-way set associative
 - Physically addressed
 - LRU replacement algorithm
 - Power Architecture®-compliant memory management unit (MMU)

Overview

- Common on-chip processor (COP) test interface
- High-performance (SPEC95 benchmark at 450 MHz; 855 Dhrystones MIPS at 450 MHz)
- Supports bus snooping
- Support for data cache coherency
- Floating-point unit (FPU)
- Separate power supply for internal logic and for I/O
- Separate PLLs for G2_LE core and for the communications processor module (CPM)
 - G2_LE core and CPM can run at different frequencies for power/performance optimization
 - Internal core/bus clock multiplier that provides ratios 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 6:1, 7:1, 8:1
 - Internal CPM/bus clock multiplier that provides ratios 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1, 8:1 ratios
- 64-bit data and 32-bit address 60x bus
 - Bus supports multiple master designs
 - Supports single- and four-beat burst transfers
 - 64-, 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
 - Supports data parity or ECC and address parity
- 32-bit data and 18-bit address local bus
 - Single-master bus, supports external slaves
 - Eight-beat burst transfers
 - 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
- 60x-to-PCI bridge
 - Programmable host bridge and agent
 - 32-bit data bus, 66.67/83.3/100 MHz, 3.3 V
 - Synchronous and asynchronous 60x and PCI clock modes
 - All internal address space available to external PCI host
 - DMA for memory block transfers
 - PCI-to-60x address remapping
- PCI bridge
 - PCI Specification Revision 2.2 compliant and supports frequencies up to 66 MHz
 - On-chip arbitration
 - Support for PCI-to-60x-memory and 60x-memory-to-PCI streaming
 - PCI host bridge or peripheral capabilities
 - Includes 4 DMA channels for the following transfers:
 - PCI-to-60x to 60x-to-PCI
 - 60x-to-PCI to PCI-to-60x
 - 60x-to-PCI to 60x-to-PCI

Overview

- ATM—Full-duplex SAR protocols at 155 Mbps, through UTOPIA interface, AAL5, AAL1, AAL0 protocols, TM 4.0 CBR, VBR, UBR, ABR traffic types, up to 64 K external connections (no ATM support for the MPC8270)
- Transparent
- HDLC—Up to T3 rates (clear channel)
- FCC2 can also be connected to the TC layer (MPC8280 only)
- Two multichannel controllers (MCCs) (one MCC on the MPC8270)
 - Each MCC handles 128 serial, full-duplex, 64-Kbps data channels. Each MCC can be split into four subgroups of 32 channels each.
 - Almost any combination of subgroups can be multiplexed to single or multiple TDM interfaces up to four TDM interfaces per MCC
- Four serial communications controllers (SCCs) identical to those on the MPC860, supporting the digital portions of the following protocols:
 - Ethernet/IEEE 802.3 CDMA/CS
 - HDLC/SDLC and HDLC bus
 - Universal asynchronous receiver transmitter (UART)
 - Synchronous UART
 - Binary synchronous (BISYNC) communications
 - Transparent
- Universal serial bus (USB) controller
 - Supports USB 2.0 full/low rate compatible
 - USB host mode
 - Supports control, bulk, interrupt, and isochronous data transfers
 - CRC16 generation and checking
 - NRZI encoding/decoding with bit stuffing
 - Supports both 12- and 1.5-Mbps data rates (automatic generation of preamble token and data rate configuration). Note that low-speed operation requires an external hub.
 - Flexible data buffers with multiple buffers per frame
 - Supports local loopback mode for diagnostics (12 Mbps only)
 - Supports USB slave mode
 - Four independent endpoints support control, bulk, interrupt, and isochronous data transfers
 - CRC16 generation and checking
 - CRC5 checking
 - NRZI encoding/decoding with bit stuffing
 - 12- or 1.5-Mbps data rate
 - Flexible data buffers with multiple buffers per frame
 - Automatic retransmission upon transmit error
 - Two serial management controllers (SMCs), identical to those of the MPC860

Operating Conditions

- ² Caution: VDD/VCCSYN must not exceed VDDH by more than 0.4 V during normal operation. It is recommended that VDD/VCCSYN should be raised before or simultaneous with VDDH during power-on reset. VDD/VCCSYN may exceed VDDH by more than 0.4 V during power-on reset for no more than 100 ms.
- ³ Caution: VDDH can exceed VDD/VCCSYN by 3.3 V during power on reset by no more than 100 mSec. VDDH should not exceed VDD/VCCSYN by more than 2.5 V during normal operation.
- ⁴ Caution: VIN must not exceed VDDH by more than 2.5 V at any time, including during power-on reset.

This table lists recommended operational voltage conditions.

Table 4. Recommended	Operating	Conditions ¹
----------------------	-----------	-------------------------

Rating	Symbol	Value	Unit
Core supply voltage	VDD	1.45 – 1.60	V
PLL supply voltage	VCCSYN	1.45 – 1.60	V
I/O supply voltage	VDDH	3.135 – 3.465	V
Input voltage	VIN	GND (-0.3) - 3.465	V
Junction temperature (maximum)	Тj	105 ²	°C
Ambient temperature	T _A	0-70 ²	°C

¹ **Caution:** These are the recommended and tested operating conditions. Proper operation outside of these conditions is not guaranteed.

² Note that for extended temperature parts the range is $(-40)_{T_A}$ – 105_{T_j} .

This SoC contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (either GND or V_{CC}).

This figure shows the undershoot and overshoot voltage of the 60x and local bus memory interface of the SoC. Note that in PCI mode the I/O interface is different.

Figure 2. Overshoot/Undershoot Voltage

DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
I _{OL} = 6.0mA	V _{OL}	—	0.4	V
BR	_			
BG				
ABB/IRQ2				
TSIZE[0-3]				
AACK				
ARTRY				
DBG				
DBB/IRQ3				
D[0-63]				
DP(0)/ <u>RSRV/EXT_BR2</u>				
DP(1)/IRQ1/EXT_BG2				
DP(2)/TLBISYNC/IRQ2/EXT_DBG2				
DP(3)/IRQ3/EXT_BR3/CKSTP_OUT				
DP(4)/IRQ4/EXT_BG3/CORE_SREST				
DP(5)/TBEN/EXT_DBG3/TRQ5/CINT				
TFA				
GBL/IRQ1				
CI/BADDR29/IRQ2				
WT/BADDR30/IRQ3				
L2_HIT/IRQ4				
CPU_BG/BADDR31/IRQ5/CINT				
CPU_DBG				
CPU_BR				
IRQ//PCI_RSTINT_OUT/APE				

Table 5. DC Electrical Characteristics¹ (continued)

DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
I _{OL} = 5.3mA	VOL	_	0.4	V
CS[0-9]	0L			
CS(10)/BCTL1				
CS(11)/AP(0)				
BADDB[27-28]				
BCTIO				
PSDAMUX/PGPL5				
LSDA10/LGPL0/PCI_MODCKH0				
LOE/LSDRAS/LGPL2/PCI_MODCKH2				
LSDCAS/LGPL3/PCI_MODCKH3				
LGTA/LUPMWAIT/LGPL4/LPBS				
LSDAMUX/LGPL5/PCI_MODCK				
LWR				
MODCK[1–3]/AP[1–3]/TC[0–2]/BNKSEL[0–2]				
I _{OL} = 3.2mA				
L_A14/PAR				
L_A15/FRAME/SMI				
L_A16/TRDY				
L_A17/IRDY/CKSTP_OUT				
L_A18/STOP				
L_A19/DEVSEL				
L_A20/IDSEL				
L_A21/PERR				
L A22/SERR				
L_A23/REQ0				
L_A24/REQ1/HSEJSW				
L_A25/GNT0				
L A26/GNT1/HSLED				
L A27/GNT2/HSENUM				
L A28/BST/COBE_SBESET				
L A29/INTAL A30/BEQ2				
LCL_D[0-31)]/AD[0-31]				
LCL_DPI031/C/BEI0-31				
PA(0-31)				
PB[4-31]				
PCI0_311				

Table 5. DC Electrical Characteristics¹ (continued)

¹ The default configuration of the CPM pins (PA[0–31], PB[4–31], PC[0–31], PD[4–31]) is input. To prevent excessive DC current, either pull unused pins to GND or VDDH or configure them as outputs.

² TCK, TRST and PORESET have min VIH = 2.5V.

³ The leakage current is measured for nominal VDDH,VCCSYN, and VDD.

Thermal Characteristics

4.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor model can be used with the thermal simulation of the application, or a more accurate and complex model of the package can be used in the thermal simulation.

4.5 **Experimental Determination**

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 Ψ_{JT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the case to avoid measurement errors caused by cooling effects of the thermocouple wire.

4.6 Layout Practices

Each VDD and VDDH pin should be provided with a low-impedance path to the board's power supplies. Each ground pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The VDD and VDDH power supplies should be bypassed to ground using bypass capacitors located as close as possible to the four sides of the package. For filtering high frequency noise, a capacitor of 0.1uF on each VDD and VDDH pin is recommended. Further, for medium frequency noise, a total of 2 capacitors of 47uF for VDD and 2 capacitors of 47uF for VDDH are also recommended. The capacitor leads and associated printed circuit traces connecting to chip VDD, VDDH and ground should be kept to less than half an inch per capacitor lead. Boards should employ separate inner layers for power and GND planes.

All output pins on the SoC have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized to minimize overdamped conditions and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the VDD and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

This figure shows the SCC/SMC/SPI/I²C internal clock.

Note: There are four possible timing conditions for SCC and SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 6. SCC/SMC/SPI/I²C Internal Clock Diagram

This figure shows TDM input and output signals.

Note: There are four possible TDM timing conditions:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 7. TDM Signal Diagram


```
AC Electrical Characteristics
```

This figure shows the interaction of several bus signals.

PLL Clock Patio	Tick Spacing (T1 Occurs at the Rising Edge of CLKin)					
	T2	Т3	T4			
1:2, 1:3, 1:4, 1:5, 1:6	1/4 CLKin	1/2 CLKin	3/4 CLKin			
1:2.5	3/10 CLKin	1/2 CLKin	8/10 CLKin			
1:3.5	4/14 CLKin	1/2 CLKin	11/14 CLKin			

Table 15. Tick Spacing for Memory Controller Signals

This table is a representation of the information in Table 15.

Figure 12. Internal Tick Spacing for Memory Controller Signals

NOTE

The UPM machine outputs change on the internal tick determined by the memory controller programming; the AC specifications are relative to the internal tick. Note that SDRAM and GPCM machine outputs change on CLKin's rising edge.

6.3 **JTAG Timings**

This table lists the JTAG timings.

Table 16. JTAG Timings¹

Parameter	Symbol ²	Min	Мах	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	—
JTAG external clock cycle time	t _{JTG}	30	—	ns	—
JTAG external clock pulse width measured at 1.4V	t _{JTKHKL}	15	—	ns	—
JTAG external clock rise and fall times	t _{JTGR} and t _{JTGF}	0	5	ns	6
TRST assert time	t _{TRST}	25	—	ns	3,6
Input setup times Boundary-scan data TMS, TDI	^t jtdvkh t _{jtivkh}	4 4		ns ns	4, 7 4, 7

Parameter	Symbol ²	Min	Мах	Unit	Notes
Input hold times Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10		ns ns	4, 7 4, 7
Output valid times Boundary-scan data TDO	t _{JTKLDV} t _{JTKLOV}		10 10	ns ns	5 7 5 7
Output hold times Boundary-scan data TDO	t _{jtkldx} t _{jtklox}	1 1		ns ns	5,7 5,7
JTAG external clock to output high impedance Boundary-scan data TDO	t _{JTKLDZ} t _{JTKLOZ}	1	10 10	ns ns	5 6 5,6

Table 16. JTAG Timings¹ (continued)

¹ All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load. Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

² The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t(_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}}

- ³ TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- ⁴ Non-JTAG signal input timing with respect to t_{TCLK}.
- ⁵ Non-JTAG signal output timing with respect to t_{TCLK}.
- ⁶ Guaranteed by design.
- ⁷ Guaranteed by design and device characterization.

7 Clock Configuration Modes

This SoC includes the following clocking modes:

- Local
- PCI host
- PCI agent

The clocking mode is set according to the following input pins as shown in the following table:

- PCI_MODE
- PCI_CFG[0]
- PCI_MODCK

Mode ²	Bus ((M	Clock ³ IHz)	CPM Multiplication	CPM Clock (MHz) Low High		CPU Multiplication	CPU (M	Clock IHz)
MODCK_H-MODCK[1:3]	Low	High	Factor ⁴			Factor ⁵	Low	High
0110_000	50.0	167.0	2	100.0	334.0	3.5	250.0	584.5
0110_001	50.0	167.0	2	100.0	334.0	4	250.0	668.0
0110_010	50.0	167.0	2	100.0	334.0	4.5	250.0	751.5
				L				
0110_011				Re	served			
0110_100	60.0	160.0	2.5	150.0	400.0	2.5	150.0	400.0
0110_101	50.0	160.0	2.5	125.0	400.0	3	150.0	480.0
0110_110	42.9	160.0	2.5	107.1	400.0	3.5	150.0	560.0
0110_111	40.0	160.0	2.5	100.0	400.0	4	160.0	640.0
0111_000	40.0	160.0	2.5	100.0	400.0	4.5	180.0	720.0
0111_001				Re	served			
0111_010				Reserved				
0111_011	50.0	133.3	3	150.0	400.0	3	150.0	400.0
0111_100	42.9	133.3	3	128.6	400.0	3.5	150.0	466.7
0111_101	37.5	133.3	3	112.5	400.0	4	150.0	533.3
0111_110	33.3	133.3	3	100.0	400.0	4.5	150.0	600.0
0111_111				Re	served			
1000_000				Re	served			
1000_001				Re	served			
1000_010	42.9	114.3	3.5	150.0	400.0	3.5	150.0	400.0
1000_011	37.5	114.3	3.5	131.3	400.0	4	150.0	457.1
1000_100	33.3	114.3	3.5	116.7	400.0	4.5	150.0	514.3
1000_101	30.0	114.3	3.5	105.0	400.0	5	150.0	571.4
1000_110	28.6	114.3	3.5	100.0	400.0	5.5	150.0	628.6
1100_000				Re	served			
1100_001				Re	served			
1100_010				Re	served			
1101_000				Re	served			

Table 18. Clock Configurations for Local Bus Mode¹ (continued)

Mode ³	Bus ((M	Clock ⁴ Hz)	CPM Multiplication	CPM (M	Clock Hz)	CPU Multiplication	CPU (M	Clock Hz)	PCI	PCI ((M	Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High	Factor	Low	High
0010_110	37.5	75.0	4	150.0	300.0	6	225.0	450.0	6	25.0	50.0
0011_000	30.0	50.0	5	150.0	250.0	5	150.0	250.0	5	30.0	50.0
0011_001	25.0	50.0	5	125.0	250.0	6	150.0	300.0	5	25.0	50.0
0011_010	25.0	50.0	5	125.0	250.0	7	175.0	350.0	5	25.0	50.0
0011_011	25.0	50.0	5	125.0	250.0	8	200.0	400.0	5	25.0	50.0
0100_000						Reserved					
0100_001	25.0	50.0	6	150.0	300.0	6	150.0	300.0	6	25.0	50.0
0100_010	25.0	50.0	6	150.0	300.0	7	175.0	350.0	6	25.0	50.0
0100_011	25.0	50.0	6	150.0	300.0	8	200.0	400.0	6	25.0	50.0
0101_000	60.0	100.0	2	120.0	200.0	2.5	150.0	250.0	4	30.0	50.0
0101_001	50.0	100.0	2	100.0	200.0	3	150.0	300.0	4	25.0	50.0
0101_010	50.0	100.0	2	100.0	200.0	3.5	175.0	350.0	4	25.0	50.0
0101_011	50.0	100.0	2	100.0	200.0	4	200.0	400.0	4	25.0	50.0
0101_100	50.0	100.0	2	100.0	200.0	4.5	225.0	450.0	4	25.0	50.0
0110_000	60.0	120.0	2.5	150.0	300.0	2.5	150.0	300.0	6	25.0	50.0
0110_001	60.0	120.0	2.5	150.0	300.0	3	180.0	360.0	6	25.0	50.0
0110_010	60.0	120.0	2.5	150.0	300.0	3.5	210.0	420.0	6	25.0	50.0
0110_011	60.0	120.0	2.5	150.0	300.0	4	240.0	480.0	6	25.0	50.0
0110_100	60.0	120.0	2.5	150.0	300.0	4.5	270.0	540.0	6	25.0	50.0
0110_101	60.0	120.0	2.5	150.0	300.0	5	300.0	600.0	6	25.0	50.0
0110_110	60.0	120.0	2.5	150.0	300.0	6	360.0	720.0	6	25.0	50.0
0111_000						Reserved					
0111_001	50.0	100.0	3	150.0	300.0	3	150.0	300.0	6	25.0	50.0
0111_010	50.0	100.0	3	150.0	300.0	3.5	175.0	350.0	6	25.0	50.0
0111_011	50.0	100.0	3	150.0	300.0	4	200.0	400.0	6	25.0	50.0
0111_100	50.0	100.0	3	150.0	300.0	4.5	225.0	450.0	6	25.0	50.0

Table 20. Clock Con	figurations for P	CI Host Mode (PCI MODCK=1) ^{1,2} (continued)
		,	/	/ \

Clock Configuration Modes

Table 20. Clock Configurations for PCI Host Mode (PCI_MODCK=1)^{1,2} (continued)

Mode ³	Bus ((M	Clock ⁴ Hz)	CPM Multiplication	CPM (M	Clock Hz)	CPU Multiplication	CPU (M	Clock Hz)	PCI Division	PCI ((M	Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High	Factor	Low	High
1000_000				J		Reserved	1	1		1	
1000_001	66.7	133.3	3	200.0	400.0	3	200.0	400.0	8	25.0	50.0
1000_010	66.7	133.3	3	200.0	400.0	3.5	233.3	466.7	8	25.0	50.0
1000_011	66.7	133.3	3	200.0	400.0	4	266.7	533.3	8	25.0	50.0
1000_100	66.7	133.3	3	200.0	400.0	4.5	300.0	600.0	8	25.0	50.0
1000_101	66.7	133.3	3	200.0	400.0	6	400.0	800.0	8	25.0	50.0
1000_110	66.7	133.3	3	200.0	400.0	6.5	433.3	866.7	8	25.0	50.0
1001_000						Reserved					
1001_001						Reserved					
1001_010	57.1	114.3	3.5	200.0	400.0	3.5	200.0	400.0	8	25.0	50.0
1001_011	57.1	114.3	3.5	200.0	400.0	4	228.6	457.1	8	25.0	50.0
1001_100	57.1	114.3	3.5	200.0	400.0	4.5	257.1	514.3	8	25.0	50.0
1001_101	42.9	85.7	3.5	150.0	300.0	5	214.3	428.6	6	25.0	50.0
1001_110	42.9	85.7	3.5	150.0	300.0	5.5	235.7	471.4	6	25.0	50.0
1001_111	42.9	85.7	3.5	150.0	300.0	6	257.1	514.3	6	25.0	50.0
1010_000	75.0	150.0	2	150.0	300.0	2	150.0	300.0	6	25.0	50.0
1010_001	75.0	150.0	2	150.0	300.0	2.5	187.5	375.0	6	25.0	50.0
1010_010	75.0	150.0	2	150.0	300.0	3	225.0	450.0	6	25.0	50.0
1010_011	75.0	150.0	2	150.0	300.0	3.5	262.5	525.0	6	25.0	50.0
1010_100	75.0	150.0	2	150.0	300.0	4	300.0	600.0	6	25.0	50.0
1011_000						Reserved					
1011_001	80.0	160.0	2.5	200.0	400.0	2.5	200.0	400.0	8	25.0	50.0
1011_010	80.0	160.0	2.5	200.0	400.0	3	240.0	480.0	8	25.0	50.0
1011_011	80.0	160.0	2.5	200.0	400.0	3.5	280.0	560.0	8	25.0	50.0
1011_100	80.0	160.0	2.5	200.0	400.0	4	320.0	640.0	8	25.0	50.0
1011_101	80.0	160.0	2.5	200.0	400.0	4.5	360.0	720.0	8	25.0	50.0
1101_000	50.0	100.0	2.5	125.0	250.0	3	150.0	300.0	5	25.0	50.0

Ball MPC8280/MPC8270 MPC8280 only A31 R4 TT0 F1 TT1 G4 TT2 G3 ттз G2 TT4 F2 TBST D3 TSIZ0 C1 TSIZ1 E4 TSIZ2 D2 TSIZ3 F5 AACK F3 ARTRY E1 DBG V1 DBB/IRQ3 V2 D0 B20 D1 A18 D2 A16 D3 A13 D4 E12 D5 D9 D6 A6 D7 Β5 D8 A20

Table 23. MPC8280 and MPC8270 (ZU and VV Packages) Pinout List (continued)

Pin Name

E17

B15

B13

A11

E9

B7

Β4

D19

D17

D9

D10

D11

D12

D13

D14

D15

D16

D17

Table 23. MPC8280 and MPC8270 (ZU and VV Packages) Pinout List (continued)

Pin Name		
MPC8280/MPC8270	MPC8280 only	Ball
D51		C12
D52		B10
D53		A7
D54		C6
D55		D5
D56		B18
D57		B16
D58		E14
D59		D12
D60		C10
D61		E8
D62		D6
D63		C2
DP0/RSRV/EXT_BR2		B22
IRQ1/DP1/EXT_BG2		A22
IRQ2/DP2/TLBISYNC/EXT_DBG2		E21
IRQ3/DP3/CKSTP_OUT/EXT_BR3		D21
IRQ4/DP4/CORE_SRESET/EXT_BG3		C21
IRQ5/CINT/DP5/TBEN/EXT_DBG3		B21
IRQ6/DP6/CSE0		A21
IRQ7/DP7/CSE1		E20
PSDVAL		V3
TA		C22
TEA		V5
GBL/IRQ1		W1
CI/BADDR29/IRQ2		U2
WT/BADDR30/IRQ3		U3
L2_HIT/IRQ4		Y4
CPU_BG/BADDR31/IRQ5/CINT		U4
CPU_DBG		R2
CPU_BR		Y3
CSO		F25
CS1		C29

Table 23. MPC8280 and MPC8270 (ZU and VV Packages) Pinout List (continued)

Pin Name		
MPC8280/MPC8270	MPC8280 only	
LSDWE/LGPL1/PCI_MODCKH1		C28
LOE/LSDRAS/LGPL2/PCI_MODCKH2		E26
LSDCAS/LGPL3/PCI_MODCKH3		D25
LGTA/LUPMWAIT/LGPL4/LPBS		C26
LGPL5/LSDAMUX/PCI_MODCK		B27
LWR		D28
L_A14/PAR		N27
L_A15/FRAME/SMI		T29
L_A16/TRDY		R27
L_A17/IRDY/CKSTP_OUT		R26
L_A18/STOP		R29
L_A19/DEVSEL		R28
L_A20/IDSEL		W29
L_A21/PERR		P28
L_A22/SERR		N26
L_A23/REQ0		AA27
L_A24/REQ1/HSEJSW		P29
L_A25/GNT0		AA26
L_A26/GNT1/HSLED		N25
L_A27/GNT2/HSENUM		AA25
L_A28/RST/CORE_SRESET		AB29
L_A29/INTA		AB28
L_A30/REQ2		P25
L_A31/DLLOUT		AB27
LCL_D0/AD0		H29
LCL_D1/AD1		J29
LCL_D2/AD2		J28
LCL_D3/AD3		J27
LCL_D4/AD4		J26
LCL_D5/AD5		J25
LCL_D6/AD6		K25
LCL_D7/AD7		L29
LCL_D8/AD8		L27

Table 25. MPC8275 and MPC8270 (VR and ZQ Packages) Pinout List (continued)

Pin Name		
MPC8275/MPC8270	MPC8275 only	Ball
D53		J2
D54		H5
D55		F3
D56		V3
D57		R5
D58		R2
D59		N5
D60		L2
D61		J3
D62		H1
D63		F4
DP0/RSRV/EXT_BR2		AB3
IRQ1/DP1/EXT_BG2		W5
IRQ2/DP2/TLBISYNC/EXT_DBG2		AC2
IRQ3/DP3/CKSTP_OUT/EXT_BR3		AA3
IRQ4/DP4/CORE_SRESET/EXT_BG3		AD1
IRQ5/CINT/DP5/TBEN/EXT_DBG3		AC1
IRQ6/DP6/CSE0		AB2
IRQ7/DP7/CSE1		Y3
PSDVAL		D15
TA		Y4
TEA		D16
GBL/IRQ1		E15
CI/BADDR29/IRQ2		D14
WT/BADDR30/IRQ3		E14
L2_HIT/IRQ4		A17
CPU_BG/BADDR31/IRQ5/CINT		B14
CPU_DBG		F13
CPU_BR		B17
CSO		AC6
CST		AD6
CS2		AE6
CS3		AB7

Table 25. MPC8275 and MPC8270 (VR and ZQ Packages) Pinout List (continued)

Pin Name		Dell
MPC8275/MPC8270	MPC8275 only	Ball
LCL_D11/AD11	1	AC13
LCL_D12/AD12		AC12
LCL_D13/AD13		AB13
LCL_D14/AD14		AD12
LCL_D15/AD15		AF14
LCL_D16/AD16		AF17
LCL_D17/AD17		AE16
LCL_D18/AD18		AD16
LCL_D19/AD19		AC16
LCL_D20/AD20		AB16
LCL_D21/AD21		AF18
LCL_D22/AD22		AE17
LCL_D23/AD23		AD17
LCL_D24/AD24		AB17
LCL_D25/AD25		AE18
LCL_D26/AD26		AD18
LCL_D27/AD27		AC18
LCL_D28/AD28		AE19
LCL_D29/AD29		AF20
LCL_D30/AD30		AD19
LCL_D31/AD31		AB18
LCL_DP0/C0/BE0		AE12
LCL_DP1/C1/BE1		AA13
LCL_DP2/C2/BE2		AC15
LCL_DP3/C3/BE3		AF19
IRQ0/NMI_OUT		A11
IRQ7/INT_OUT/APE		E5
TRST ¹		F22
тск		A24
TMS		C24
TDI		A25
TDO		B24
TRIS		C19

Table 25. MPC8275 and MPC8270 (VR and ZQ Packages) Pinout List (continued)

Pin Name		Pall
MPC8275/MPC8270	MPC8275 only	- Dali
PA19/FCC1_MII_HDLC_TXD1/ FCC1_RMII_TXD1	FCC1_UT8_TXD6/FCC1_UT16_TXD14	N23 ²
PA20/FCC1_MII_HDLC_TXD2	FCC1_UT8_TXD5/FCC1_UT16_TXD13	K26 ²
PA21/FCC1_MII_HDLC_TXD3	FCC1_UT8_TXD4/FCC1_UT16_TXD12	L23 ²
PA22	FCC1_UT8_TXD3/FCC1_UT16_TXD11	K23 ²
PA23	FCC1_UT8_TXD2/FCC1_UT16_TXD10	H26 ²
PA24/MSNUM1	FCC1_UT8_TXD1/FCC1_UT16_TXD9	F25 ²
PA25/MSNUM0	FCC1_UT8_TXD0/FCC1_UT16_TXD8	D26 ²
PA26/FCC1_MII_RMII_RX_ER/	FCC1_UTM_RXCLAV/ FCC1_UTS_RXCLAV	D25 ²
PA27/FCC1_MII_RX_DV/ FCC1_RMII_CRS_DV	FCC1_UT_RXSOC	C25 ²
PA28/FCC1_MII_TX_EN/ FCC1_RMII_TX_EN	FCC1_UTM_RXENB/ FCC1_UTS_RXENB	C22 ²
PA29/FCC1_MII_TX_ER	FCC1_UT_TXSOC	B21 ²
PA30/FCC1_MII_CRS/FCC1_RTS	FCC1_UTM_TXCLAV/ FCC1_UTS_TXCLAV	A20 ²
PA31/FCC1_MII_COL	FCC1_UTM_TXENB/ FCC1_UTS_TXENB	A19 ²
PB4/FCC3_MII_HDLC_TXD3/ L1RSYNCA2/FCC3_RTS	FCC2_UT8_RXD0	AD21 ²
PB5/FCC3_MII_HDLC_TXD2/ L1TSYNCA2/L1GNTA2	FCC2_UT8_RXD1	AD22 ²
PB6/FCC3_MII_HDLC_TXD1/ FCC3_RMII_TXD1/ L1RXDA2/L1RXD0A2	FCC2_UT8_RXD2	AC22 ²
PB7/FCC3_MII_HDLC_TXD0/ FCC3_RMII_TXD0/ FCC3_TXD/L1TXDA2/L1TXD0A2	FCC2_UT8_RXD3	AE26 ²
PB8/FCC3_MII_HDLC_RXD0/ FCC3_RMII_RXD0/ FCC3_RXD/TXD3	FCC2_UT8_TXD3	AB23 ²
PB9/FCC3_MII_HDLC_RXD1/ FCC3_RMII_RXD1/L1TXD2A2	FCC2_UT8_TXD2	AC26 ²
PB10/FCC3_MII_HDLC_RXD2	FCC2_UT8_TXD1	AB26 ²
PB11/FCC3_MII_HDLC_RXD3	FCC2_UT8_TXD0	AA25 ²
PB12/FCC3_MII_CRS/TXD2		W26 ²
PB13/FCC3_MII_COL/L1TXD1A2		W25 ²
PB14/FCC3_MII_RMII_TX_EN/RXD3		V24 ²