

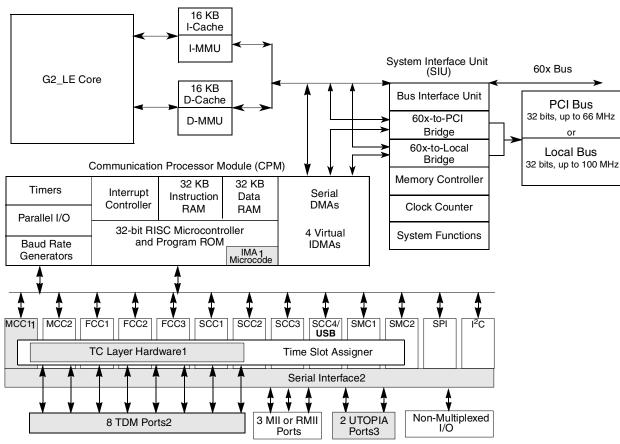
Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in


Details

2 0 1 1 1 0	
Product Status	Obsolete
Core Processor	PowerPC G2_LE
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	266MHz
Co-Processors/DSP	Communications; RISC CPM
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (3)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	516-BBGA
Supplier Device Package	516-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8275czqmiba

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This figure shows the block diagram of the SoC. Shaded portions are SoC-specific; see the notes below the figure.

Notes:

¹ MPC8280 only (not on MPC8270, the VR package, nor the ZQ package)

² MPC8280 has 2 serial interface (SI) blocks and 8 TDM ports. MPC8270 and the VR and ZQ packages have only 1 SI block and 4 TDM ports (TDM2[A–D]).

³ MPC8280, MPC8275VR, MPC8275ZQ only (not on MPC8270, MPC8270VR, nor MPC8270ZQ)

Figure 1. SoC Block Diagram

1.1 Features

The major features of the SoC are as follows:

- Dual-issue integer (G2_LE) core
 - A core version of the EC603e microprocessor
 - System core microprocessor supporting frequencies of 166–450 MHz
 - Separate 16 KB data and instruction caches:
 - Four-way set associative
 - Physically addressed
 - LRU replacement algorithm
 - Power Architecture®-compliant memory management unit (MMU)

Thermal Characteristics

- ⁴ V_{IL} for IIC interface does not match IIC standard, but does meet IIC standard for V_{OL} and should not cause any compatibility issue.
- ⁵ MPC8280, MPC8275VR, MPC8275ZQ only.

4 Thermal Characteristics

This table describes thermal characteristics for both the packages. See Table 2 for information on a given SoC's package. Discussions of each characteristic are provided in Section 4.1, "Estimation with Junction-to-Ambient Thermal Resistance," and Section 4.5, "Experimental Determination." For the these discussions, $P_D = (V_{DD} \times I_{DD}) + PI/O$, where PI/O is the power dissipation of the I/O drivers.

Characteristic	Symbol	Va	lue	Unit	Air Flow
Characteristic	Symbol	480 TBGA	516 PBGA	Onit	
Junction to ambient—	_	16	27		Natural convection
single-layer board ¹	$R_{ extsf{ heta}JA}$	11	21	°C/W	1 m/s
Junction to ambient—	_	12	19		Natural convection
four-layer board	R _{θJA}	9	16	°C/W	1 m/s
Junction to board ²	$R_{ extsf{ heta}JB}$	6	11	°C/W	_
Junction to case ³	R _{θJC}	2	8	°C/W	_
Junction-to-package top ⁴	Ψ_{JT}	2	2	°C/W	_

Table 6. Thermal Characteristics

¹ Assumes no thermal vias

² Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

³ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

⁴ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

4.1 Estimation with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, in C can be obtained from the following equation:

$$T_{J} = T_{A} + (R_{\theta JA} \times P_{D})$$

where:

 T_A = ambient temperature (°C)

 $R_{\theta IA}$ = package junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in package

The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor of two (in the quantity $T_I - T_A$) are possible.

Thermal Characteristics

4.2 Estimation with Junction-to-Case Thermal Resistance

Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

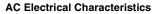
 $R_{\theta IC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user adjusts the thermal environment to affect the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most packages, a better model is required.

4.3 Estimation with Junction-to-Board Thermal Resistance

A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case thermal resistance covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. It has been observed that the thermal performance of most plastic packages, especially PBGA packages, is strongly dependent on the board temperature.


If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation:

$$T_{J} = T_{B} + (R_{\theta JB} \times P_{D})$$

where:

 $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W) T_B = board temperature (°C) P_D = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and by attaching the thermal balls to the ground plane.

This table lists CPM input characteristics.

NOTE: Rise/Fall Time on CPM Input Pins

It is recommended that the rise/fall time on CPM input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of VCC; fall time refers to transitions from 90% to 10% of VCC.

Spec Number			Value (ns)								
Setup Hold		Characteristic		Setup			Hold				
			66 MHz	83 MHz	66 MHz	83 MHz	100 MHz				
sp16a	sp17a	FCC inputs—internal clock (NMSI)	6	6	6	0	0	0			
sp16b	sp17b	FCC inputs—external clock (NMSI)	2.5	2.5	2.5	2	2	2			
sp18a	sp19a	SCC/SMC/SPI/I2C inputs—internal clock (NMSI)	6	6	6	0	0	0			
sp18b	sp19b	SCC/SMC/SPI/I2C inputs—external clock (NMSI)	4	4	4	2	2	2			
sp20	sp21	TDM inputs/SI	5	5	5	2.5	2.5	2.5			
sp22	sp23	PIO/TIMER/IDMA inputs	8	8	8	0.5	0.5	0.5			

Table 10. AC Characteristics for CPM Inputs¹

¹ Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

NOTE

Although the specifications generally reference the rising edge of the clock, the following AC timing diagrams also apply when the falling edge is the active edge.

This figure shows the FCC internal clock.

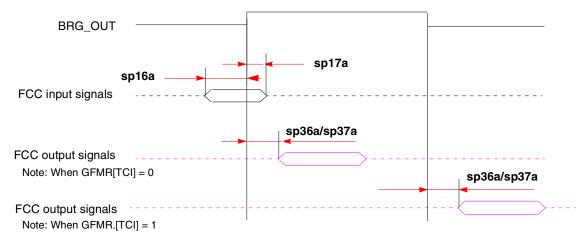
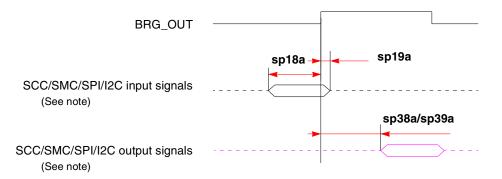
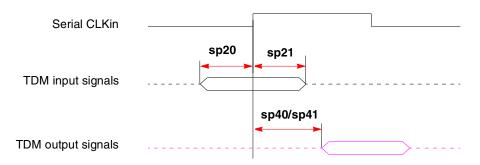



Figure 3. FCC Internal Clock Diagram

This figure shows the SCC/SMC/SPI/I²C internal clock.



Note: There are four possible timing conditions for SCC and SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 6. SCC/SMC/SPI/I²C Internal Clock Diagram

This figure shows TDM input and output signals.

Note: There are four possible TDM timing conditions:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 7. TDM Signal Diagram

NOTE

Activating data pipelining (setting BRx[DR] in the memory controller) improves the AC timing.

This table lists SIU input characteristics.

Table 13. AC Characteristics for SIU Inputs ¹	
--	--

Spec N	lumber		Value (ns)								
Setup	Hold	Characteristic		Setup			Hold				
			66 MHz	83 MHz	100 MHz	66 MHz	83 MHz	100 MHz			
sp11	sp10	AACK/TA/TS/DBG/BG/BR/ARTRY/ TEA	6	5	3.5	0.5	0.5	0.5			
sp12	sp10	Data bus in normal mode	5	4	3.5	0.5	0.5	0.5			
sp13	sp10	Data bus in ECC and PARITY modes	7	5	3.5	0.5	0.5	0.5			
sp13a	sp10	Pipeline mode—Data bus (with or without ECC/PARITY)	5	4	2.5	0.5	0.5	0.5			
sp14	sp10	DP pins	7	5	3.5	0.5	0.5	0.5			
sp14a	sp10	Pipeline mode—DP pins	_	4	2.5	_	0.5	0.5			
sp15	sp10	All other pins	5	4	3.5	0.5	0.5	0.5			

¹ Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

This table lists SIU output characteristics.

Table 14. AC Characte	ristics for SIU	Outputs ¹
-----------------------	-----------------	----------------------

Spec Number			Value (ns)								
Max	Min	Characteristic	Ма	ximum De	lay	Minimum Delay					
			66 MHz	83 MHz	100 MHz	66 MHz	83 MHz	100 MHz			
sp31	sp30	PSDVAL/TEA/TA	7	6	5.5	1	1	1			
sp32	sp30	ADD/ADD_atr./BADDR/CI/GBL/WT	8	6.5	5.5	1	1	1			
sp33a	sp30	Data bus ²	6.5	6.5	5.5	0.7	0.7	0.7			
sp33b	sp30	DP	6	5.5	5.5	1	1	1			
sp34	sp30	Memory controller signals/ALE	6	5.5	5.5	1	1	1			
sp35	sp30	All other signals	6	5.5	5.5	1	1	1			
sp35a	sp30	AP	7	7	7	1	1	1			

¹ Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

 2 To achieve 1 ns of hold time at 66, 83, or 100 MHz, a minimum loading of 20 pF is required.

Clock Configuration Modes

Mode ²		Clock ³ IHz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock IHz)		
MODCK_H-MODCK[1:3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High		
0001_001	50.0	167.0	2	100.0	334.0	5	250.0	835.0		
0001_010	50.0	145.8	2	100.0	291.7	6	300.0	875.0		
0001_011		1	I	Res	served	L	1			
0001_100				Res	served					
0001 101	07.5	100.0	0	110 5	400.0	4	150.0	500.0		
0001_101	37.5	133.3	3	112.5	400.0	4	150.0	533.3		
0001_110	33.3	133.3	3	100.0	400.0	5	166.7	666.7		
1000_111	33.3	133.3	3	100.0	400.0	5.5	183.3	733.3		
0001_111	33.3	133.3	3	100.0	400.0	6	200.0	800.0		
0010_000					served					
0010_001		Reserved								
0010_010	37.5	100.0	4	150.0	400.0	4	150.0	400.0		
	30.0	100.0	4	120.0	400.0	5	150.0	500.0		
0010_100	25.0	100.0	4	100.0	400.0	6	150.0	600.0		
0010_101	25.0	100.0	4	100.0	400.0	7	175.0	700.0		
0010_110	25.0	100.0	4	100.0	400.0	8	200.0	800.0		
0010_111		1	1		served	1		[
0011_000	30.0	80.0	5	150.0	400.0	5	150.0	400.0		
0011_001	25.0	80.0	5	125.0	400.0	6	150.0	480.0		
0011_010	25.0	80.0	5	125.0	400.0	7	175.0	560.0		
0011_011	25.0	80.0	5	125.0	400.0	8	200.0	640.0		
0011_100				Re	served					
0011_101					served					
0011_110	25.0	66.7	6	150.0	400.0	6	150.0	400.0		
0011_111	25.0	66.7	6	150.0	400.0	7	175.0	466.7		
0100_000	25.0	66.7	6	150.0	400.0	8	200.0	533.3		
0.00_000	0.0	00.7	L Č		.00.0	Ŭ	200.0	000.0		
0101_101	75.0	167.0	2	150.0	334.0	2	166.7	334.0		
0101_110	60.0	167.0	2	120.0	334.0	2.5	166.7	417.5		
0101_111	50.0	167.0	2	100.0	334.0	3	200.0	501.0		

 Table 18. Clock Configurations for Local Bus Mode¹ (continued)

Clock Configuration Modes

- ¹ The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not violate the frequency rating of the user's device. The minimum CPM frequency is 120 MHz. Minimum CPU frequency is determined by the clock mode. For modes with a CPU multiplication factor <= 3, the minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. For modes with a CPU frequency is 250 MHz; for Rev A or later the minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices.</p>
- ² MODCK_H = hard reset configuration word [28–31]. MODCK[1-3] = three hardware configuration pins.
- ³ 60x and local bus frequency. Identical to CLKIN.
- ⁴ CPM multiplication factor = CPM clock/bus clock
- ⁵ CPU multiplication factor = Core PLL multiplication factor

7.2 PCI Host Mode

These tables show clock configurations for PCI host mode. The frequency values listed are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. Note that in PCI host mode the input clock is the following:

NOTE: PCI_MODCK

In PCI mode only, PCI_MODCK comes from the LGPL5 pin and MODCK_H[0–3] comes from {LGPL0, LGPL1, LGPL2, LGPL3}.

NOTE: Tval (Output Hold)

The minimum Tval = 2 ns when PCI_MODCK = 1, and the minimum Tval = 1 ns when PCI_MODCK = 0. Therefore, designers should use clock configurations that fit this condition to achieve PCI-compliant AC timing.

Mode ³		Clock ⁴ Hz)	CPM Multiplication		Clock Hz)			Clock Hz)	PCI Division	PCI Clock (MHz)		
MODCK_H- MODCK[1-3]	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High	Factor	Low	High	
Default Modes (MODCK_H=0000)												
0000_000	60.0	66.7	2	120.0	133.3	2.5	150.0	166.7	2	60.0	66.7	
0000_001	50.0	66.7	2	100.0	133.3	3	150.0	200.0	2	50.0	66.7	
0000_010	60.0	80.0	2.5	150.0	200.0	3	180.0	240.0	3	50.0	66.7	
0000_011	60.0	80.0	2.5	150.0	200.0	3.5	210.0	280.0	3	50.0	66.7	
0000_100	60.0	80.0	2.5	150.0	200.0	4	240.0	320.0	3	50.0	66.7	
0000_101	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7	
0000_110	50.0	66.7	3.5	150.0	200.0	3.5	175.0	233.3	3	50.0	66.7	
0000_111	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7	
				Full Co	onfigura	ation Modes						
0001_000	50.0	66.7	3	150.0	200.0	5	250.0	333.3	3	50.0	66.7	

Table 19. Clock Configurations for PCI Host Mode (PCI_MODCK=0)^{1,2}

Mode ³		Clock ⁴ Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Multiplication Factor ⁵	Low	High	Factor ⁶	Low	High	Factor	Low	High
0010_110	37.5	75.0	4	150.0	300.0	6	225.0	450.0	6	25.0	50.0
			r		•						1
0011_000	30.0	50.0	5	150.0	250.0	5	150.0	250.0	5	30.0	50.0
0011_001	25.0	50.0	5	125.0	250.0	6	150.0	300.0	5	25.0	50.0
0011_010	25.0	50.0	5	125.0	250.0	7	175.0	350.0	5	25.0	50.0
0011_011	25.0	50.0	5	125.0	250.0	8	200.0	400.0	5	25.0	50.0
0100_000						Reserved					
0100_001	25.0	50.0	6	150.0	300.0	6	150.0	300.0	6	25.0	50.0
0100_010	25.0	50.0	6	150.0	300.0	7	175.0	350.0	6	25.0	50.0
0100_011	25.0	50.0	6	150.0	300.0	8	200.0	400.0	6	25.0	50.0
			l								1
0101_000	60.0	100.0	2	120.0	200.0	2.5	150.0	250.0	4	30.0	50.0
0101_001	50.0	100.0	2	100.0	200.0	3	150.0	300.0	4	25.0	50.0
0101_010	50.0	100.0	2	100.0	200.0	3.5	175.0	350.0	4	25.0	50.0
0101_011	50.0	100.0	2	100.0	200.0	4	200.0	400.0	4	25.0	50.0
0101_100	50.0	100.0	2	100.0	200.0	4.5	225.0	450.0	4	25.0	50.0
										•	
0110_000	60.0	120.0	2.5	150.0	300.0	2.5	150.0	300.0	6	25.0	50.0
0110_001	60.0	120.0	2.5	150.0	300.0	3	180.0	360.0	6	25.0	50.0
0110_010	60.0	120.0	2.5	150.0	300.0	3.5	210.0	420.0	6	25.0	50.0
0110_011	60.0	120.0	2.5	150.0	300.0	4	240.0	480.0	6	25.0	50.0
0110_100	60.0	120.0	2.5	150.0	300.0	4.5	270.0	540.0	6	25.0	50.0
0110_101	60.0	120.0	2.5	150.0	300.0	5	300.0	600.0	6	25.0	50.0
0110_110	60.0	120.0	2.5	150.0	300.0	6	360.0	720.0	6	25.0	50.0
0111_000						Reserved					
0111_001	50.0	100.0	3	150.0	300.0	3	150.0	300.0	6	25.0	50.0
0111_010	50.0	100.0	3	150.0	300.0	3.5	175.0	350.0	6	25.0	50.0
0111_011	50.0	100.0	3	150.0	300.0	4	200.0	400.0	6	25.0	50.0
0111_100	50.0	100.0	3	150.0	300.0	4.5	225.0	450.0	6	25.0	50.0

Table 20. Clock Configurations for PCI Host Mode (PCI_MODCK=1)^{1,2} (continued)

Clock Configuration Modes

NOTE: PCI_MODCK

In PCI mode only, PCI_MODCK comes from the LGPL5 pin and MODCK_H[0–3] comes from {LGPL0, LGPL1, LGPL2, LGPL3}.

NOTE: Tval (Output Hold)

The minimum Tval = 2 ns when PCI_MODCK = 1, and the minimum Tval = 1 ns when PCI_MODCK = 0. Therefore, designers should use clock configurations that fit this condition to achieve PCI-compliant AC timing.

Table 21. Clock C	onfigurations	for PCI	Agent Mode	(PCI	_MODCK=0) ^{1,2}

Mode ³	PCI ((M	Clock Hz)	CPM Multiplication	CPM (M	Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
			De	efault N	lodes (MODCK_H=0000				•	
0000_000	60.0	66.7	2	120.0	133.3	2.5	150.0	166.7	2	60.0	66.7
0000_001	50.0	66.7	2	100.0	133.3	3	150.0	200.0	2	50.0	66.7
0000_010	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0000_011	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
0000_100	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
0000_101	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
0000_110	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
0000_111	50.0	66.7	4	200.0	266.6	3	240.0	320.0	2.5	80.0	106.7
		•		Full C	onfigu	ration Modes				•	
0001_001	60.0	66.7	2	120.0	133.3	5	150.0	166.7	4	30.0	33.3
0001_010	50.0	66.7	2	100.0	133.3	6	150.0	200.0	4	25.0	33.3
0001_011	50.0	66.7	2	100.0	133.3	7	175.0	233.3	4	25.0	33.3
0001_100	50.0	66.7	2	100.0	133.3	8	200.0	266.6	4	25.0	33.3
0010_001	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
0010_010	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
0010_011	50.0	66.7	3	150.0	200.0	4	240.0	320.0	2.5	60.0	80.0
0010_100	50.0	66.7	3	150.0	200.0	4.5	270.0	360.0	2.5	60.0	80.0
0011_000						Reserved					
0011_001						Reserved					
0011_010						Reserved					
0011_011						Reserved					
0011_100						Reserved					

Clock Configuration Modes

Table 22. Clock Configurations for I	PCI Agent Mode (PCI	_MODCK=1) ^{1,2} (continued)

	-						_	,	•	•	
Mode ³		Clock Hz)	CPM Multiplication	CPM (MHz) CPU		CPU Clock (MHz)		Bus Division –		Bus Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
1011_010	25.0	50.0	8	200.0	400.0	3	240.0	480.0	2.5	80.0	160.0
1011_011	25.0	50.0	8	200.0	400.0	3.5	280.0	560.0	2.5	80.0	160.0
1011_100	25.0	50.0	8	200.0	400.0	4	320.0	640.0	2.5	80.0	160.0
1100_101	25.0	50.0	6	150.0	300.0	4	200.0	400.0	3	50.0	100.0
1100_110	25.0	50.0	6	150.0	300.0	4.5	225.0	450.0	3	50.0	100.0
1100_111	25.0	50.0	6	150.0	300.0	5	250.0	500.0	3	50.0	100.0
1101_000	25.0	50.0	6	150.0	300.0	5.5	275.0	550.0	3	50.0	100.0
		•			•			• • •		•	
1101_001	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0
1101_010	25.0	50.0	6	150.0	300.0	4	240.0	480.0	2.5	60.0	120.0
1101_011	25.0	50.0	6	150.0	300.0	4.5	270.0	540.0	2.5	60.0	120.0
1101_100	25.0	50.0	6	150.0	300.0	5	300.0	600.0	2.5	60.0	120.0
1110_000	25.0	50.0	5	125.0	250.0	2.5	156.3	312.5	2	62.5	125.0
1110_001	25.0	50.0	5	125.0	250.0	3	187.5	375.0	2	62.5	125.0
1110_010	25.0	50.0	5	125.0	250.0	3.5	218.8	437.5	2	62.5	125.0
1110_011	25.0	50.0	5	125.0	250.0	4	250.0	500.0	2	62.5	125.0
										· · · -	
1110_100	25.0	50.0	5	125.0	250.0	4	166.7		3	41.7	83.3
1110_101	25.0	50.0	5	125.0	250.0	4.5	187.5	375.0	3	41.7	83.3
1110_110	25.0	50.0	5		250.0	5	208.3		3	41.7	83.3
1110_111	25.0	50.0	5	125.0	250.0	5.5	229.2	458.3	3	41.7	83.3
1100_000		Reserved									
1100_001		Reserved									
1100_010		Reserved									

¹ The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not violate the frequency rating of the user's device. The minimum CPM frequency is 120 MHz. Minimum CPU frequency is determined by the clock mode. For modes with a CPU multiplication factor <= 3, the minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. For modes with a CPU multiplication factor >= 3.5: for Rev 0.1 the minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices.

This figure shows the pinout of the ZU and VV packages as viewed from the top surface.

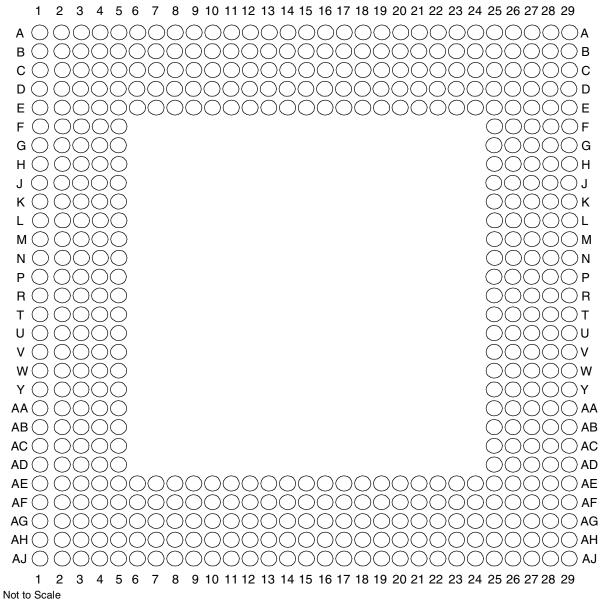


Figure 13. Pinout of the 480 TBGA Package (View from Top)

This table lists the pins of the MPC8280 and MPC8270, and Table 24 defines conventions and acronyms used in this table.

Pin Name		Ball	
MPC8280/MPC8270 MPC8280 only		Daii	
BR			W5
3G			F4

Table 23, MPC8280 and MPC8270 (ZU and VV Packages) Pinout List (continued)

Pin Name		Dell
MPC8280/MPC8270	MPC8280 only	Ball
D18		D15
D19		C13
D20		B11
D21		A8
D22		A5
D23		C5
D24		C19
D25		C17
D26		C15
D27		D13
D28		C11
D29		B8
D30		A4
D31		E6
D32		E18
D33		B17
D34		A15
D35		A12
D36		D11
D37		C8
D38		E7
D39		A3
D40		D18
D41		A17
D42		A14
D43		B12
D44		A10
D45		D8
D46		B6
D47		C4
D48		C18
D49		E16
D50		B14

Pinout

Table 23. MPC8280 and MPC8270 (ZU and VV Packages) Pinout List (continued)

	Dell	
MPC8280/MPC8270	MPC8280 only	Ball
TDO		AF5
TRIS		AB4
PORESET ¹		AG6
HRESET		AH5
SRESET		AF6
QREQ		AA3
RSTCONF		AJ4
MODCK1/AP1/TC0/BNKSEL0		W2
MODCK2/AP2/TC1/BNKSEL1		W3
MODCK3/AP3/TC2/BNKSEL2		W4
CLKIN1		AH4
PA0/RESTART1/DREQ3	FCC2_UTM_TXADDR2	AC29 ²
PA1/REJECT1/DONE3	FCC2_UTM_TXADDR1	AC25 ²
PA2/CLK20/DACK3	FCC2_UTM_TXADDR0	AE28 ²
PA3/CLK19/DACK4/L1RXD1A2	FCC2_UTM_RXADDR0	AG29 ²
PA4/REJECT2/DONE4	FCC2_UTM_RXADDR1	AG28 ²
PA5/RESTART2/DREQ4	FCC2_UTM_RXADDR2/FCC1_UT_RXPRT Y	AG26 ²
PA6/FCC2_RXADDR3	L1RSYNCA1	AE24 ²
PA7/SMSYN2/FCC2_TXADDR3	L1TSYNCA1/L1GNTA1	AH25 ²
PA8/SMRXD2/FCC2_TXADDR4	L1RXD0A1/L1RXDA1	AF23 ²
PA9/SMTXD2	L1TXD0A1	AH23 ²
PA10/MSNUM5	FCC1_UT8_RXD0/FCC1_UT16_RXD8	AE22 ²
PA11/MSNUM4	FCC1_UT8_RXD1/FCC1_UT16_RXD9	AH22 ²
PA12/MSNUM3	FCC1_UT8_RXD2/ FCC1_UT16_RXD10	AJ21 ²
PA13/MSNUM2	FCC1_UT8_RXD3/ FCC1_UT16_RXD11	AH20 ²
PA14/FCC1_MII_HDLC_RXD3	FCC1_UT8_RXD4/ FCC1_UT16_RXD12	AG19 ²
PA15/FCC1_MII_HDLC_RXD2	FCC1_UT8_RXD5/ FCC1_UT16_RXD13	AF18 ²
PA16/FCC1_MII_HDLC_RXD1/ FCCI_RMII_RXD1	FCC1_UT8_RXD6/ FCC1_UT16_RXD14	AF17 ²

Pinout

Table 23. MPC8280 and MPC8270 (ZU and VV Packages) Pinout List (continued)

Pin Name		Ball
MPC8280/MPC8270	MPC8280/MPC8270 MPC8280 only	
Core power		U28, U29, K28, K29, A9, A19, B19, M1, M2, Y1, Y2, AC1, AC2, AH19, AJ19, AH10, AJ10, AJ5
Ground		AA5, AB1 ⁶ , AB2 ⁷ , AF21, AF14, AF8, AE7, AF11, AE17, AE23, AC26, AB25, Y26, V25, T26, R25, P26, M25, K27, H25, G26, D7, D10, D14, D16, D20, D23, C9, E11, E13, E15, E19, E22, B3, G5, H4, K5, M3, P5, T4, Y5, AA2, AC3

¹ Should be tied to VDDH via a 2K Ω external pull-up resistor.

- ² The default configuration of the CPM pins (PA[0–31], PB[4–31], PC[0–31], PD[4–31]) is input. To prevent excessive DC current, it is recommended to either pull unused pins to GND or VDDH, or to configure them as outputs.
- ³ Must be pulled down or left floating.
- ⁴ If PCI is not desired, must be pulled up or left floating.
- ⁵ Sphere is not connected to die.
- ⁶ GNDSYN (AB1): This pin exists as a separate ground signal in MPC826x(A) devices; it does not exist as a separate ground signal on the SoC. New designs must connect AB1 to GND and follow the suggestions in Section 4.6, "Layout Practices." Old designs in which the MPC8280 is used as a drop-in replacement can leave the pin connected to GND with the noise filtering capacitors.
- ⁷ XFC (AB2) pin: This pin is used in MPC826x(A) devices; it is not used in MPC8280 because there is no need for external capacitor to operate the PLL. New designs should connect AB2 (XFC) pin to GND. Old designs in which the SoC is used as a drop-in replacement can leave the pin connected to the current capacitor.

This table describes symbols used in Table 23.

Table 24. Symbol Legend

Symbol	Meaning
OVERBAR	Signals with overbars, such as TA, are active low.
UTM	Indicates that a signal is part of the UTOPIA master interface.
UTS	Indicates that a signal is part of the UTOPIA slave interface.
UT8	Indicates that a signal is part of the 8-bit UTOPIA interface.
UT16	Indicates that a signal is part of the 16-bit UTOPIA interface.
MII	Indicates that a signal is part of the media independent interface.
RMII	Indicates that a signal is part of the reduced media independent interface.

8.2 VR and ZQ Packages—MPC8275 and MPC8270

The following figures and table represent the alternate 516 PBGA package. For information on the standard package for the MPC8280 and the MPC8270, see Section 8.1, "ZU and VV Packages—MPC8280 and MPC8270.

Pin Nam	Poll	
MPC8275/MPC8270	MPC8275 only	Ball
TT1		B3
TT2		F8
ТТ3		A3
TT4		C3
TBST		F5
TSIZ0		E3
TSIZ1		E2
TSIZ2		E1
TSIZ3		E4
AACK		D3
ARTRY		C2
DBG		A14
DBB/IRQ3		C15
D0		W4
D1		Y1
D2		V1
D3		P4
D4		N3
D5		K5
D6		J4
D7		G1
D8		AB1
D9		U4
D10		U2
D11		N6
D12		N1
D13		L1
D14		J5
D15		G3
D16		AA2
D17		W1
D18		Т3
D19		T1

Table 25. MPC8275 and MPC8270 (VR and ZQ Packages) Pinout List (continued)

Pinout

Table 25. MPC8275 and MPC8270 (VR and ZQ Packages) Pinout List (continued)

Pin Name		5.4
MPC8275/MPC8270	MPC8275 only	Ball
LCL_D11/AD11		AC13
LCL_D12/AD12		AC12
LCL_D13/AD13		AB13
LCL_D14/AD14		AD12
LCL_D15/AD15		AF14
LCL_D16/AD16		AF17
LCL_D17/AD17		AE16
LCL_D18/AD18		AD16
LCL_D19/AD19		AC16
LCL_D20/AD20		AB16
LCL_D21/AD21		AF18
LCL_D22/AD22		AE17
LCL_D23/AD23		AD17
LCL_D24/AD24		AB17
LCL_D25/AD25		AE18
LCL_D26/AD26		AD18
LCL_D27/AD27		AC18
LCL_D28/AD28		AE19
LCL_D29/AD29		AF20
LCL_D30/AD30		AD19
LCL_D31/AD31		AB18
LCL_DP0/C0/BE0		AE12
LCL_DP1/C1/BE1		AA13
LCL_DP2/C2/BE2		AC15
LCL_DP3/C3/BE3		AF19
IRQ0/NMI_OUT		A11
IRQ7/INT_OUT/APE		E5
TRST ¹		F22
тск		A24
тмѕ		C24
ТОІ		A25
TDO		B24
TRIS		C19

Pinout

Table 25. MPC8275 and MPC8270 (VR and ZQ Packages) Pinout List (continued)

Pi	Ball	
MPC8275/MPC8270	MPC8275 only	Ball
PC5/SI2_L1ST3/FCC2_CTS	FCC2_UTM_TXCLAV/ FCC2_UTS_TXCLAV	AC25 ²
PC6/FCC1_CD	FCC1_UTM_RXADDR2/ FCC1_UTS_RXADDR2/ FCC1_UTM_RXCLAV1	AB25 ²
PC7/FCC1_CTS	FCC1_UTM_TXADDR2/ FCC1_UTS_TXADDR2/ FCC1_UTM_TXCLAV1	AA24 ²
PC8/ CD4 /RENA4/SI2_L1ST2/ CTS3 / USB_RN	FCC1_UT16_TXD0	Y24 ²
PC9/CTS4/CLSN4/SI2_L1ST1/ L1TSYNCA2/L1GNTA2/USB_RP	FCC1_UT16_TXD1	U22 ²
PC10/CD3/RENA3	FCC1_UT16_TXD2/FCC2_UT8_RXD3	V23 ²
PC11/CTS3/CLSN3/L1TXD3A2	FCC2_UT8_RXD2	U23 ²
PC12/CD2/RENA2	FCC1_UTM_RXADDR1/ FCC1_UTS_RXADDR1	T26 ²
PC13/CTS2/CLSN2	FCC1_UTM_TXADDR1/ FCC1_UTS_TXADDR1	R26 ²
PC14/CD1/RENA1	FCC1_UTM_RXADDR0/ FCC1_UTS_RXADDR0	P26 ²
PC15/CTS1/CLSN1/SMTXD2	FCC1_UTM_TXADDR0/ FCC1_UTS_TXADDR0	P24 ²
PC16/CLK16/TIN4		M26 ²
PC17/CLK15/TIN3/BRGO8		L26 ²
PC18/CLK14/TGATE2		M24 ²
PC19/CLK13/BRGO7/SPICLK		L22 ²
PC20/CLK12/TGATE1/USB_OE		K25 ²
PC21/CLK11/BRGO6		J25 ²
PC22/CLK10/DONE1	FCC1_UT_TXPRTY	G26 ²
PC23/CLK9/BRGO5/DACK1		F26 ²
PC24/CLK8/TOUT4	FCC2_UT8_TXD3	G24 ²
PC25/CLK7/BRGO4	FCC2_UT8_TXD2	E25 ²
PC26/CLK6/TOUT3/TMCLK		G23 ²
PC27/FCC3_TXD/FCC3_MII_TXD0/ FCC3_RMII_TXD0/CLK5/BRGO3		B23 ²
PC28/CLK4/TIN1/TOUT2/CTS2/CLSN2	FCC2_UT_RXADDR4	E22 ²
PC29/CLK3/TIN2/BRGO2/CTS1/CLSN1		E21 ²
PC30/CLK2/TOUT1	FCC2_UT8_TXD3	D21 ²

Package Description

9.1 Package Parameters

This table provides package parameters.

NOTE: Temperature Reflow for the VR Package

In the VR package, sphere composition is lead-free (see Table 2). This requires higher temperature reflow than what is required for other PowerQUICC II packages. Consult "Freescale PowerQUICC II Pb-Free Packaging Information" (MPC8250PBFREEPKG) available on www.freescale.com.

Package	SoCs	Outline (mm)	Туре	Interconnects	Pitch (mm)	Nominal Unmounted Height (mm)
ZU	MPC8280 MPC8270	37.5 × 37.5	TBGA	480	1.27	1.55
VV	MPC8280 MPC8270	37.5 × 37.5	TBGA	480	1.27	1.55
VR	MPC8275VR MPC8270VR	27 × 27	PBGA	516	1	2.25
ZQ	MPC8275ZQ MPC8270ZQ	27 × 27	PBGA	516	1	2.25

Table 26	. Package	Parameters
----------	-----------	------------

Document Revision History

Revision	Date	Substantive Changes	
1.4	11/2005	 In Section 6.2, "SIU AC Characteristics", modified the note on CLKIN Jitter and Duty Cycle. Modified Figure 17 to display all text. 	
1.3	01/2005	Modification for correct display of assertion level ("overbar") for some signals	
1.2	12/2004	 Section 2: removed voltage tracking note Table 3: Note 2 updated regarding VDD/VCCSYN relationship to VDDH during power-on reset Table 5: Note 2 updated to reflect VIH=2.5 for TCK, TRST, PORESET; request for external pullup removed. Table 5: Note 4 added regarding IIC compatibility Section 4.2: New information about jumper-to-case thermal resistance Section 4.3: New information about jumper-to-board thermal resistance Section 4.4: New information about estimation with simulation Section 4.6: Updated description of layout practices Section 6: Added sentence providing derating factor Section 6.1, "CPM AC Characteristics": added Note: Rise/Fall Time on CPM Input Pins Table 9: updated values for following specs: sp16b, sp18b, sp20, sp22 Section 6.2: added spread sprectrum clocking note Table 11: combined specs sp11 and sp11a Section 7, "Clock Configuration Modes": Updated all table footnotes reflect updated CPU Fmin of 150 MHz commercial temp devices, 175 MHz extended temp; CPM Fmin of 120 MHz. 	

Table 27. Document Revision History (continued)