
E·XFL

NXP USA Inc. - KMPC8280CZUUPEA Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC G2_LE
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	450MHz
Co-Processors/DSP	Communications; RISC CPM
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (3)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	480-LBGA Exposed Pad
Supplier Device Package	480-TBGA (37.5x37.5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8280czuupea

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

- Common on-chip processor (COP) test interface
- High-performance (SPEC95 benchmark at 450 MHz; 855 Dhrystones MIPS at 450 MHz)
- Supports bus snooping
- Support for data cache coherency
- Floating-point unit (FPU)
- Separate power supply for internal logic and for I/O
- Separate PLLs for G2_LE core and for the communications processor module (CPM)
 - G2_LE core and CPM can run at different frequencies for power/performance optimization
 - Internal core/bus clock multiplier that provides ratios 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 6:1, 7:1, 8:1
 - Internal CPM/bus clock multiplier that provides ratios 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1, 8:1 ratios
- 64-bit data and 32-bit address 60x bus
 - Bus supports multiple master designs
 - Supports single- and four-beat burst transfers
 - 64-, 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
 - Supports data parity or ECC and address parity
- 32-bit data and 18-bit address local bus
 - Single-master bus, supports external slaves
 - Eight-beat burst transfers
 - 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
- 60x-to-PCI bridge
 - Programmable host bridge and agent
 - 32-bit data bus, 66.67/83.3/100 MHz, 3.3 V
 - Synchronous and asynchronous 60x and PCI clock modes
 - All internal address space available to external PCI host
 - DMA for memory block transfers
 - PCI-to-60x address remapping
- PCI bridge
 - PCI Specification Revision 2.2 compliant and supports frequencies up to 66 MHz
 - On-chip arbitration
 - Support for PCI-to-60x-memory and 60x-memory-to-PCI streaming
 - PCI host bridge or peripheral capabilities
 - Includes 4 DMA channels for the following transfers:
 - PCI-to-60x to 60x-to-PCI
 - 60x-to-PCI to PCI-to-60x
 - 60x-to-PCI to 60x-to-PCI

DC Electrical Characteristics

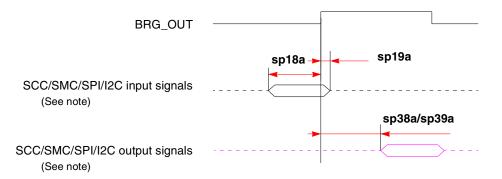
Characteristic	Symbol	Min	Max	Unit
I _{OL} = 6.0mA	V _{OL}	—	0.4	V
BR	02			
BG				
ABB/IRQ2				
TS				
A[0-31]				
TT[0-4]				
TBST				
TSIZE[0-3]				
AACK				
ARTRY				
DBG				
DBB/IRQ3				
D[0-63]				
DP(0)/ <u>RSRV/EXT_BR2</u>				
DP(1)/IRQ1/EXT_BG2				
DP(2)/TLBISYNC/IRQ2/EXT_DBG2				
DP(3)/IRQ3/EXT_BR3/CKSTP_OUT				
DP(4)/IRQ4/EXT_BG3/CORE_SREST				
DP(5)/TBEN/EXT_DBG3/IRQ5/CINT				
DP(6)/CSE(0)/IRQ6				
DP(7)/CSE(1)/IRQ7				
PSDVAL				
TA				
GBL/IRQ1				
WT/BADDR30/IRQ3 L2_HIT/IRQ4				
CPU_BG/BADDR31/IRQ5/CINT CPU_DBG				
CPU_BR IRQ0/NMI_OUT				
IRQ7/PCI_RSTINT_OUT/APE				
PORESET				
HRESET				
SRESET				
RSTCONF				

Table 5. DC Electrical Characteristics¹ (continued)

DC Electrical Characteristics

Characteristic	Symbol	Min	Мах	Unit
I _{OL} = 5.3mA	V _{OL}		0.4	V
<u>ČŠ</u> [0-9]	02			
CS(10)/BCTL1				
<u>CS(11)/AP(0)</u>				
BADDR[27-28]				
ALE				
BCTLO				
PWE[0-7]/PSDDQM[0-7]/PBS[0-7]				
PSDA10/PGPL0				
PSDWE/PGPL1				
POE/PSDRAS/PGPL2				
PSDCAS/PGPL3				
PGTA/PUPMWAIT/PGPL4/PPBS				
PSDAMUX/PGPL5				
LWE[0-3]LSDDQM[0-3]/LBS[0-3]/PCI_CFG[0-3]	l			
LSDA10/LGPL0/PCI_MODCKH0	1			
LSDWE/LGPL1/PCI_MODCKH1	l			
LOE/LSDRAS/LGPL2/PCI_MODCKH2	l			
LSDCAS/LGPL3/PCI_MODCKH3				
LGTA/LUPMWAIT/LGPL4/LPBS				
LSDAMUX/LGPL5/PCI_MODCK				
LSDAMOX/LGPL3/PCI_MODCK				
MODCK[1-3]/AP[1-3]/TC[0-2]/BNKSEL[0-2]				
$I_{OL} = 3.2mA$				
L_A15/FRAME/SMI				
L_A16/TRDY				
L_A17/IRDY/CKSTP_OUT				
L_A18/STOP				
L_A19/DEVSEL				
L_A20/IDSEL				
L_A21/ <u>PERR</u>				
L_A22/SERR				
L_A23/REQ0				
L_A24/ <u>REQ1</u> /HSEJSW				
L_A25/GNT0				
L_A26/GNT1/HSLED				
L_A27/GNT2/HSENUM				
L_A28/RST/CORE_SRESET				
L_A29/INTAL_A30/REQ2				
L_A31	l			
LCL_D[0-31)]/AD[0-31]	1			
LCL_DP[03]/C/BE[0-3]	l			
PA[0-31]	l			
PB[4-31]	1			
PC[0-31]	l			
PD[4-31]	1			
TDO	1			
QREQ	l			
	l			L

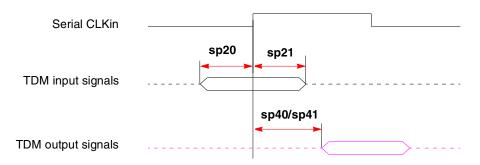
Table 5. DC Electrical Characteristics¹ (continued)


¹ The default configuration of the CPM pins (PA[0–31], PB[4–31], PC[0–31], PD[4–31]) is input. To prevent excessive DC current, either pull unused pins to GND or VDDH or configure them as outputs.

² TCK, TRST and PORESET have min VIH = 2.5V.

³ The leakage current is measured for nominal VDDH,VCCSYN, and VDD.

This figure shows the SCC/SMC/SPI/I²C internal clock.



Note: There are four possible timing conditions for SCC and SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 6. SCC/SMC/SPI/I²C Internal Clock Diagram

This figure shows TDM input and output signals.

Note: There are four possible TDM timing conditions:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 7. TDM Signal Diagram

NOTE: Conditions

The following conditions must be met in order to operate the MPC8272 family devices with 133 MHz bus: single PowerQUICC II Bus mode must be used (no external master, BCR[EBM] = 0); data bus must be in Pipeline mode (BRx[DR] = 1); internal arbiter and memory controller must be used. For expected load of above 40 pF, it is recommended that data and address buses be configured to low (25 Ω) impedance (SIUMCR[HLBE0] = 1, SIUMCR[HLBE1] = 1).

Spec N	umber		Value (ns)									
Setup Hold	Characteristic		Se	tup		Hold						
	Hold		66 MHz	83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz		
sp11	sp10	AACK/TA/TS/DBG/BG/BR/ARTRY/TEA	6	5	3.5	N/A	0.5	0.5	0.5	N/A		
sp12	sp10	Data bus in normal mode	5	4	3.5	N/A	0.5	0.5	0.5	N/A		
sp13	sp10	Data bus in pipeline mode (without ECC and PARITY)	N/A	4	2.5	1.5	N/A	0.5	0.5	0.5		
sp15	sp10	All other pins	5	4	3.5	N/A	0.5	0.5	0.5	N/A		

Table 11. AC Characteristics for SIU Inputs¹

¹ Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

This table lists SIU output characteristics.

Table 12. AC Characteristics for SIU Outputs¹

Spec Number				Value (ns)								
		Characteristic		Maximu	m Delay	/	Minimum Delay					
Max Min	Min			83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz		
sp31	sp30	PSDVAL/TEA/TA	7	6	5.5	N/A	1	1	1	N/A		
sp32	sp30	ADD/ADD_atr./BADDR/CI/GBL/WT	8	6.5	5.5	4.5 ²	1	1	1	1 ²		
sp33	sp30	Data bus ³	6.5	6.5	5.5	4.5	0.8	0.8	0.8	1		
sp34	sp30	Memory controller signals/ALE	6	5.5	5.5	4.5	1	1	1	1		
sp35	sp30	All other signals	6	5.5	5.5	N/A	1	1	1	N/A		

¹ Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

² Value is for ADD only; other sp32/sp30 signals are not applicable.

³ To achieve 1 ns of hold time at 66.67/83.33/100 MHZ, a minimum loading of 20 pF is required.

NOTE

Activating data pipelining (setting BRx[DR] in the memory controller) improves the AC timing.

This table lists SIU input characteristics.

Table 13. AC Characteristics for SIU Inputs ¹	
--	--

Spec N	lumber		Value (ns)								
Setup	Hold	Characteristic		Setup			Hold				
			66 MHz	83 MHz	100 MHz	66 MHz	83 MHz	100 MHz			
sp11	sp10	AACK/TA/TS/DBG/BG/BR/ARTRY/ TEA	6	5	3.5	0.5	0.5	0.5			
sp12	sp10	Data bus in normal mode	5	4	3.5	0.5	0.5	0.5			
sp13	sp10	Data bus in ECC and PARITY modes	7	5	3.5	0.5	0.5	0.5			
sp13a	sp10	Pipeline mode—Data bus (with or without ECC/PARITY)	5	4	2.5	0.5	0.5	0.5			
sp14	sp10	DP pins	7	5	3.5	0.5	0.5	0.5			
sp14a	sp10	Pipeline mode—DP pins	_	4	2.5	_	0.5	0.5			
sp15	sp10	All other pins	5	4	3.5	0.5	0.5	0.5			

¹ Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

This table lists SIU output characteristics.

Table 14. AC Characte	ristics for SIU	Outputs ¹
-----------------------	-----------------	----------------------

Spec N	lumber				Value	e (ns)			
Max	Min	Characteristic	Characteristic Maximum Delay						
			66 MHz	83 MHz	100 MHz	66 MHz	83 MHz	100 MHz	
sp31	sp30	PSDVAL/TEA/TA	7	6	5.5	1	1	1	
sp32	sp30	ADD/ADD_atr./BADDR/CI/GBL/WT	8	6.5	5.5	1	1	1	
sp33a	sp30	Data bus ²	6.5	6.5	5.5	0.7	0.7	0.7	
sp33b	sp30	DP	6	5.5	5.5	1	1	1	
sp34	sp30	Memory controller signals/ALE	6	5.5	5.5	1	1	1	
sp35	sp30	All other signals	6	5.5	5.5	1	1	1	
sp35a	sp30	AP	7	7	7	1	1	1	

¹ Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

 2 To achieve 1 ns of hold time at 66, 83, or 100 MHz, a minimum loading of 20 pF is required.

AC Electrical Characteristics

This figure shows signal behavior for all parity modes (including ECC, RMW parity, and standard parity).

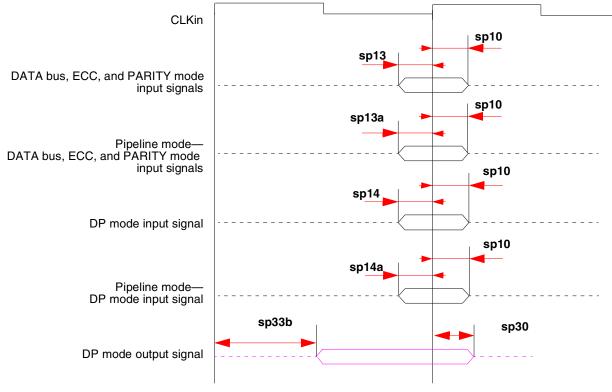
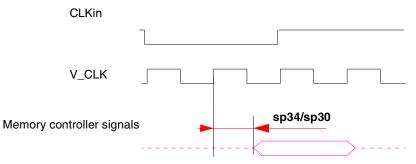



Figure 10. Parity Mode Diagram

This figure shows signal behavior in MEMC mode.

NOTE

Generally, all SoC bus and system output signals are driven from the rising edge of the input clock (CLKin). Memory controller signals, however, trigger on four points within a CLKin cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge, and T3 at the falling edge, of CLKin. However, the spacing of T2 and T4 depends on the PLL clock ratio selected, as shown in Table 15.

	Pins		Clocking Mode	PCI Clock Frequency Range	Reference
PCI_MODE	PCI_CFG[0]	PCI_MODCK ¹		(MHZ)	helefelide
1		_	Local bus	—	Table 18
0	0	0	PCI host	50–66	Table 19
0	0	1		25–50	Table 20
0	1	0	PCI agent	50–66	Table 21
0	1	1		25–50	Table 22

Table 17. SoC Clocking Modes

¹ Determines PCI clock frequency range. See Section 7.2, "PCI Host Mode," and Section 7.3, "PCI Agent Mode."

Within each mode, the configuration of bus, core, PCI, and CPM frequencies is determined by seven bits during the power-on reset—three hardware configuration pins (MODCK[1–3]) and four bits from hardware configuration word[28–31] (MODCK_H). Both the PLLs and the dividers are set according to the selected clock operation mode as described in the following sections.

7.1 Local Bus Mode

This table lists clock configurations for the SoC in local bus mode. The frequencies listed are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device.

NOTE

Clock configurations change only after PORESET is asserted.

Mode ²	Bus Clock ³ (MHz)		CPM Multiplication	_	Clock Hz)	CPU Multiplication	CPU Clock (MHz)						
MODCK_H-MODCK[1:3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High					
	Default Modes (MODCK_H= 0000)												
0000_000	37.5	133.3	3	112.5	400.0	4	150.0	533.3					
0000_001	33.3	133.3	3	100.0	400.0	5	166.7	666.7					
0000_010	37.5	100.0	4	150.0	400.0	4	150.0	400.0					
0000_011	30.0	100.0	4	120.0	400.0	5	150.0	500.0					
0000_100	60.0	167.0	2	120.0	334.0	2.5	150.0	417.5					
0000_101	50.0	167.0	2	100.0	334.0	3	150.0	501.0					
0000_110	60.0	160.0	2.5	150.0	400.0	2.5	150.0	400.0					
0000_111	50.0	160.0	2.5	125.0	400.0	3	150.0	480.0					
	•		Full Configurat	ion Mode	S								
0001_000	50.0	167.0	2	100.0	334.0	4	200.0	668.0					

Table 18. Clock Configurations for Local Bus Mode¹

Mode ³	Bus Clock ⁴ (MHz)		CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	ck PCI Division		PCI Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High	Factor	Low	High	
0001_001	50.0	66.7	3	150.0	200.0	6	300.0	400.0	3	50.0	66.7	
0001_010	50.0	66.7	3	150.0	200.0	7	350.0	466.6	3	50.0	66.7	
0001_011	50.0	66.7	3	150.0	200.0	8	400.0	533.3	3	50.0	66.7	
0010_000	50.0	66.7	4	200.0	266.6	5	250.0	333.3	4	50.0	66.7	
0010_001	50.0	66.7	4	200.0	266.6	6	300.0	400.0	4	50.0	66.7	
0010_010	50.0	66.7	4	200.0	266.6	7	350.0	466.6	4	50.0	66.7	
0010_011	50.0	66.7	4	200.0	266.6	8	400.0	533.3	4	50.0	66.7	
0010_100	75.0	100.0	4	300.0	400.0	5	375.0	500.0	6	50.0	66.7	
0010_101	75.0	100.0	4	300.0	400.0	5.5	412.5	549.9	6	50.0	66.7	
0010_110	75.0	100.0	4	300.0	400.0	6	450.0	599.9	6	50.0	66.7	
0011_000	50.0	66.7	5	250.0	333.3	5	250.0	333.3	5	50.0	66.7	
0011_001	50.0	66.7	5	250.0	333.3	6	300.0	400.0	5	50.0	66.7	
0011_010	50.0	66.7	5	250.0	333.3	7	350.0	466.6	5	50.0	66.7	
0011_011	50.0	66.7	5	250.0	333.3	8	400.0	533.3	5	50.0	66.7	
0100_000						Reserved						
0100_001	50.0	66.7	6	300.0	400.0	6	300.0	400.0	6	50.0	66.7	
0100_010	50.0	66.7	6	300.0	400.0	7	350.0	466.6	6	50.0	66.7	
0100_011	50.0	66.7	6	300.0	400.0	8	400.0	533.3	6	50.0	66.7	
0101 000	60.0	66.7	2	120.0	133.3	2.5	150.0	166.7	2	60.0	66.7	
0101_001	50.0	66.7	2	100.0	133.3	3	150.0		2	50.0	66.7	
0101_010	50.0	66.7	2	100.0	133.3	3.5	175.0	233.3	2	50.0	66.7	
0101_011	50.0	66.7	2	100.0		4	200.0		2	50.0	66.7	
0101_100	50.0	66.7	2	100.0		4.5	225.0		2	50.0	66.7	
0110_000	60.0	80.0	2.5	150.0	200.0	2.5	150.0	200.0	3	50.0	66.7	
0110_000	60.0	80.0	2.5	150.0	200.0	3	180.0		3	50.0	66.7	
0110_001	60.0	80.0	2.5	150.0	200.0	3.5	210.0		3	50.0	66.7	

Table 19. Clock Configurations for PCI Host Mode (PCI_MODCK=0)^{1,2} (continued)

Clock Configuration Modes

NOTE: PCI_MODCK

In PCI mode only, PCI_MODCK comes from the LGPL5 pin and MODCK_H[0–3] comes from {LGPL0, LGPL1, LGPL2, LGPL3}.

NOTE: Tval (Output Hold)

The minimum Tval = 2 ns when PCI_MODCK = 1, and the minimum Tval = 1 ns when PCI_MODCK = 0. Therefore, designers should use clock configurations that fit this condition to achieve PCI-compliant AC timing.

Table 21. Clock C	onfigurations	for PCI	Agent Mode	(PCI	_MODCK=0) ^{1,2}

Mode ³	PCI ((M	Clock Hz)	CPM Multiplication	CPM (M	Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
			De	efault N	lodes (MODCK_H=0000				•	
0000_000	60.0	66.7	2	120.0	133.3	2.5	150.0	166.7	2	60.0	66.7
0000_001	50.0	66.7	2	100.0	133.3	3	150.0	200.0	2	50.0	66.7
0000_010	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0000_011	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
0000_100	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
0000_101	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
0000_110	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
0000_111	50.0	66.7	4	200.0	266.6	3	240.0	320.0	2.5	80.0	106.7
		•		Full C	onfigu	ration Modes				•	
0001_001	60.0	66.7	2	120.0	133.3	5	150.0	166.7	4	30.0	33.3
0001_010	50.0	66.7	2	100.0	133.3	6	150.0	200.0	4	25.0	33.3
0001_011	50.0	66.7	2	100.0	133.3	7	175.0	233.3	4	25.0	33.3
0001_100	50.0	66.7	2	100.0	133.3	8	200.0	266.6	4	25.0	33.3
0010_001	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
0010_010	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
0010_011	50.0	66.7	3	150.0	200.0	4	240.0	320.0	2.5	60.0	80.0
0010_100	50.0	66.7	3	150.0	200.0	4.5	270.0	360.0	2.5	60.0	80.0
0011_000	Reserved										
0011_001		Reserved									
0011_010	Reserved										
0011_011						Reserved					
0011_100						Reserved					

Clock Configuration Modes

Table 22. Clock Configurations for I	PCI Agent Mode (PCI	_MODCK=1) ^{1,2} (continued)

						(
Mode ³		Clock Hz)	CPM Clock CPM (MHz) Multiplication		_		CPU ((M	Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	gh Factor ⁵	Low	High	Factor	Low	High
1011_010	25.0	50.0	8	200.0	400.0	3	240.0	480.0	2.5	80.0	160.0
1011_011	25.0	50.0	8	200.0	400.0	3.5	280.0	560.0	2.5	80.0	160.0
1011_100	25.0	50.0	8	200.0	400.0	4	320.0	640.0	2.5	80.0	160.0
1100_101	25.0	50.0	6	150.0	300.0	4	200.0	400.0	3	50.0	100.0
1100_110	25.0	50.0	6	150.0	300.0	4.5	225.0	450.0	3	50.0	100.0
1100_111	25.0	50.0	6	150.0	300.0	5	250.0	500.0	3	50.0	100.0
1101_000	25.0	50.0	6	150.0	300.0	5.5	275.0	550.0	3	50.0	100.0
		•			•			• • •		•	
1101_001	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0
1101_010	25.0	50.0	6	150.0	300.0	4	240.0	480.0	2.5	60.0	120.0
1101_011	25.0	50.0	6	150.0	300.0	4.5	270.0	540.0	2.5	60.0	120.0
1101_100	25.0	50.0	6	150.0	300.0	5	300.0	600.0	2.5	60.0	120.0
1110_000	25.0	50.0	5	125.0	250.0	2.5	156.3	312.5	2	62.5	125.0
1110_001	25.0	50.0	5	125.0	250.0	3	187.5	375.0	2	62.5	125.0
1110_010	25.0	50.0	5	125.0	250.0	3.5	218.8	437.5	2	62.5	125.0
1110_011	25.0	50.0	5	125.0	250.0	4	250.0	500.0	2	62.5	125.0
										· · · -	
1110_100	25.0	50.0	5	125.0	250.0	4	166.7		3	41.7	83.3
1110_101	25.0	50.0	5	125.0	250.0	4.5	187.5	375.0	3	41.7	83.3
1110_110	25.0	50.0	5		250.0	5	208.3		3	41.7	83.3
1110_111	25.0 50.0 5 125.0 250.0 5.5 229.2 458.3 3 41.7 83.3										
1100_000		Reserved									
1100_001		Reserved									
1100_010						Reserved					

¹ The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not violate the frequency rating of the user's device. The minimum CPM frequency is 120 MHz. Minimum CPU frequency is determined by the clock mode. For modes with a CPU multiplication factor <= 3, the minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. For modes with a CPU multiplication factor >= 3.5: for Rev 0.1 the minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices.

This figure shows the pinout of the ZU and VV packages as viewed from the top surface.

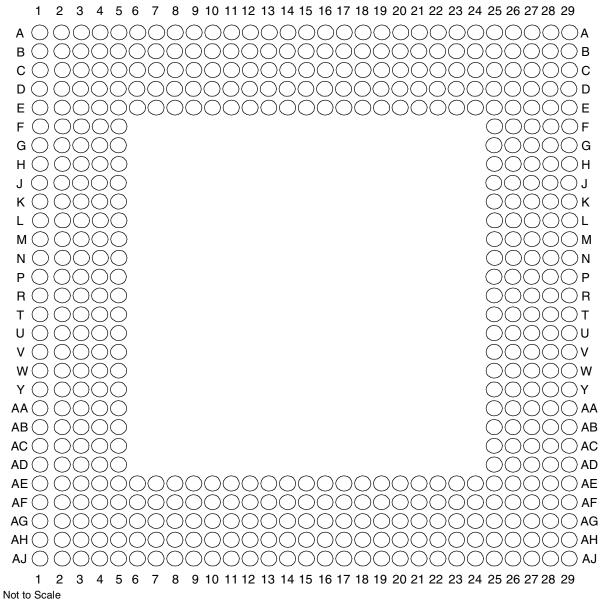


Figure 13. Pinout of the 480 TBGA Package (View from Top)

This table lists the pins of the MPC8280 and MPC8270, and Table 24 defines conventions and acronyms used in this table.

	Ball
MPC8280/MPC8270	Dali
BR	W5
BG	F4

Pinout

Table 23. MPC8280 and MPC8270 (ZU and VV Packages) Pinout List (continued)

	Dell			
MPC8280/MPC8270	MPC8280 only	Ball		
TDO		AF5		
TRIS		AB4		
PORESET ¹		AG6		
HRESET		AH5		
SRESET		AF6		
QREQ		AA3		
RSTCONF		AJ4		
MODCK1/AP1/TC0/BNKSEL0		W2		
MODCK2/AP2/TC1/BNKSEL1		W3		
MODCK3/AP3/TC2/BNKSEL2		W4		
CLKIN1		AH4		
PA0/RESTART1/DREQ3	FCC2_UTM_TXADDR2	AC29 ²		
PA1/REJECT1/DONE3	FCC2_UTM_TXADDR1	AC25 ²		
PA2/CLK20/DACK3	FCC2_UTM_TXADDR0	AE28 ²		
PA3/CLK19/DACK4/L1RXD1A2	FCC2_UTM_RXADDR0	AG29 ²		
PA4/REJECT2/DONE4	FCC2_UTM_RXADDR1	AG28 ²		
PA5/RESTART2/DREQ4	FCC2_UTM_RXADDR2/FCC1_UT_RXPRT Y	AG26 ²		
PA6/FCC2_RXADDR3	L1RSYNCA1	AE24 ²		
PA7/SMSYN2/FCC2_TXADDR3	L1TSYNCA1/L1GNTA1	AH25 ²		
PA8/SMRXD2/FCC2_TXADDR4	L1RXD0A1/L1RXDA1	AF23 ²		
PA9/SMTXD2	L1TXD0A1	AH23 ²		
PA10/MSNUM5	FCC1_UT8_RXD0/FCC1_UT16_RXD8	AE22 ²		
PA11/MSNUM4	FCC1_UT8_RXD1/FCC1_UT16_RXD9	AH22 ²		
PA12/MSNUM3	FCC1_UT8_RXD2/ FCC1_UT16_RXD10	AJ21 ²		
PA13/MSNUM2	FCC1_UT8_RXD3/ FCC1_UT16_RXD11	AH20 ²		
PA14/FCC1_MII_HDLC_RXD3 FCC1_UT8_RXD4/ FCC1_UT16_RXD12		AG19 ²		
PA15/FCC1_MII_HDLC_RXD2	FCC1_UT8_RXD5/ FCC1_UT16_RXD13	AF18 ²		
PA16/FCC1_MII_HDLC_RXD1/ FCCI_RMII_RXD1	FCC1_UT8_RXD6/ FCC1_UT16_RXD14	AF17 ²		

Table 23. MPC8280 and MPC8270 (ZU and VV Packages) Pinout List (continued)

Р	in Name	Ball
MPC8280/MPC8270	MPC8280 only	Dan
PC0/DREQ1/BRGO7/SMSYN2/ L1CLKOA2		AB26 ²
PC1/DREQ2/BRGO6/L1RQA2/ SPISEL		AD29 ²
PC2/FCC3_CD/DONE2	FCC2_UT8_TXD3	AE29 ²
PC3/FCC3_CTS/DACK2/CTS4/ USB_RP	FCC2_UT8_TXD2	AE27 ²
PC4/SI2_L1ST4/FCC2_CD	FCC2_UTM_RXENB/ FCC2_UTS_RXENB	AF27 ²
PC5/SI2_L1ST3/FCC2_CTS	FCC2_UTM_TXCLAV/ FCC2_UTS_TXCLAV	AF24 ²
PC6/FCC1_CD	L1CLKOC1/FCC1_UTM_RXADDR2/ FCC1_UTS_RXADDR2/ FCC1_UTM_RXCLAV1	AJ26 ²
PC7/FCC1_CTS	L1RQC1/FCC1_UTM_TXADDR2/ FCC1_UTS_TXADDR2/ FCC1_UTM_TXCLAV1	AJ25 ²
PC8/CD4/RENA4/SI2_L1ST2/CTS3/ USBRN	FCC1_UT16_TXD0	AF22 ²
PC9/CTS4/CLSN4/SI2_L1ST1/ L1TSYNCA2/L1GNTA2/USB_RP	FCC1_UT16_TXD1	AE21 ²
PC10/CD3/RENA3	FCC1_UT16_TXD2/SI1_L1ST4/ FCC2_UT8_RXD3	AF20 ²
PC11/CTS3/CLSN3/L1TXD3A2	L1CLKOD1/FCC2_UT8_RXD2	AE19 ²
PC12/CD2/RENA2	SI1_L1ST3/FCC1_UTM_RXADDR1/ FCC1_UTS_RXADDR1	AE18 ²
PC13/CTS2/CLSN2	L1RQD1/FCC1_UTM_TXADDR1/ FCC1_UTS_TXADDR1	AH18 ²
PC14/CD1/RENA1	FCC1_UTM_RXADDR0/ FCC1_UTS_RXADDR0	AH17 ²
PC15/CTS1/CLSN1/SMTXD2	FCC1_UTM_TXADDR0/ FCC1_UTS_TXADDR0	AG16 ²
PC16/CLK16/TIN4		AF15 ²
PC17/CLK15/TIN3/BRGO8		AJ15 ²
PC18/CLK14/TGATE2	AH14 ²	
PC19/CLK13/BRGO7/SPICLK	AG13 ²	
PC20/CLK12/TGATE1/USB_OE	AH12 ²	
PC21/CLK11/BRGO6		AJ11 ²
PC22/CLK10/DONE1/FCC1_UT_TXPRT	Y	AG10 ²
PC23/CLK9/BRGO5/DACK1		AE10 ²

Table 25. MPC8275 and MPC8270 (VR and ZQ Packages) Pinout List (continued)

Pin Nam	e	Dell
MPC8275/MPC8270	MPC8275 only	Ball
LSDCAS/LGPL3/PCI_MODCKH3		AD5
LGTA/LUPMWAIT/LGPL4/LPBS		AC5
LGPL5/LSDAMUX/PCI_MODCK		AB5
LWR		AF6
L_A14/PAR		AE13
L_A15/FRAME/SMI		AD15
L_A16/TRDY		AF16
L_A17/IRDY/CKSTP_OUT		AF15
L_A18/STOP		AE15
L_A19/DEVSEL		AE14
L_A20/IDSEL		AC17
L_A21/PERR		AD14
L_A22/SERR		AF13
L_A23/REQ0		AE20
L_A24/REQ1/HSEJSW		AC14
L_A25/GNT0		AC19
L_A26/GNT1/HSLED		AD13
L_A27/GNT2/HSENUM		AF21
L_A28/RST/CORE_SRESET		AF22
L_A29/INTA		AE21
L_A30/REQ2		AB14
L_A31/DLLOUT		AD20
LCL_D0/AD0		AB9
LCL_D1/AD1		AB10
LCL_D2/AD2		AC10
LCL_D3/AD3		AD10
LCL_D4/AD4		AE10
LCL_D5/AD5		AF10
LCL_D6/AD6		AF11
LCL_D7/AD7		AB12
LCL_D8/AD8		AB11
LCL_D9/AD9		AF12
LCL_D10/AD10		AE11

Pinout

Table 25. MPC8275 and MPC8270 (VR and ZQ Packages) Pinout List (continued)

	Ball	
MPC8275/MPC8270	MPC8275 only	Dan
PD27/TXD2	FCC1_UT16_RXD7	H22 ²
PD28/RXD2	FCC1_UT16_TXD7	B22 ²
PD29/RTS1/TENA1 FCC1_UTM_RXADDR3/ FCC1_UTS_RXADDR3/ FCC1_UTM_RXCLAV2/ FCC2_UTM_RXADDR4/ FCC2_UTS_RXADDR1		D22 ²
PD30/TXD1	FCC2_UTM_TXENB/ FCC2_UTS_TXENB	C21 ²
PD31/RXD1	I	E19 ²
VCCSYN		D19
VCCSYN1		K6
CLKIN2		K21
SPARE4 ³		C14
PCI_MODE ⁴		AD24
SPARE6 ³		B15
No connect ⁵		E17, C23
I/O power		E6, F6, H6, L5, L6, P6, T6, U6, V5, Y5, AA6, AA8, AA10, AA11, AA14, AA16, AA17, AB19, AB20, W21, U21, T21, P21, N21, M22, J22, H21, F21, F19, F17, E16, F14, E13, E12, F10, E10, E9
Core Power		L3, V4, W3, AC11, AD11, AB15, U25, T24, J24, H25, F23, B19, D17, C17, D10, C10
Ground		B18 ⁶ , A18 ⁷ , A2, B1, B2, A5, C5, C18, D4, D6, G2, L4, P1, R1, R4, AC4, AE7, AC23, Y25, N24, J23, A23, D23, D20, E18, A13, A16, K10, K11, K12, K13, K14, K15, K16, K17, L10, L11, L12, L13, L14, L15, L16, L17, M10, M11, M12, M13, M14, M15, M16, M17, N10, N11, N12, N13, N14, N15, N16, N17, P10, P11, P12, P13, P14, P15, P16, P17, R10, R11,R12, R13, R14, R15, R16, R17, T10, T11, T12, T13, T14, T15, T16, T17, U10, U11, U12, U13, U14, U15, U16, U17

¹ Should be tied to VDDH via a 2K Ω external pull-up resistor.

² The default configuration of the CPM pins (PA[0–31], PB[4–31], PC[0–31], PD[4–31]) is input. To prevent excessive DC current, it is recommended to either pull unused pins to GND or VDDH, or to configure them as outputs.

- ³ Must be pulled down or left floating.
- ⁴ If PCI is not desired, must be pulled up or left floating.
- ⁵ Sphere is not connected to die.
- ⁶ GNDSYN (B18): This pin exists as a separate ground signal in MPC826x(A) devices; it does not exist as a separate ground signal on the MPC8275/MPC8270. New designs must connect B18 to GND and follow the suggestions in Section 4.6, "Layout Practices." Old designs in which the MPC8275/MPC8270 is used as a drop-in replacement can leave the pin connected to GND with the noise filtering capacitors.
- ⁷ XFC (A18) pin: This pin is used in MPC826x(A) devices; it is not used in MPC8275/MPC8270 because there is no need for external capacitor to operate the PLL. New designs should connect A18 (XFC) pin to GND. Old designs in which the MPC8275/MPC8270 is used as a drop-in replacement can leave the pin connected to the current capacitor.

9 Package Description

This figure shows the side profile of the TBGA package to indicate the direction of the top surface view.

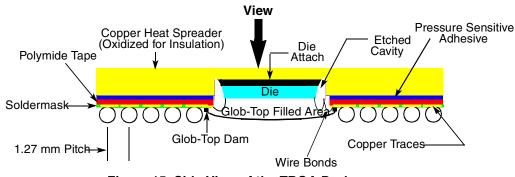


Figure 15. Side View of the TBGA Package

This figure shows the side profile of the PBGA package to indicate the direction of the top surface view.

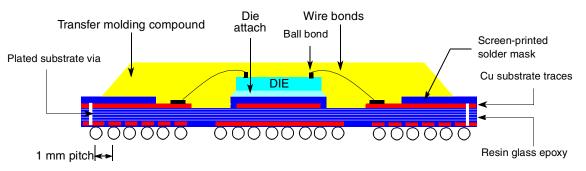


Figure 16. Side View of the PBGA Package Remove

Package Description

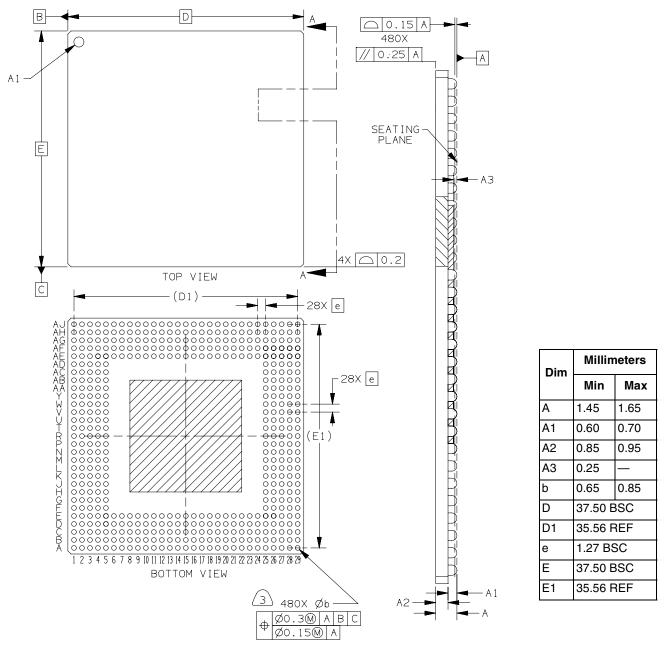
9.1 Package Parameters

This table provides package parameters.

NOTE: Temperature Reflow for the VR Package

In the VR package, sphere composition is lead-free (see Table 2). This requires higher temperature reflow than what is required for other PowerQUICC II packages. Consult "Freescale PowerQUICC II Pb-Free Packaging Information" (MPC8250PBFREEPKG) available on www.freescale.com.

Package	SoCs	Outline (mm)	Туре	Interconnects	Pitch (mm)	Nominal Unmounted Height (mm)
ZU	MPC8280 MPC8270	37.5 × 37.5	TBGA	480	1.27	1.55
VV	MPC8280 MPC8270	37.5 × 37.5	TBGA	480	1.27	1.55
VR	MPC8275VR MPC8270VR	27 × 27	PBGA	516	1	2.25
ZQ	MPC8275ZQ MPC8270ZQ	27 × 27	PBGA	516	1	2.25


Table 26	. Package	Parameters
----------	-----------	------------

Package Description

9.2 Mechanical Dimensions

This figure provides the mechanical dimensions and bottom surface nomenclature of the 480 TBGA (ZU/VV) package. See Table 2, "HiP7 PowerQUICC II Device Packages."

Notes:

- 1. Dimensions and Tolerancing per ASME Y14.5M-1994.
- 2. Dimensions in millimeters.
- 3. Dimension b is measured at the maximum solder ball diameter, parallel to primary data A.
- 4. Primary data A and the seating plane are defined by the spherical crowns of the solder balls.

Figure 17. Mechanical Dimensions and Bottom Surface Nomenclature—480 TBGA

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC, QorlQ, StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. CoreNet, QorlQ Qonverge, QUICC Engine, and VortiQa are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2002–2011 Freescale Semiconductor, Inc.

Document Number: MPC8280EC Rev. 2 09/2011

