

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

2000	
Product Status	Active
Core Processor	PowerPC G2_LE
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	333MHz
Co-Processors/DSP	Communications; RISC CPM
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (3)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	516-BBGA
Supplier Device Package	516-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8270zqmiba

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Provides management for BRI devices as general-circuit interface (GCI) controllers in time-division-multiplexed (TDM) channels
- Transparent
- UART (low-speed operation)
- One serial peripheral interface identical to the MPC860 SPI
- One I^2C controller (identical to the MPC860 I^2C controller)
 - Microwire compatible
 - Multiple-master, single-master, and slave modes
- Up to eight TDM interfaces (four on the MPC8270)
 - Supports two groups of four TDM channels for a total of eight TDMs (one group of four on the MPC8270 and the MPC8275)
 - 2,048 bytes of SI RAM
 - Bit or byte resolution
 - Independent transmit and receive routing, frame synchronization
 - Supports T1, CEPT, T1/E1, T3/E3, pulse code modulation highway, ISDN basic rate, ISDN primary rate, Freescale interchip digital link (IDL), general circuit interface (GCI), and user-defined TDM serial interfaces
- Eight independent baud rate generators and 20 input clock pins for supplying clocks to FCCs, SCCs, SMCs, and serial channels
- Four independent 16-bit timers that can be interconnected as two 32-bit timers
- Inverse multiplexing for ATM capabilities (IMA) (MPC8280 only). Supported by eight transfer transmission convergence (TC) layers between the TDMs and FCC2.
- Transmission convergence (TC) layer (MPC8280 only)

2 **Operating Conditions**

This table shows the maximum electrical ratings.

Table 3. Absolute Maximum Ratings¹

Rating	Symbol	Value	Unit
Core supply voltage ²	VDD	-0.3 - 2.25	V
PLL supply voltage ²	VCCSYN	-0.3 - 2.25	V
I/O supply voltage ³	VDDH	-0.3 - 4.0	V
Input voltage ⁴	VIN	GND(-0.3) - 3.6	V
Junction temperature	Тј	120	°C
Storage temperature range	T _{STG}	(–55) – (+150)	°C

¹ Absolute maximum ratings are stress ratings only; functional operation (see Table 4) at the maximums is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage.

3 DC Electrical Characteristics

This table shows DC electrical characteristics.

Table 5. DC	Electrical	Characteristics ¹
-------------	------------	------------------------------

Characteristic	Symbol	Min	Max	Unit
Input high voltage—all inputs except TCK, TRST and PORESET ²	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	GND	0.8	V
CLKIN input high voltage	V _{IHC}	2.4	3.465	V
CLKIN input low voltage	V _{ILC}	GND	0.4	V
Input leakage current, V _{IN} = VDDH ³	I _{IN}	_	10	μA
Hi-Z (off state) leakage current, V _{IN} = VDDH ³	I _{OZ}	_	10	μA
Signal low input current, $V_{IL} = 0.8 V^4$	ΙL	_	1	μA
Signal high input current, V _{IH} = 2.0 V	Ι _Η	_	1	μA
Output high voltage, $I_{OH} = -2 \text{ mA}$ except UTOPIA mode, and open drain pins In UTOPIA mode ⁵ (UTOPIA pins only): $I_{OH} = -8.0\text{mA}$ PA[0-31] PB[4-31] PC[0-31] PD[4-31]	V _{OH}	2.4	_	V
In UTOPIA mode ⁵ (UTOPIA pins only): I _{OL} = 8.0mA PA[0-31] PB[4-31] PC[0-31] PD[4-31]	V _{OL}	_	0.5	V

DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
I _{OL} = 6.0mA	V _{OL}	—	0.4	V
BR	02			
BG				
ABB/IRQ2				
TS				
A[0-31]				
TT[0-4]				
TBST				
TSIZE[0-3]				
AACK				
ARTRY				
DBG				
DBB/IRQ3				
D[0-63]				
DP(0)/ <u>RSRV/EXT_BR2</u>				
DP(1)/IRQ1/EXT_BG2				
DP(2)/TLBISYNC/IRQ2/EXT_DBG2				
DP(3)/IRQ3/EXT_BR3/CKSTP_OUT				
DP(4)/IRQ4/EXT_BG3/CORE_SREST				
DP(5)/TBEN/EXT_DBG3/IRQ5/CINT				
DP(6)/CSE(0)/IRQ6				
DP(7)/CSE(1)/IRQ7				
PSDVAL				
TA				
GBL/IRQ1				
WT/BADDR30/IRQ3 L2_HIT/IRQ4				
CPU_BG/BADDR31/IRQ5/CINT CPU_DBG				
CPU_BR IRQ0/NMI_OUT				
IRQ7/PCI_RSTINT_OUT/APE				
PORESET				
HRESET				
SRESET				
RSTCONF				

Table 5. DC Electrical Characteristics¹ (continued)

AC Electrical Characteristics

AC Electrical Characteristics 6

The following sections include illustrations and tables of clock diagrams, signals, and CPM outputs and inputs for 66.67/83.33/100 MHz devices. Note that AC timings are based on a 50-pf load for MAX Delay and 10-pf load for MIN delay. Typical output buffer impedances are shown in this table.

Output Buffers	Typical Impedance (Ω)
60x bus	45 or 27 ²
Local bus	45
Memory controller	45 or 27 ²
Parallel I/O	45
PCI	27

Table 8.	Output	Buffer	Impedances ¹
----------	--------	--------	-------------------------

1 These are typical values at 65° C. Impedance may vary by ±25% with process and temperature.

2 On silicon revision 0.0 (mask #: 0K49M), selectable impedance is not available. Impedance is set at 45 Ω .

On all other revisions, impedance value is selected through the SIUMCR[20,21]. See the SoC reference manual.

6.1 **CPM AC Characteristics**

FCC outputs-external clock (NMSI)

SCC/SMC/SPI/I2C outputs-internal

SCC/SMC/SPI/I2C outputs-external

This table lists CPM output characteristics.

clock (NMSI)

clock (NMSI)

PIO outputs

TDM outputs/SI

TIMER/IDMA outputs

Spec N	lumber	Characteristic			Value	e (ns)		
Max	Min		Ма	iximum De	lay	Mi	nimum Del	ay
			66 MHz	83 MHz	100 MHz	66 MHz	83 MHz	10
sp36a	sp37a	FCC outputs—internal clock (NMSI)	6	5.5	0.5	0.5		

8

10

8

11

11

11

8

10

8

11

11

11

8

10

8

11

11

11

2

0

2

2.5

0.5

0.5

2

0

2

2.5

0.5

0.5

Table 9. AC Characteristics for CPM Outputs¹

Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

100 MHz

0.5

2

0

2

2.5

0.5

0.5

sp36b

sp38a

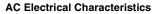
sp38b

sp40

sp42

sp42a

sp37b


sp39a

sp39b

sp41

sp43

sp43a

This table lists CPM input characteristics.

NOTE: Rise/Fall Time on CPM Input Pins

It is recommended that the rise/fall time on CPM input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of VCC; fall time refers to transitions from 90% to 10% of VCC.

Spec N	lumber		Value (ns)								
Setup	Setup Hold	Characteristic		Setup			Hold				
			66 MHz	83 MHz	100 MHz	66 MHz	83 MHz	100 MHz			
sp16a	sp17a	FCC inputs—internal clock (NMSI)	6	6	6	0	0	0			
sp16b	sp17b	FCC inputs—external clock (NMSI)	2.5	2.5	2.5	2	2	2			
sp18a	sp19a	SCC/SMC/SPI/I2C inputs—internal clock (NMSI)	6	6	6	0	0	0			
sp18b	sp19b	SCC/SMC/SPI/I2C inputs—external clock (NMSI)	4	4	4	2	2	2			
sp20	sp21	TDM inputs/SI	5	5	5	2.5	2.5	2.5			
sp22	sp23	PIO/TIMER/IDMA inputs	8	8	8	0.5	0.5	0.5			

Table 10. AC Characteristics for CPM Inputs¹

¹ Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

NOTE

Although the specifications generally reference the rising edge of the clock, the following AC timing diagrams also apply when the falling edge is the active edge.

This figure shows the FCC internal clock.

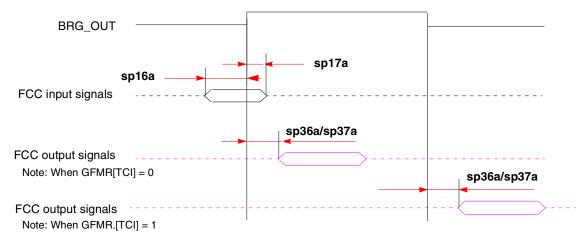


Figure 3. FCC Internal Clock Diagram

AC Electrical Characteristics

This figure shows the FCC external clock.

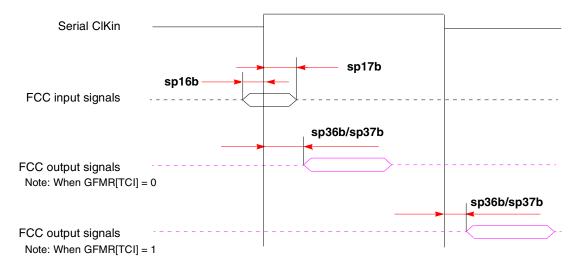
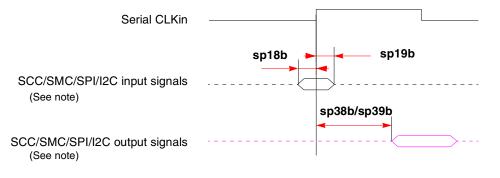



Figure 4. FCC External Clock Diagram

This figure shows the SCC/SMC/SPI/I²C external clock.

Note: There are four possible timing conditions for SCC and SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 5. SCC/SMC/SPI/I²C External Clock Diagram

- ¹ The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not violate the frequency rating of the user's device. The minimum CPM frequency is 120 MHz. Minimum CPU frequency is determined by the clock mode. For modes with a CPU multiplication factor <= 3, the minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. For modes with a CPU frequency is 250 MHz; for Rev A or later the minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices.</p>
- ² MODCK_H = hard reset configuration word [28–31]. MODCK[1-3] = three hardware configuration pins.
- ³ 60x and local bus frequency. Identical to CLKIN.
- ⁴ CPM multiplication factor = CPM clock/bus clock
- ⁵ CPU multiplication factor = Core PLL multiplication factor

7.2 PCI Host Mode

These tables show clock configurations for PCI host mode. The frequency values listed are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. Note that in PCI host mode the input clock is the following:

NOTE: PCI_MODCK

In PCI mode only, PCI_MODCK comes from the LGPL5 pin and MODCK_H[0–3] comes from {LGPL0, LGPL1, LGPL2, LGPL3}.

NOTE: Tval (Output Hold)

The minimum Tval = 2 ns when PCI_MODCK = 1, and the minimum Tval = 1 ns when PCI_MODCK = 0. Therefore, designers should use clock configurations that fit this condition to achieve PCI-compliant AC timing.

Mode ³		Clock ⁴ Hz)	CPM Multiplication	CPM Clock (MHz)						(MHz) CPU		CPU		Clock Hz)	PCI Division	PCI Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High	Factor	Low	High						
		•	Def	ault Mc	odes (M	ODCK_H=0000)				•	•						
0000_000	60.0	66.7	2	120.0	133.3	2.5	150.0	166.7	2	60.0	66.7						
0000_001	50.0	66.7	2	100.0	133.3	3	150.0	200.0	2	50.0	66.7						
0000_010	60.0	80.0	2.5	150.0	200.0	3	180.0	240.0	3	50.0	66.7						
0000_011	60.0	80.0	2.5	150.0	200.0	3.5	210.0	280.0	3	50.0	66.7						
0000_100	60.0	80.0	2.5	150.0	200.0	4	240.0	320.0	3	50.0	66.7						
0000_101	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7						
0000_110	50.0	66.7	3.5	150.0	200.0	3.5	175.0	233.3	3	50.0	66.7						
0000_111	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7						
				Full Co	onfigura	ation Modes											
0001_000	50.0	66.7	3	150.0	200.0	5	250.0	333.3	3	50.0	66.7						

Table 19. Clock Configurations for PCI Host Mode (PCI_MODCK=0)^{1,2}

Mode ³		Clock ⁴ Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- Modck[1-3]	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High	Factor	Low	High
1010_011	75.0	100.0	2	150.0	200.0	3.5	262.5	350.0	3	50.0	66.7
1010_100	75.0	100.0	2	150.0	200.0	4	300.0	400.0	3	50.0	66.7
1011_000						Reserved					
1011_001	80.0	106.7	2.5	200.0	266.6	2.5	200.0	266.6	4	50.0	66.7
1011_010	80.0	106.7	2.5	200.0	266.6	3	240.0	320.0	4	50.0	66.7
1011_011	80.0	106.7	2.5	200.0	266.6	3.5	280.0	373.3	4	50.0	66.7
1011_100	80.0	106.7	2.5	200.0	266.6	4	320.0	426.6	4	50.0	66.7
1011_101	80.0	106.7	2.5	200.0	266.6	4.5	360.0	480.0	4	50.0	66.7
1101 000	100.0	100.0	0.5	050.0	000.0	0		400.0	r	50.0	00.7
1101_000	100.0	133.3	2.5	250.0	333.3	3	300.0		5	50.0	66.7
1101_001	100.0	133.3	2.5	250.0	333.3	3.5	350.0	466.6	5	50.0	66.7
1101_010	100.0	133.3	2.5	250.0	333.3	4	400.0	533.3	5	50.0	66.7
1101_011	100.0	133.3	2.5	250.0	333.3	4.5	450.0	599.9	5	50.0	66.7
1101_100	100.0	133.3	2.5	250.0	333.3	5	500.0	666.6	5	50.0	66.7
1101_101	125.0	166.7	2	250.0	333.3	3	375.0	500.0	5	50.0	66.7
1101_110	125.0	166.7	2	250.0	333.3	4	500.0	666.6	5	50.0	66.7
1110_000	100.0	133.3	3	300.0	400.0	3.5	350.0	466.6	6	50.0	66.7
1110_000	100.0	133.3	3	300.0	400.0	4	400.0	400.0 533.3	6	50.0	66.7
				300.0				599.9			
1110_010 1110_011	100.0 100.0	133.3 133.3	3	300.0	400.0	4.5 5	450.0 500.0	599.9 666.6	6	50.0 50.0	66.7 66.7
					400.0				6	_	
1110_100	100.0	133.3	3	300.0	400.0	5.5	550.0	733.3	6	50.0	66.7
1100_000						Reserved					
1100_001						Reserved					
1100_010						Reserved					

Table 19. Clock Configurations for PCI Host Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³		Clock ⁴ Hz)	CPM Multiplication	CPM Clock (MHz)		CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High	Factor	Low	High
1101_001	50.0	100.0	2.5	125.0	250.0	3.5	175.0	350.0	5	25.0	50.0
1101_010	50.0	100.0	2.5	125.0	250.0	4	200.0	400.0	5	25.0	50.0
1101_011	50.0	100.0	2.5	125.0	250.0	4.5	225.0	450.0	5	25.0	50.0
1101_100	50.0	100.0	2.5	125.0	250.0	5	250.0	500.0	5	25.0	50.0
1101_101	62.5	125.0	2	125.0	250.0	3	187.5	375.0	5	25.0	50.0
1101_110	62.5	125.0	2	125.0	250.0	4	250.0	500.0	5	25.0	50.0
1110_000	50.0	100.0	3	150.0	300.0	3.5	175.0	350.0	6	25.0	50.0
1110_001	50.0	100.0	3	150.0	300.0	4	200.0	400.0	6	25.0	50.0
1110_010	50.0	100.0	3	150.0	300.0	4.5	225.0	450.0	6	25.0	50.0
1110_011	50.0	100.0	3	150.0	300.0	5	250.0	500.0	6	25.0	50.0
1110_100	50.0	100.0	3	150.0	300.0	5.5	275.0	550.0	6	25.0	50.0
								11		I	
1100_000						Reserved					
1100_001						Reserved					
1100_010						Reserved					

Table 20. Clock Configurations for PCI Host Mode (PC	PCI_MODCK=1) ^{1,2} (continued)
--	---

¹ The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not violate the frequency rating of the user's device. The minimum CPM frequency is 120 MHz. Minimum CPU frequency is determined by the clock mode. For modes with a CPU multiplication factor <= 3, the minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. For modes with a CPU multiplication factor >= 3.5: for Rev0.1 the minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices.

- ² As Table 17 shows, PCI_MODCK determines the PCI clock frequency range. See Table 20 for higher configurations.
- ³ MODCK_H = hard reset configuration word [28–31]. MODCK[1-3] = three hardware configuration pins.
- ⁴ 60x and local bus frequency. Identical to CLKIN.
- ⁵ CPM multiplication factor = CPM clock/bus clock
- ⁶ CPU multiplication factor = Core PLL multiplication factor

7.3 PCI Agent Mode

These tables show configurations for PCI agent mode. The frequency values listed are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. Note that in PCI agent mode the following:

NOTE: PCI_MODCK

In PCI mode only, PCI_MODCK comes from the LGPL5 pin and MODCK_H[0–3] comes from {LGPL0, LGPL1, LGPL2, LGPL3}.

NOTE: Tval (Output Hold)

The minimum Tval = 2 ns when PCI_MODCK = 1, and the minimum Tval = 1 ns when PCI_MODCK = 0. Therefore, designers should use clock configurations that fit this condition to achieve PCI-compliant AC timing.

Table 21. Clock C	onfigurations	for PCI	Agent Mode	(PCI	_MODCK=0) ^{1,2}

Mode ³	PCI ((M	Clock Hz)	CPM Multiplication	CPM (M	Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
			De	efault N	lodes (MODCK_H=0000				•	
0000_000	60.0	66.7	2	120.0	133.3	2.5	150.0	166.7	2	60.0	66.7
0000_001	50.0	66.7	2	100.0	133.3	3	150.0	200.0	2	50.0	66.7
0000_010	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0000_011	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
0000_100	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
0000_101	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
0000_110	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
0000_111	50.0	66.7	4	200.0	266.6	3	240.0	320.0	2.5	80.0	106.7
		•		Full C	onfigu	ration Modes				•	
0001_001	60.0	66.7	2	120.0	133.3	5	150.0	166.7	4	30.0	33.3
0001_010	50.0	66.7	2	100.0	133.3	6	150.0	200.0	4	25.0	33.3
0001_011	50.0	66.7	2	100.0	133.3	7	175.0	233.3	4	25.0	33.3
0001_100	50.0	66.7	2	100.0	133.3	8	200.0	266.6	4	25.0	33.3
0010_001	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
0010_010	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
0010_011	50.0	66.7	3	150.0	200.0	4	240.0	320.0	2.5	60.0	80.0
0010_100	50.0	66.7	3	150.0	200.0	4.5	270.0	360.0	2.5	60.0	80.0
0011_000	Reserved										
0011_001		Reserved									
0011_010		Reserved									
0011_011						Reserved					
0011_100						Reserved					

Table 22. Clock Configurations for I	PCI Agent Mode (PCI	_MODCK=1) ^{1,2} (continued)

	-			-			_	,	•	•			
Mode ³		Clock Hz)	CPM Multiplication	CPM Clock (MHz)		CPU Multiplication	CPU Clock (MHz)				Bus Division	Bus Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High		
1011_010	25.0	50.0	8	200.0	400.0	3	240.0	480.0	2.5	80.0	160.0		
1011_011	25.0	50.0	8	200.0	400.0	3.5	280.0	560.0	2.5	80.0	160.0		
1011_100	25.0	50.0	8	200.0	400.0	4	320.0	640.0	2.5	80.0	160.0		
1100_101	25.0	50.0	6	150.0	300.0	4	200.0	400.0	3	50.0	100.0		
1100_110	25.0	50.0	6	150.0	300.0	4.5	225.0	450.0	3	50.0	100.0		
1100_111	25.0	50.0	6	150.0	300.0	5	250.0	500.0	3	50.0	100.0		
1101_000	25.0	50.0	6	150.0	300.0	5.5	275.0	550.0	3	50.0	100.0		
		•			•			• • •		•			
1101_001	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0		
1101_010	25.0	50.0	6	150.0	300.0	4	240.0	480.0	2.5	60.0	120.0		
1101_011	25.0	50.0	6	150.0	300.0	4.5	270.0	540.0	2.5	60.0	120.0		
1101_100	25.0	50.0	6	150.0	300.0	5	300.0	600.0	2.5	60.0	120.0		
1110_000	25.0	50.0	5	125.0	250.0	2.5	156.3	312.5	2	62.5	125.0		
1110_001	25.0	50.0	5	125.0	250.0	3	187.5	375.0	2	62.5	125.0		
1110_010	25.0	50.0	5	125.0	250.0	3.5	218.8	437.5	2	62.5	125.0		
1110_011	25.0	50.0	5	125.0	250.0	4	250.0	500.0	2	62.5	125.0		
										· · · -			
1110_100	25.0	50.0	5	125.0	250.0	4	166.7		3	41.7	83.3		
1110_101	25.0	50.0	5	125.0	250.0	4.5	187.5	375.0	3	41.7	83.3		
1110_110	25.0	50.0	5		250.0	5	208.3		3	41.7	83.3		
1110_111	25.0	50.0	5	125.0	250.0	5.5	229.2	458.3	3	41.7	83.3		
1100_000						Reserved							
1100_001						Reserved							
1100_010		Reserved											

¹ The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not violate the frequency rating of the user's device. The minimum CPM frequency is 120 MHz. Minimum CPU frequency is determined by the clock mode. For modes with a CPU multiplication factor <= 3, the minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. For modes with a CPU multiplication factor >= 3.5: for Rev 0.1 the minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices.

Table 23. MPC8280 and MPC8270 (ZU and VV Packages) Pinout List (continued)

I	Pin Name	Ball
MPC8280/MPC8270	MPC8280 only	Dali
PA17/FCC1_MII_HDLC_RXD0/ FCC1_MII_TRAN_RXD/ FCCI_RMII_RXD0	FCC1_UT8_RXD7/ FCC1_UT16_RXD15	AE16 ²
PA18/FCC1_MII_HDLC_TXD0/ FCC1_MII_TRAN_TXD/ FCC1_RMII_TXD0	FCC1_UT8_TXD7/FCC1_UT16_TXD15	AJ16 ²
PA19/FCC1_MII_HDLC_TXD1/ FCC1_RMII_TXD1	FCC1_UT8_TXD6/FCC1_UT16_TXD14	AG15 ²
PA20/FCC1_MII_HDLC_TXD2	FCC1_UT8_TXD5/FCC1_UT16_TXD13	AJ13 ²
PA21/FCC1_MII_HDLC_TXD3	FCC1_UT8_TXD4/FCC1_UT16_TXD12	AE13 ²
PA22	FCC1_UT8_TXD3/FCC1_UT16_TXD11	AF12 ²
PA23	FCC1_UT8_TXD2/FCC1_UT16_TXD10	AG11 ²
PA24/MSNUM1	FCC1_UT8_TXD1/FCC1_UT16_TXD9	AH9 ²
PA25/MSNUM0	FCC1_UT8_TXD0/FCC1_UT16_TXD8	AJ8 ²
PA26/FCC1_RMII_RX_ER	FCC1_UTM_RXCLAV/ FCC1_UTS_RXCLAV	AH7 ²
PA27/FCC1_MII_RX_DV/ FCC1_RMII_CRS_DV	FCC1_UT_RXSOC	AF7 ²
PA28/FCC1_MII_TX_EN/ FCC1_RMII_TX_EN	FCC1_UTM_RXENB/ FCC1_UTS_RXENB	AD5 ²
PA29/FCC1_MII_TX_ER	FCC1_UT_TXSOC	AF1 ²
PA30/FCC1_MII_CRS/FCC1_RTS	FCC1_UTM_TXCLAV/ FCC1_UTS_TXCLAV	AD3 ²
PA31/FCC1_MII_COL	FCC1_UTM_TXENB/ FCC1_UTS_TXENB	AB5 ²
PB4/FCC3_MII_HDLC_TXD3/ L1RSYNCA2/FCC3_RTS	FCC2_UT8_RXD0	AD28 ²
PB5/FCC3_MII_HDLC_TXD2/ L1TSYNCA2/L1GNTA2	FCC2_UT8_RXD1	AD26 ²
PB6/FCC3_MII_HDLC_TXD1/ FCC3_RMII_TXD1/ L1RXDA2/L1RXD0A2	FCC2_UT8_RXD2	AD25 ²
PB7/FCC3_MII_HDLC_TXD0/ FCC3_RMII_TXD0/ FCC3_TXD/L1TXDA2/L1TXD0A2	FCC2_UT8_RXD3	AE26 ²
PB8/FCC3_MII_HDLC_RXD0/ FCC3_RMII_RXD0/ FCC3_RXD/TXD3	FCC2_UT8_TXD3/L1RSYNCD1	AH27 ²
PB9/FCC3_MII_HDLC_RXD1/ FCC3_RMII_RXD1/L1TXD2A2	FCC2_UT8_TXD2/L1TSYNCD1/ L1GNTD1	AG24 ²

Pinout

Table 25. MPC8275 and MPC8270 (VR and ZQ Packages) Pinout List (continued)

Pin Nan	Pin Name			
MPC8275/MPC8270	MPC8275 only	Ball		
LCL_D11/AD11		AC13		
LCL_D12/AD12		AC12		
LCL_D13/AD13		AB13		
LCL_D14/AD14		AD12		
LCL_D15/AD15		AF14		
LCL_D16/AD16		AF17		
LCL_D17/AD17		AE16		
LCL_D18/AD18		AD16		
LCL_D19/AD19		AC16		
LCL_D20/AD20		AB16		
LCL_D21/AD21		AF18		
LCL_D22/AD22		AE17		
LCL_D23/AD23		AD17		
LCL_D24/AD24		AB17		
LCL_D25/AD25		AE18		
LCL_D26/AD26		AD18		
LCL_D27/AD27		AC18		
LCL_D28/AD28		AE19		
LCL_D29/AD29		AF20		
LCL_D30/AD30		AD19		
LCL_D31/AD31		AB18		
LCL_DP0/C0/BE0		AE12		
LCL_DP1/C1/BE1		AA13		
LCL_DP2/C2/BE2		AC15		
LCL_DP3/C3/BE3		AF19		
IRQ0/NMI_OUT		A11		
IRQ7/INT_OUT/APE		E5		
TRST ¹		F22		
тск		A24		
тмѕ		C24		
ТОІ		A25		
TDO		B24		
TRIS		C19		

Pinout

Table 25. MPC8275 and MPC8270 (VR and ZQ Packages) Pinout List (continued)

I	Pin Name	Pall
MPC8275/MPC8270	MPC8275 only	Ball
PA19/FCC1_MII_HDLC_TXD1/ FCC1_RMII_TXD1	FCC1_UT8_TXD6/FCC1_UT16_TXD14	N23 ²
PA20/FCC1_MII_HDLC_TXD2	FCC1_UT8_TXD5/FCC1_UT16_TXD13	K26 ²
PA21/FCC1_MII_HDLC_TXD3	FCC1_UT8_TXD4/FCC1_UT16_TXD12	L23 ²
PA22	FCC1_UT8_TXD3/FCC1_UT16_TXD11	K23 ²
PA23	FCC1_UT8_TXD2/FCC1_UT16_TXD10	H26 ²
PA24/MSNUM1	FCC1_UT8_TXD1/FCC1_UT16_TXD9	F25 ²
PA25/MSNUM0	FCC1_UT8_TXD0/FCC1_UT16_TXD8	D26 ²
PA26/FCC1_MII_RMII_RX_ER/	FCC1_UTM_RXCLAV/ FCC1_UTS_RXCLAV	D25 ²
PA27/FCC1_MII_RX_DV/ FCC1_RMII_CRS_DV	FCC1_UT_RXSOC	C25 ²
PA28/FCC1_MII_TX_EN/ FCC1_RMII_TX_EN	FCC1_UTM_RXENB/ FCC1_UTS_RXENB	C22 ²
PA29/FCC1_MII_TX_ER	FCC1_UT_TXSOC	B21 ²
PA30/FCC1_MII_CRS/FCC1_RTS	FCC1_UTM_TXCLAV/ FCC1_UTS_TXCLAV	A20 ²
PA31/FCC1_MII_COL	FCC1_UTM_TXENB/ FCC1_UTS_TXENB	A19 ²
PB4/FCC3_MII_HDLC_TXD3/ L1RSYNCA2/FCC3_RTS	FCC2_UT8_RXD0	AD21 ²
PB5/FCC3_MII_HDLC_TXD2/ L1TSYNCA2/L1GNTA2	FCC2_UT8_RXD1	AD22 ²
PB6/FCC3_MII_HDLC_TXD1/ FCC3_RMII_TXD1/ L1RXDA2/L1RXD0A2	FCC2_UT8_RXD2	AC22 ²
PB7/FCC3_MII_HDLC_TXD0/ FCC3_RMII_TXD0/ FCC3_TXD/L1TXDA2/L1TXD0A2	FCC2_UT8_RXD3	AE26 ²
PB8/FCC3_MII_HDLC_RXD0/ FCC3_RMII_RXD0/ FCC3_RXD/TXD3	FCC2_UT8_TXD3	AB23 ²
PB9/FCC3_MII_HDLC_RXD1/ FCC3_RMII_RXD1/L1TXD2A2	FCC2_UT8_TXD2	AC26 ²
PB10/FCC3_MII_HDLC_RXD2	FCC2_UT8_TXD1	AB26 ²
PB11/FCC3_MII_HDLC_RXD3	FCC2_UT8_TXD0	AA25 ²
PB12/FCC3_MII_CRS/TXD2		W26 ²
PB13/FCC3_MII_COL/L1TXD1A2		W25 ²
PB14/FCC3_MII_RMII_TX_EN/RXD3		V24 ²

Table 25. MPC8275 and MPC8270 (VR and ZQ Packages) Pinout List (continued)

Pir	n Name	Ball
MPC8275/MPC8270	MPC8275 only	Ball
PB15/FCC3_MII_TX_ER/RXD2		U24 ²
PB16/FCC3_MII_RMII_RX_ER/CLK18		R22 ²
PB17/FCC3_MII_RX_DV/CLK17/ FCC3_RMII_CRS_DV		R23 ²
PB18/FCC2_MII_HDLC_RXD3/ L1CLKOD2/L1RXD2A2	FCC2_UT8_RXD4	M23 ²
PB19FCC2_MII_HDLC_RXD2/ L1RQD2/L1RXD3A2	FCC2_UT8_RXD5	L24 ²
PB20/FCC2_MII_HDLC_RMII_RXD1/ _1RSYNCD2	FCC2_UT8_RXD6	K24 ²
PB21//FCC2_MII_HDLC_RMII_RXD0/ FCC2_TRAN_RXD/L1TSYNCD2/ L1GNTD2	FCC2_UT8_RXD7	L21 ²
PB22/FCC2_MII_HDLC_RMII_TXD0/ FCC2_TXD/FCC2_RMII_TXD0/ L1RXDD2	FCC2_UT8_TXD7	P25 ²
PB23/FCC2_MII_HDLC_TXD1/ L1RXD2A1/L1TXDD2/ FCC2_RMII_TXD1	FCC2_UT8_TXD6	N25 ²
PB24/FCC2_MII_HDLC_TXD2/ L1RSYNCC2	FCC2_UT8_TXD5	E26 ²
PB25/FCC2_MII_HDLC_TXD3/ L1TSYNCC2/L1GNTC2	FCC2_UT8_TXD4	H23 ²
PB26/FCC2_MII_CRS/L1RXDC2	FCC2_UT8_TXD1	C26 ²
PB27/FCC2_MII_COL/L1TXDC2	FCC2_UT8_TXD0	B26 ²
PB28/FCC2_MII_RX_ER/FCC2_RMII_RX FCC2_RTS/L1TSYNCB2/L1GNTB2/TXD1		A22 ²
PB29/L1RSYNCB2/ FCC2_MII_TX_EN/FCC2_RMII_TX_EN	FCC2_UTM_RXCLAV/ FCC2_UTS_RXCLAV	A21 ²
PB30/FCC2_MII_RX_DV/L1RXDB2/ FCC2_RMII_CRS_DV	FCC2_UT_TXSOC	E20 ²
PB31/FCC2_MII_TX_ER/L1TXDB2	FCC2_UT_RXSOC	C20 ²
PC0/DREQ1/BRGO7/ <mark>SMSYN2</mark> / _1CLKOA2		AE22 ²
PC1/DREQ2/SPISEL/BRGO6/L1RQA2		AA19 ²
PC2/FCC3_CD/DONE2	FCC2_UT8_TXD3	AF24 ²
PC3/FCC3_CTS/DACK2/CTS4/ JSB_RP	FCC2_UT8_TXD2	AE25 ²
PC4/SI2_L1ST4/FCC2_CD	FCC2_UTM_RXENB/ FCC2_UTS_RXENB	AB22 ²

Pinout

Table 25. MPC8275 and MPC8270 (VR and ZQ Packages) Pinout List (continued)

Pi	n Name	Ball
MPC8275/MPC8270	MPC8275 only	Ball
PC5/SI2_L1ST3/FCC2_CTS	FCC2_UTM_TXCLAV/ FCC2_UTS_TXCLAV	AC25 ²
PC6/FCC1_CD	FCC1_UTM_RXADDR2/ FCC1_UTS_RXADDR2/ FCC1_UTM_RXCLAV1	AB25 ²
PC7/FCC1_CTS	FCC1_UTM_TXADDR2/ FCC1_UTS_TXADDR2/ FCC1_UTM_TXCLAV1	AA24 ²
PC8/ CD4 /RENA4/SI2_L1ST2/ CTS3 / USB_RN	FCC1_UT16_TXD0	Y24 ²
PC9/CTS4/CLSN4/SI2_L1ST1/ L1TSYNCA2/L1GNTA2/USB_RP	FCC1_UT16_TXD1	U22 ²
PC10/CD3/RENA3	FCC1_UT16_TXD2/FCC2_UT8_RXD3	V23 ²
PC11/CTS3/CLSN3/L1TXD3A2	FCC2_UT8_RXD2	U23 ²
PC12/CD2/RENA2	FCC1_UTM_RXADDR1/ FCC1_UTS_RXADDR1	T26 ²
PC13/CTS2/CLSN2	FCC1_UTM_TXADDR1/ FCC1_UTS_TXADDR1	R26 ²
PC14/CD1/RENA1	FCC1_UTM_RXADDR0/ FCC1_UTS_RXADDR0	P26 ²
PC15/CTS1/CLSN1/SMTXD2	FCC1_UTM_TXADDR0/ FCC1_UTS_TXADDR0	P24 ²
PC16/CLK16/TIN4		M26 ²
PC17/CLK15/TIN3/BRGO8		L26 ²
PC18/CLK14/TGATE2		M24 ²
PC19/CLK13/BRGO7/SPICLK		L22 ²
PC20/CLK12/TGATE1/USB_OE		K25 ²
PC21/CLK11/BRGO6		J25 ²
PC22/CLK10/DONE1	FCC1_UT_TXPRTY	G26 ²
PC23/CLK9/BRGO5/DACK1		F26 ²
PC24/CLK8/TOUT4	FCC2_UT8_TXD3	G24 ²
PC25/CLK7/BRGO4	FCC2_UT8_TXD2	E25 ²
PC26/CLK6/TOUT3/TMCLK		G23 ²
PC27/FCC3_TXD/FCC3_MII_TXD0/ FCC3_RMII_TXD0/CLK5/BRGO3		B23 ²
PC28/CLK4/TIN1/TOUT2/CTS2/CLSN2	FCC2_UT_RXADDR4	E22 ²
PC29/CLK3/TIN2/BRGO2/CTS1/CLSN1		E21 ²
PC30/CLK2/TOUT1	FCC2_UT8_TXD3	D21 ²

- ³ Must be pulled down or left floating.
- ⁴ If PCI is not desired, must be pulled up or left floating.
- ⁵ Sphere is not connected to die.
- ⁶ GNDSYN (B18): This pin exists as a separate ground signal in MPC826x(A) devices; it does not exist as a separate ground signal on the MPC8275/MPC8270. New designs must connect B18 to GND and follow the suggestions in Section 4.6, "Layout Practices." Old designs in which the MPC8275/MPC8270 is used as a drop-in replacement can leave the pin connected to GND with the noise filtering capacitors.
- ⁷ XFC (A18) pin: This pin is used in MPC826x(A) devices; it is not used in MPC8275/MPC8270 because there is no need for external capacitor to operate the PLL. New designs should connect A18 (XFC) pin to GND. Old designs in which the MPC8275/MPC8270 is used as a drop-in replacement can leave the pin connected to the current capacitor.

9 Package Description

This figure shows the side profile of the TBGA package to indicate the direction of the top surface view.

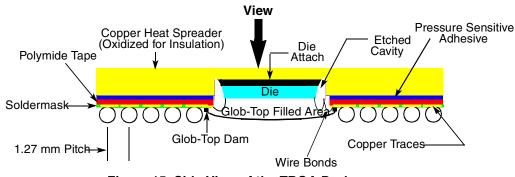


Figure 15. Side View of the TBGA Package

This figure shows the side profile of the PBGA package to indicate the direction of the top surface view.

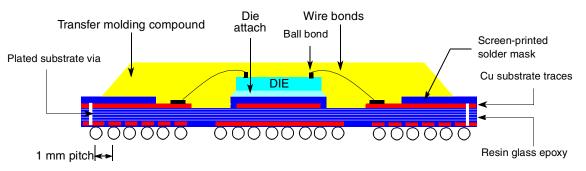


Figure 16. Side View of the PBGA Package Remove

10 Ordering Information

This figure provides an example of the Freescale part numbering nomenclature for the SoC. In addition to the processor frequency, the part numbering scheme also consists of a part modifier that indicates any enhancement(s) in the part from the original production design. Each part number also contains a revision code that refers to the die mask revision number and is specified in the part numbering scheme for identification purposes only. For more information, contact your local Freescale sales office.

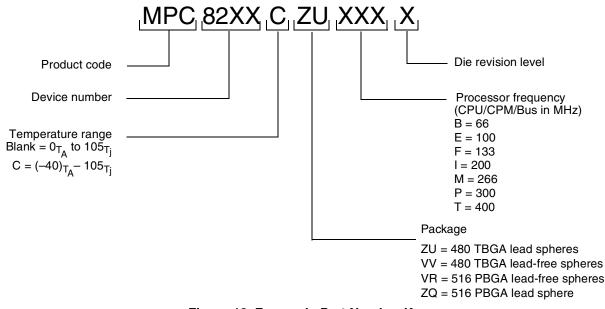


Figure 19. Freescale Part Number Key

11 Document Revision History

This table summarizes changes to this document.

Table 27	Document	Revision	History
----------	----------	----------	---------

Revision	Date	Substantive Changes
2	09/2011	In Figure 19, "Freescale Part Number Key," added speed decoding information below processor frequency information.
1.8	07/2007	Updated the entire document, adding information on the VV package.
1.7	12/2006	 Section 6, "AC Electrical Characteristics," removed deratings statement and clarified AC timing descriptions.
1.6	05/2006	 Table 11: Added text to clarify that Data Bus Parity is not supported at 66 Mhz. Table 11: Added text to clarify that Data Bus ECC is supported at 66 Mhz Table 11: Added note to DP pins to show it is not supported at 66 MHz Table 12: Added note to support 1 ns hold time
1.5	03/2006	Added Section 6.3, "JTAG Timings"

Document Revision History

Revision	Date	Substantive Changes
1.4	11/2005	 In Section 6.2, "SIU AC Characteristics", modified the note on CLKIN Jitter and Duty Cycle. Modified Figure 17 to display all text.
1.3	01/2005	Modification for correct display of assertion level ("overbar") for some signals
1.2	12/2004	 Section 2: removed voltage tracking note Table 3: Note 2 updated regarding VDD/VCCSYN relationship to VDDH during power-on reset Table 5: Note 2 updated to reflect VIH=2.5 for TCK, TRST, PORESET; request for external pullup removed. Table 5: Note 4 added regarding IIC compatibility Section 4.2: New information about jumper-to-case thermal resistance Section 4.3: New information about jumper-to-board thermal resistance Section 4.4: New information about estimation with simulation Section 4.6: Updated description of layout practices Section 6: Added sentence providing derating factor Section 6.1, "CPM AC Characteristics": added Note: Rise/Fall Time on CPM Input Pins Table 9: updated values for following specs: sp16b, sp18b, sp20, sp22 Section 6.2: added spread sprectrum clocking note Table 11: combined specs sp11 and sp11a Section 7, "Clock Configuration Modes": Updated all table footnotes reflect updated CPU Fmin of 150 MHz commercial temp devices, 175 MHz extended temp; CPM Fmin of 120 MHz.

Table 27. Document Revision History (continued)

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC, QorlQ, StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. CoreNet, QorlQ Qonverge, QUICC Engine, and VortiQa are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2002–2011 Freescale Semiconductor, Inc.

Document Number: MPC8280EC Rev. 2 09/2011

