

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Active
Core Processor	PowerPC G2_LE
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	333MHz
Co-Processors/DSP	Communications; RISC CPM
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	
Ethernet	10/100Mbps (3)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	480-LBGA Exposed Pad
Supplier Device Package	480-TBGA (37.5x37.5)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8270zuqlda

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Operating Conditions

- ² Caution: VDD/VCCSYN must not exceed VDDH by more than 0.4 V during normal operation. It is recommended that VDD/VCCSYN should be raised before or simultaneous with VDDH during power-on reset. VDD/VCCSYN may exceed VDDH by more than 0.4 V during power-on reset for no more than 100 ms.
- ³ Caution: VDDH can exceed VDD/VCCSYN by 3.3 V during power on reset by no more than 100 mSec. VDDH should not exceed VDD/VCCSYN by more than 2.5 V during normal operation.
- ⁴ Caution: VIN must not exceed VDDH by more than 2.5 V at any time, including during power-on reset.

This table lists recommended operational voltage conditions.

Table 4. Recommended	Operating	Conditions ¹
----------------------	-----------	-------------------------

Rating	Symbol	Value	Unit
Core supply voltage	VDD	1.45 – 1.60	V
PLL supply voltage	VCCSYN	1.45 – 1.60	V
I/O supply voltage	VDDH	3.135 – 3.465	V
Input voltage	VIN	GND (-0.3) - 3.465	V
Junction temperature (maximum)	Тј	105 ²	°C
Ambient temperature	T _A	0-70 ²	°C

¹ **Caution:** These are the recommended and tested operating conditions. Proper operation outside of these conditions is not guaranteed.

² Note that for extended temperature parts the range is $(-40)_{T_A}$ – 105_{T_j} .

This SoC contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (either GND or V_{CC}).

This figure shows the undershoot and overshoot voltage of the 60x and local bus memory interface of the SoC. Note that in PCI mode the I/O interface is different.

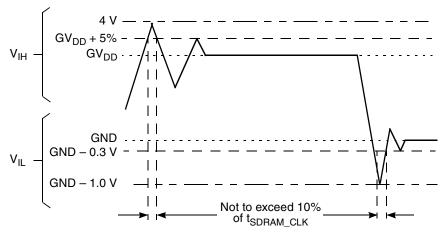


Figure 2. Overshoot/Undershoot Voltage

DC Electrical Characteristics

Characteristic	Symbol	Min	Мах	Unit
I _{OL} = 5.3mA	V _{OL}		0.4	V
<u>ČŠ</u> [0-9]	02			
CS(10)/BCTL1				
<u>CS(11)/AP(0)</u>				
BADDR[27-28]				
ALE				
BCTLO				
PWE[0-7]/PSDDQM[0-7]/PBS[0-7]				
PSDA10/PGPL0				
PSDWE/PGPL1				
POE/PSDRAS/PGPL2				
PSDCAS/PGPL3				
PGTA/PUPMWAIT/PGPL4/PPBS				
PSDAMUX/PGPL5				
LWE[0-3]LSDDQM[0-3]/LBS[0-3]/PCI_CFG[0-3]	l			
LSDA10/LGPL0/PCI_MODCKH0	1			
LSDWE/LGPL1/PCI_MODCKH1	l			
LOE/LSDRAS/LGPL2/PCI_MODCKH2	l			
LSDCAS/LGPL3/PCI_MODCKH3				
LGTA/LUPMWAIT/LGPL4/LPBS				
LSDAMUX/LGPL5/PCI_MODCK				
LSDAMOX/LGPL3/PCI_MODCK				
MODCK[1-3]/AP[1-3]/TC[0-2]/BNKSEL[0-2]				
$I_{OL} = 3.2mA$				
L_A15/FRAME/SMI				
L_A16/TRDY				
L_A17/IRDY/CKSTP_OUT				
L_A18/STOP				
L_A19/DEVSEL				
L_A20/IDSEL				
L_A21/ <u>PERR</u>				
L_A22/SERR				
L_A23/REQ0				
L_A24/ <u>REQ1</u> /HSEJSW				
L_A25/GNT0				
L_A26/GNT1/HSLED				
L_A27/GNT2/HSENUM				
L_A28/RST/CORE_SRESET				
L_A29/INTAL_A30/REQ2				
L_A31	l			
LCL_D[0-31)]/AD[0-31]	1			
LCL_DP[03]/C/BE[0-3]	l			
PA[0-31]	l			
PB[4-31]	1			
PC[0-31]	l			
PD[4-31]	1			
TDO	1			
QREQ	l			
	l			L

Table 5. DC Electrical Characteristics¹ (continued)

¹ The default configuration of the CPM pins (PA[0–31], PB[4–31], PC[0–31], PD[4–31]) is input. To prevent excessive DC current, either pull unused pins to GND or VDDH or configure them as outputs.

² TCK, TRST and PORESET have min VIH = 2.5V.

³ The leakage current is measured for nominal VDDH,VCCSYN, and VDD.

Thermal Characteristics

4.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor model can be used with the thermal simulation of the application, or a more accurate and complex model of the package can be used in the thermal simulation.

4.5 **Experimental Determination**

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 Ψ_{JT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the case to avoid measurement errors caused by cooling effects of the thermocouple wire.

4.6 Layout Practices

Each VDD and VDDH pin should be provided with a low-impedance path to the board's power supplies. Each ground pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The VDD and VDDH power supplies should be bypassed to ground using bypass capacitors located as close as possible to the four sides of the package. For filtering high frequency noise, a capacitor of 0.1uF on each VDD and VDDH pin is recommended. Further, for medium frequency noise, a total of 2 capacitors of 47uF for VDD and 2 capacitors of 47uF for VDDH are also recommended. The capacitor leads and associated printed circuit traces connecting to chip VDD, VDDH and ground should be kept to less than half an inch per capacitor lead. Boards should employ separate inner layers for power and GND planes.

All output pins on the SoC have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized to minimize overdamped conditions and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the VDD and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

AC Electrical Characteristics

This figure shows the FCC external clock.

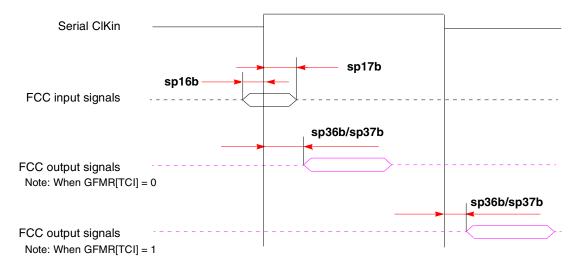
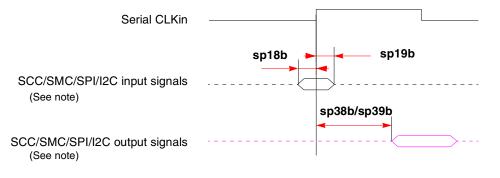



Figure 4. FCC External Clock Diagram

This figure shows the SCC/SMC/SPI/I²C external clock.

Note: There are four possible timing conditions for SCC and SPI:

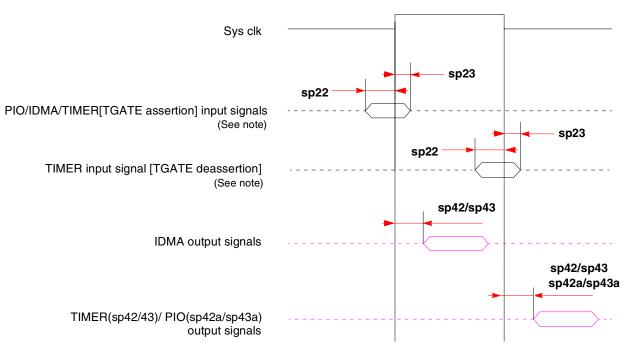

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 5. SCC/SMC/SPI/I²C External Clock Diagram

AC Electrical Characteristics

This figure shows PIO and timer signals.

Note: TGATE is asserted on the rising edge of the clock; it is deasserted on the falling edge.

Figure 8. PIO and Timer Signal Diagram

6.2 SIU AC Characteristics

This table lists SIU input characteristics.

NOTE: CLKIN Jitter and Duty Cycle

The CLKIN input to the SoC should not exceed +/- 150 psec of jitter (peak-to-peak). This represents total input jitter—the combination of short term (cycle-to-cycle) and long term (cumulative). The duty cycle of CLKIN should not exceed the ratio of 40:60. The rise/file time of CLKIN should adhere to the typical SDRAM device AC clock requirement of 1 V/ns to meet SDRAM AC specs.

NOTE: Spread Spectrum Clocking

Spread spectrum clocking is allowed with 1% input frequency down-spread at maximum 60 KHz modulation rate regardless of input frequency.

NOTE: PCI AC Timing

The SoC meets the timing requirements of *PCI Specification Revision 2.2.* See Section 7, "Clock Configuration Modes," and "Note: Tval (Output Hold)" to determine if a specific clock configuration is compliant.

NOTE

Activating data pipelining (setting BRx[DR] in the memory controller) improves the AC timing.

This table lists SIU input characteristics.

Table 13. AC Characteristics for SIU Inputs ¹	
--	--

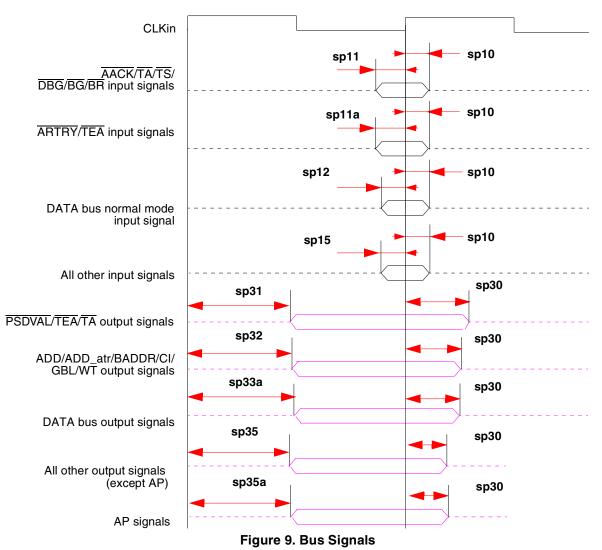
Spec N	lumber		Value (ns)									
Setup	Hold	Characteristic		Setup		Hold						
			66 MHz	83 MHz	100 MHz	66 MHz	83 MHz	100 MHz				
sp11	sp10	AACK/TA/TS/DBG/BG/BR/ARTRY/ TEA	6	5	3.5	0.5	0.5	0.5				
sp12	sp10	Data bus in normal mode	5	4	3.5	0.5	0.5	0.5				
sp13	sp10	Data bus in ECC and PARITY modes	7	5	3.5	0.5	0.5	0.5				
sp13a	sp10	Pipeline mode—Data bus (with or without ECC/PARITY)	5	4	2.5	0.5	0.5	0.5				
sp14	sp10	DP pins	7	5	3.5	0.5	0.5	0.5				
sp14a	sp10	Pipeline mode—DP pins	_	4	2.5	_	0.5	0.5				
sp15	sp10	All other pins	5	4	3.5	0.5	0.5	0.5				

¹ Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

This table lists SIU output characteristics.

Table 14. AC Characte	ristics for SIU	Outputs ¹
-----------------------	-----------------	----------------------

Spec Number			Value (ns)									
Max	Min	Characteristic	Ма	ximum De	lay	Minimum Delay						
			66 MHz	83 MHz	100 MHz	66 MHz	83 MHz	100 MHz				
sp31	sp30	PSDVAL/TEA/TA	7	6	5.5	1	1	1				
sp32	sp30	ADD/ADD_atr./BADDR/CI/GBL/WT	8	6.5	5.5	1	1	1				
sp33a	sp30	Data bus ²	6.5	6.5	5.5	0.7	0.7	0.7				
sp33b	sp30	DP	6	5.5	5.5	1	1	1				
sp34	sp30	Memory controller signals/ALE	6	5.5	5.5	1	1	1				
sp35	sp30	All other signals	6	5.5	5.5	1	1	1				
sp35a	sp30	AP	7	7	7	1	1	1				


¹ Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

 2 To achieve 1 ns of hold time at 66, 83, or 100 MHz, a minimum loading of 20 pF is required.


```
AC Electrical Characteristics
```

This figure shows the interaction of several bus signals.

Clock Configuration Modes

- ¹ The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not violate the frequency rating of the user's device. The minimum CPM frequency is 120 MHz. Minimum CPU frequency is determined by the clock mode. For modes with a CPU multiplication factor <= 3, the minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. For modes with a CPU frequency is 250 MHz; for Rev A or later the minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices.</p>
- ² MODCK_H = hard reset configuration word [28–31]. MODCK[1-3] = three hardware configuration pins.
- ³ 60x and local bus frequency. Identical to CLKIN.
- ⁴ CPM multiplication factor = CPM clock/bus clock
- ⁵ CPU multiplication factor = Core PLL multiplication factor

7.2 PCI Host Mode

These tables show clock configurations for PCI host mode. The frequency values listed are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. Note that in PCI host mode the input clock is the following:

NOTE: PCI_MODCK

In PCI mode only, PCI_MODCK comes from the LGPL5 pin and MODCK_H[0–3] comes from {LGPL0, LGPL1, LGPL2, LGPL3}.

NOTE: Tval (Output Hold)

The minimum Tval = 2 ns when PCI_MODCK = 1, and the minimum Tval = 1 ns when PCI_MODCK = 0. Therefore, designers should use clock configurations that fit this condition to achieve PCI-compliant AC timing.

Mode ³		Clock ⁴ Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication	CPU Clock (MHz)		PCI Division	PCI Clock (MHz)		
MODCK_H- MODCK[1-3]	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High	Factor	Low	High	
	Default Modes (MODCK_H=0000)											
0000_000	60.0	66.7	2	120.0	133.3	2.5	150.0	166.7	2	60.0	66.7	
0000_001	50.0	66.7	2	100.0	133.3	3	150.0	200.0	2	50.0	66.7	
0000_010	60.0	80.0	2.5	150.0	200.0	3	180.0	240.0	3	50.0	66.7	
0000_011	60.0	80.0	2.5	150.0	200.0	3.5	210.0	280.0	3	50.0	66.7	
0000_100	60.0	80.0	2.5	150.0	200.0	4	240.0	320.0	3	50.0	66.7	
0000_101	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7	
0000_110	50.0	66.7	3.5	150.0	200.0	3.5	175.0	233.3	3	50.0	66.7	
0000_111	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7	
				Full Co	onfigura	ation Modes						
0001_000	50.0	66.7	3	150.0	200.0	5	250.0	333.3	3	50.0	66.7	

Table 19. Clock Configurations for PCI Host Mode (PCI_MODCK=0)^{1,2}

Clock Configuration Modes

Table 19. Clock Configurations for PCI Host Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³		Clock ⁴ Hz)	СРМ		Clock Hz)	CPU		Clock Hz)	PCI		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Multiplication Factor ⁵	Low	High	Multiplication Factor ⁶	Low	High	Division Factor	Low	High
0110_011	60.0	80.0	2.5	150.0	200.0	4	240.0	320.0	3	50.0	66.7
0110_100	60.0	80.0	2.5	150.0	200.0	4.5	270.0	360.0	3	50.0	66.7
0110_101	60.0	80.0	2.5	150.0	200.0	5	300.0	400.0	3	50.0	66.7
0110_110	60.0	80.0	2.5	150.0	200.0	6	360.0	480.0	3	50.0	66.7
0111_000						Reserved					
0111_001	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0111_010	50.0	66.7	3	150.0	200.0	3.5	175.0	233.3	3	50.0	66.7
0111_011	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
0111_100	50.0	66.7	3	150.0	200.0	4.5	225.0		3	50.0	66.7
											<u> </u>
1000_000						Reserved					
1000_001	66.7	88.9	3	200.0	266.6	3	200.0	266.6	4	50.0	66.7
1000_010	66.7	88.9	3	200.0	266.6	3.5	233.3	311.1	4	50.0	66.7
1000_011	66.7	88.9	3	200.0	266.6	4	266.7	355.5	4	50.0	66.7
1000_100	66.7	88.9	3	200.0	266.6	4.5	300.0	400.0	4	50.0	66.7
1000_101	66.7	88.9	3	200.0	266.6	6	400.0	533.3	4	50.0	66.7
1000_110	66.7	88.9	3	200.0	266.6	6.5	433.3	577.7	4	50.0	66.7
1001_000						Deserved					
						Reserved					
1001_001	F7 4	70.0	0.5	000.0	000.0		000.0	000.0	4	50.0	00.7
1001_010	57.1	76.2	3.5	200.0	266.6	3.5	200.0		4	50.0	66.7
1001_011	57.1	76.2	3.5		266.6	4		304.7	4	50.0	66.7
1001_100	57.1	76.2	3.5	200.0	266.6	4.5	257.1	342.8	4	50.0	66.7
1001_101	85.7	114.3	3.5	300.0	400.0	5	428.6	571.4	6	50.0	66.7
1001_110	85.7	114.3	3.5	300.0	400.0	5.5	471.4		6	50.0	66.7
1001_111	85.7	114.3	3.5	300.0	400.0	6	514.3		6	50.0	66.7
1010_000	75.0	100.0	2	150.0	200.0	2	150.0	200.0	3	50.0	66.7
1010_001	75.0	100.0	2	150.0	200.0	2.5	187.5	250.0	3	50.0	66.7
1010_010	75.0	100.0	2	150.0	200.0	3	225.0	300.0	3	50.0	66.7

Clock Configuration Modes

Table 21. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³	PCI Clock (MHz)		CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division	Bus ((M	Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	Factor ⁵	Low	High	Factor	Low	High	
1001_000						Reserved					
1001_001						Reserved					
1001_010						Reserved					
1001_011	50.0	66.7	4	200.0	266.6	4	200.0	266.6	4	50.0	66.7
1001_100	50.0	66.7	4	200.0	266.6	4.5	225.0	300.0	4	50.0	66.7
1010_000						Reserved					
1010_000	50.0	66.7	4	200.0	266.6	3	200.0	266.6	3	66.7	88.9
1010_001	50.0	66.7	4	200.0		3.5	233.3	311.1	3	66.7	88.9
1010_010	50.0	66.7	4	200.0	266.6	4	266.7	355.5	3	66.7	88.9
1010_011	50.0	66.7	4	200.0		4.5	300.0	400.0	3	66.7	88.9
1011_000						Reserved					
1011_001	50.0	66.7	4	200.0	266.6	2.5	200.0	266.6	2.5	80.0	106.7
1011_010	50.0	66.7	4	200.0	266.6	3	240.0	320.0	2.5	80.0	106.7
1011_011	50.0	66.7	4	200.0	266.6	3.5	280.0	373.3	2.5	80.0	106.7
1011_100	50.0	66.7	4	200.0	266.6	4	320.0	426.6	2.5	80.0	106.7
1100_101	50.0	66.7	6	300.0	400.0	4	400.0	533.3	3	100.0	133.3
1100_110	50.0	66.7	6	300.0	400.0	4.5	450.0	599.9	3	100.0	133.3
1100_111	50.0	66.7	6	300.0	400.0	5	500.0	666.6	3	100.0	133.3
1101_000	50.0	66.7	6	300.0	400.0	5.5	550.0	733.3	3	100.0	133.3
1101_001	50.0	66.7	6	300.0	400.0	3.5	420.0	559.9	2.5	120.0	160.0
1101_010	50.0	66.7	6	300.0		4	480.0	639.9	2.5	120.0	160.0
1101_010	50.0	66.7	6	300.0		4.5	540.0	719.9	2.5	120.0	160.0
1101_011	50.0	66.7	6	300.0		5	600.0	799.9	2.5	120.0	160.0
1101_100		00.7	5	000.0	100.0	5		,00.0	2.0	120.0	100.0
1110_000	50.0	66.7	5	250.0	333.3	2.5	312.5	416.6	2	125.0	166.7
1110_001	50.0	66.7	5	250.0	333.3	3	375.0	500.0	2	125.0	166.7
1110_010	50.0	66.7	5	250.0	333.3	3.5	437.5	583.3	2	125.0	166.7

Mode ³		Clock Hz)	CPM Multiplication	CPM Clock (MHz)		CPU Multiplication	CPU Clock (MHz)		Bus Division	Bus Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
1110_011	50.0	66.7	5	250.0	333.3	4	500.0	666.6	2	125.0	166.7
	•			•						•	•
1110_100	50.0	66.7	5	250.0	333.3	4	333.3	444.4	3	83.3	111.1
1110_101	50.0	66.7	5	250.0	333.3	4.5	375.0	500.0	3	83.3	111.1
1110_110	50.0	66.7	5	250.0	333.3	5	416.7	555.5	3	83.3	111.1
1110_111	50.0	66.7	5	250.0	333.3	5.5	458.3	611.1	3	83.3	111.1
1100_000						Reserved					
1100_001		Reserved									
1100_010						Reserved					

Table 21. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2} (continued)

¹ The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not violate the frequency rating of the user's device. The minimum CPM frequency is 120 MHz. Minimum CPU frequency is determined by the clock mode. For modes with a CPU multiplication factor <= 3, the minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. For modes with a CPU multiplication factor >= 3.5: for Rev 0.1 the minimum CPU frequency is 250 MHz; for Rev A or later the minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices.

² As shown in Table 17, PCI_MODCK determines the PCI clock frequency range. See Table 20 for lower configurations.

³ MODCK_H = hard reset configuration word [28–31]. MODCK[1-3] = three hardware configuration pins.

⁴ CPM multiplication factor = CPM clock/PCI clock

⁵ CPU multiplication factor = Core PLL multiplication factor

Table 22. Clock Configurations for PCI Agent Mode (PCI_MODCK=1)^{1,2}

Mode ³		Clock Hz)	CPM Multiplication Factor ⁴		CPM Clock (MHz) CPU Multiplication	CPU Clock (MHz)		Bus Division	Bus Clock (MHz)		
MODCK_H- MODCK[1-3]	Low	High		Low	High	Factor ⁵	Low	High	Factor	Low	High
			De	fault M	odes (N	/IODCK_H=0000)	L				
0000_000	30.0	50.0	4	120.0	200.0	2.5	150.0	250.0	2	60.0	100.0
0000_001	25.0	50.0	4	100.0	200.0	3	150.0	300.0	2	50.0	100.0
0000_010	25.0	50.0	6	150.0	300.0	3	150.0	300.0	3	50.0	100.0
0000_011	25.0	50.0	6	150.0	300.0	4	200.0	400.0	3	50.0	100.0
0000_100	25.0	50.0	6	150.0	300.0	3	180.0	360.0	2.5	60.0	120.0
0000_101	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0
0000_110	25.0	50.0	8	200.0	400.0	3.5	233.3	466.7	3	66.7	133.3

- ² As shown in Table 17, PCI_MODCK determines the PCI clock range. See Table 20 for higher range configurations.
- ³ MODCK_H = hard reset configuration word [28–31]. MODCK[1-3] = three hardware configuration pins.
- ⁴ CPM multiplication factor = CPM clock/PCI clock
- ⁵ CPU multiplication factor = Core PLL multiplication factor

This section provides the pin assignments and pinout lists for both HiP7 PowerQUICC II packages.

8.1 ZU and VV Packages—MPC8280 and MPC8270

The following figures and table represent the standard 480 TBGA package. For information on the alternate package, see Section 8.2, "VR and ZQ Packages—MPC8275 and MPC8270."

Table 23. MPC8280 and MPC8270 (ZU and VV Packages) Pinout List (continued)

Pi	Dell	
MPC8280/MPC8270	MPC8280 only	Ball
PB10/FCC3_MII_HDLC_RXD2	FCC2_UT8_TXD1/L1RXDD1	AH24 ²
PB11/FCC3_MII_HDLC_RXD3	FCC2_UT8_TXD0/L1TXDD1	AJ24 ²
PB12/FCC3_MII_CRS/TXD2	L1CLKOB1/L1RSYNCC1	AG22 ²
PB13/FCC3_MII_COL/L1TXD1A2	L1RQB1/L1TSYNCC1/L1GNTC1	AH21 ²
PB14/FCC3_MII_RMII_TX_EN//RXD3	L1RXDC1	AG20 ²
PB15/FCC3_MII_TX_ER/RXD2	L1TXDC1	AF19 ²
PB16/FCC3_MII_RMII_RX_ER/CLK18	L1CLKOA1	AJ18 ²
PB17/FCC3_MII_RX_DV/CLK17/ FCC3_RMII_CRS_DV	L1RQA1	AJ17 ²
PB18/FCC2_MII_HDLC_RXD3/ L1CLKOD2/L1RXD2A2	FCC2_UT8_RXD4	AE14 ²
PB19FCC2_MII_HDLC_RXD2/ L1RQD2/L1RXD3A2	FCC2_UT8_RXD5	AF13 ²
PB20/FCC2_MII_HDLC_RMII_RXD1/ L1RSYNCD2	FCC2_UT8_RXD6/L1TXD1A1	AG12 ²
PB21//FCC2_MII_HDLC_RMII_RXD0/ FCC2_TRAN_RXD/L1TSYNCD2/ L1GNTD2	FCC2_UT8_RXD7/L1TXD2A1	AH11 ²
PB22/FCC2_MII_HDLC_TXD0/ FCC2_TXD/FCC2_RMII_TXD0/ L1RXDD2	FCC2_UT8_TXD7/L1RXD1A1	AH16 ²
PB23/FCC2_MII_HDLC_TXD1/ L1RXD2A1/L1TXDD2/ FCC2_RMII_TXD1	FCC2_UT8_TXD6/L1RXD2A1	AE15 ²
PB24/FCC2_MII_HDLC_TXD2/ L1RSYNCC2	FCC2_UT8_TXD5/L1RXD3A1	AJ9 ²
PB25/FCC2_MII_HDLC_TXD3/ L1TSYNCC2/L1GNTC2	FCC2_UT8_TXD4/L1TXD3A1	AE9 ²
PB26/FCC2_MII_CRS/L1RXDC2	FCC2_UT8_TXD1	AJ7 ²
PB27/FCC2_MII_COL/L1TXDC2	FCC2_UT8_TXD0	AH6 ²
PB28/FCC2_MII_RX_ER/ FCC2_RMII_RX_ER/FCC2_RTS/ L1TSYNCB2/L1GNTB2/TXD1		AE3 ²
PB29/L1RSYNCB2/FCC2_MII_TX_EN/ FCC2_RMII_TX_EN	FCC2_UTM_RXCLAV/ FCC2_UTS_RXCLAV	AE2 ²
PB30/FCC2_MII_RX_DV/ FCC2_RMII_CRS_DV/L1RXDB2	FCC2_UT_TXSOC	AC5 ²
PB31/FCC2_MII_TX_ER/L1TXDB2	FCC2_UT_RXSOC	AC4 ²

Pin Na	Pall	
MPC8275/MPC8270	MPC8275 only	Ball
D20		M2
D21		K2
D22		J1
D23		G4
D24		U5
D25		T5
D26		P5
D27		P3
D28		M3
D29		K3
D30		H2
D31		G5
D32		AA1
D33		V2
D34		U1
D35		P2
D36		M4
D37		K4
D38		H3
D39		F2
D40		Y2
D41		U3
D42		T2
D43		N2
D44		M5
D45		K1
D46		H4
D47		F1
D48		W2
D49		T4
D50		R3
D51		N4
D52		M1

Table 25. MPC8275 and MPC8270 (VR and ZQ Packages) Pinout List (continued)

Table 25. MPC8275 and MPC8270 (VR and ZQ Packages) Pinout List (continued)

Pin Nam	5.4	
MPC8275/MPC8270	MPC8275 only	Ball
D53	J2	
D54		H5
D55		F3
D56		V3
D57		R5
D58		R2
D59		N5
D60		L2
D61		J3
D62		H1
D63		F4
DP0/RSRV/EXT_BR2		AB3
IRQ1/DP1/EXT_BG2		W5
IRQ2/DP2/TLBISYNC/EXT_DBG2		AC2
IRQ3/DP3/CKSTP_OUT/EXT_BR3		AA3
IRQ4/DP4/CORE_SRESET/EXT_BG3		AD1
IRQ5/CINT/DP5/TBEN/EXT_DBG3		AC1
IRQ6/DP6/CSE0	AB2	
IRQ7/DP7/CSE1		Y3
PSDVAL		D15
TA		Y4
TEA		D16
GBL/IRQ1		E15
CI/BADDR29/IRQ2		D14
WT/BADDR30/IRQ3		E14
L2_HIT/IRQ4		A17
CPU_BG/BADDR31/IRQ5/CINT	B14	
CPU_DBG	F13	
CPU_BR	B17	
<u>CS0</u>		AC6
<u>CS1</u>		AD6
CS2		AE6
CS3		AB7

Table 25. MPC8275 and MPC8270 (VR and ZQ Packages) Pinout List (continued)

Pin Nan	5.4	
MPC8275/MPC8270	MPC8275 only	Ball
LCL_D11/AD11		AC13
LCL_D12/AD12		AC12
LCL_D13/AD13		AB13
LCL_D14/AD14		AD12
LCL_D15/AD15		AF14
LCL_D16/AD16		AF17
LCL_D17/AD17		AE16
LCL_D18/AD18		AD16
LCL_D19/AD19		AC16
LCL_D20/AD20		AB16
LCL_D21/AD21		AF18
LCL_D22/AD22		AE17
LCL_D23/AD23		AD17
LCL_D24/AD24		AB17
LCL_D25/AD25		AE18
LCL_D26/AD26		AD18
LCL_D27/AD27	AC18	
LCL_D28/AD28		AE19
LCL_D29/AD29		AF20
LCL_D30/AD30		AD19
LCL_D31/AD31		AB18
LCL_DP0/C0/BE0		AE12
LCL_DP1/C1/BE1		AA13
LCL_DP2/C2/BE2		AC15
LCL_DP3/C3/BE3		AF19
IRQ0/NMI_OUT		A11
IRQ7/INT_OUT/APE		E5
TRST ¹	F22	
тск		A24
тмѕ		C24
ТОІ		A25
TDO		B24
TRIS		C19

Table 25. MPC8275 and MPC8270 (VR and ZQ Packages) Pinout List (continued)

	Ball	
MPC8275/MPC8270	MPC8275 only	Dan
PD27/TXD2	FCC1_UT16_RXD7	H22 ²
PD28/RXD2	FCC1_UT16_TXD7	B22 ²
PD29/RTS1/TENA1	FCC1_UTM_RXADDR3/ FCC1_UTS_RXADDR3/ FCC1_UTM_RXCLAV2/ FCC2_UTM_RXADDR4/ FCC2_UTS_RXADDR1	D22 ²
PD30/TXD1	FCC2_UTM_TXENB/ FCC2_UTS_TXENB	C21 ²
PD31/RXD1	I	E19 ²
VCCSYN		D19
VCCSYN1		K6
CLKIN2		K21
SPARE4 ³		C14
PCI_MODE ⁴		AD24
SPARE6 ³		B15
No connect ⁵		E17, C23
I/O power		E6, F6, H6, L5, L6, P6, T6, U6, V5, Y5, AA6, AA8, AA10, AA11, AA14, AA16, AA17, AB19, AB20, W21, U21, T21, P21, N21, M22, J22, H21, F21, F19, F17, E16, F14, E13, E12, F10, E10, E9
Core Power		L3, V4, W3, AC11, AD11, AB15, U25, T24, J24, H25, F23, B19, D17, C17, D10, C10
Ground		B18 ⁶ , A18 ⁷ , A2, B1, B2, A5, C5, C18, D4, D6, G2, L4, P1, R1, R4, AC4, AE7, AC23, Y25, N24, J23, A23, D23, D20, E18, A13, A16, K10, K11, K12, K13, K14, K15, K16, K17, L10, L11, L12, L13, L14, L15, L16, L17, M10, M11, M12, M13, M14, M15, M16, M17, N10, N11, N12, N13, N14, N15, N16, N17, P10, P11, P12, P13, P14, P15, P16, P17, R10, R11,R12, R13, R14, R15, R16, R17, T10, T11, T12, T13, T14, T15, T16, T17, U10, U11, U12, U13, U14, U15, U16, U17

¹ Should be tied to VDDH via a 2K Ω external pull-up resistor.

² The default configuration of the CPM pins (PA[0–31], PB[4–31], PC[0–31], PD[4–31]) is input. To prevent excessive DC current, it is recommended to either pull unused pins to GND or VDDH, or to configure them as outputs.

10 Ordering Information

This figure provides an example of the Freescale part numbering nomenclature for the SoC. In addition to the processor frequency, the part numbering scheme also consists of a part modifier that indicates any enhancement(s) in the part from the original production design. Each part number also contains a revision code that refers to the die mask revision number and is specified in the part numbering scheme for identification purposes only. For more information, contact your local Freescale sales office.

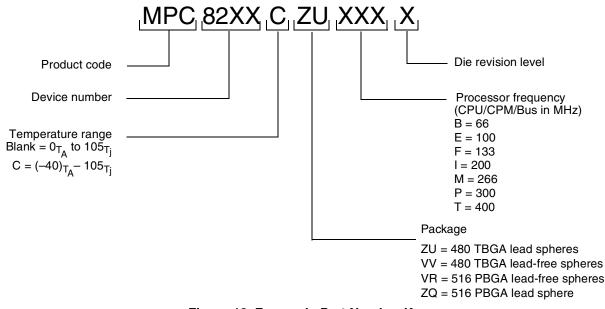


Figure 19. Freescale Part Number Key

11 Document Revision History

This table summarizes changes to this document.

Table 27	Document	Revision	History
----------	----------	----------	---------

Revision	Date	Substantive Changes
2	09/2011	In Figure 19, "Freescale Part Number Key," added speed decoding information below processor frequency information.
1.8	07/2007	Updated the entire document, adding information on the VV package.
1.7	12/2006	 Section 6, "AC Electrical Characteristics," removed deratings statement and clarified AC timing descriptions.
1.6	05/2006	 Table 11: Added text to clarify that Data Bus Parity is not supported at 66 Mhz. Table 11: Added text to clarify that Data Bus ECC is supported at 66 Mhz Table 11: Added note to DP pins to show it is not supported at 66 MHz Table 12: Added note to support 1 ns hold time
1.5	03/2006	Added Section 6.3, "JTAG Timings"

Revision	Date	Substantive Changes
1.0	2/2004	 Removal of "Advance Information" and "Preliminary." The MPC8280 is fully qualified. Table 2: New Figure 1: Modification to note 2 Section 1.1: Core frequency range is 166–450 MHz Addition of ZQ (516 PBGA with Lead spheres) package references Table 4: VDD and VCCSYN modified to 1.45–1.60 V Note following Table 4: Modified Table 5: Addition of note 2 regarding TRST and PORESET (see VIH row of Table 5) Table 5: Moved QREQ to V_{QL}: _{QL} = 3.2 mA Table 5: Moved QREQ to V_{QL}: _{QL} = 3.2 mA Table 10: Addition of rutical interrupt (CINT) to TRQ5 for V_{QL} (_{QL} = 6.0mA) Table 12: Modified power values (+ 150mW to each) Table 13: Modified power values (+ 150mW to each) Table 14: Addition of note 2. Changed PCI impedance to 27 Ω. Table 12: Modified power values (+ 150mW to each) Table 12: Changes to sp16a, sp18a, sp20 and sp21 Section 6.2: Addition of Note: CLKIN Jitter and Duty Cycle Table 12: Changes to sp16a (and 83 MHz, sp14 @ 83 MHz) Table 12: Changes to sp30 (data bus signals). Changes to sp33b. Removal of note 2. Table 12: Change to sp30 to CPM port pin PB14. Previously omitted. Table 23: Addition of RXD3 to CPM port pin PB14. Previously omitted. Table 23: Addition of RXD3 to CPM port pin PB14. Previously omitted. Table 23: Addition of note 1 to TRST (HA1) and PORESET (AG6) Table 23: Addition of RXD3 to CPM port pin PB14. Previously omitted. Table 23: Addition of note 1 to TRST (F22) and PORESET (B25) Table 25: Addition of reviously omitted signals that are multiplexed with CPM port pins: PA6—FCC2_UT_RXADDR3 PA7—FCC2_UT_RXADDR4 Table 25: Removal of serial interface 1 (SI1) signals from port pins (see note 2 in Figure 1): PA(6-9), PE(6-7, 10-13), PD[4, 10-13, 16, 23-28] Table 25: Addition of roitica in terrupt (CINT) to AC1 and B14. Previously omitted.<

Document Revision History

Revision	Date	Substantive Changes
0.3	6/2003	 Removal of notes stating "no local bus" on VR-package devices. The MPC8270VR and the MPC8275VR have local bus support. References to "G2 core" changed to "G2_LE core." See the <i>G2 Core Reference Manual</i> (G2CORERM/D). Addition of VCCSYN to "Note" below Table 4, and to note 3 of Table 5 Figure 2: New Table 5: Addition of note 1 Table 10: Addition of various configurations, Modification of values. Addition of note 3. Table 12: Addition of 66 MHZ and 100 MHz values. Addition of sp42a/sp43a. Table 20: Addition of 66 MHZ and 100 MHz values Table 12: sp30 values. sp33b @ 100 MHz value. Removal of previous note 2. Modification of current note 2. Figure 5, Figure 6, Figure 7, and Figure 8: Addition of note 1 concerning minimum operating frequencies Addition of statement before clock tables about selection of clock configuration and input frequency Table 23 and Table 25: Addition of note 1 to CPM pins
0.2	11/2002	Table 25, "VR Pinout": Addition of C18 to the Ground (GND) pin list (page 63)
0.1	—	Initial public release