
E·XFL

NXP USA Inc. - MPC8280ZUUPEA Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC G2_LE
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	450MHz
Co-Processors/DSP	Communications; RISC CPM
RAM Controllers	DRAM, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	·
Ethernet	10/100Mbps (3)
SATA	· .
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	· .
Package / Case	480-LBGA Exposed Pad
Supplier Device Package	480-TBGA (37.5x37.5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8280zuupea

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Provides management for BRI devices as general-circuit interface (GCI) controllers in time-division-multiplexed (TDM) channels
- Transparent
- UART (low-speed operation)
- One serial peripheral interface identical to the MPC860 SPI
- One I^2C controller (identical to the MPC860 I^2C controller)
 - Microwire compatible
 - Multiple-master, single-master, and slave modes
- Up to eight TDM interfaces (four on the MPC8270)
 - Supports two groups of four TDM channels for a total of eight TDMs (one group of four on the MPC8270 and the MPC8275)
 - 2,048 bytes of SI RAM
 - Bit or byte resolution
 - Independent transmit and receive routing, frame synchronization
 - Supports T1, CEPT, T1/E1, T3/E3, pulse code modulation highway, ISDN basic rate, ISDN primary rate, Freescale interchip digital link (IDL), general circuit interface (GCI), and user-defined TDM serial interfaces
- Eight independent baud rate generators and 20 input clock pins for supplying clocks to FCCs, SCCs, SMCs, and serial channels
- Four independent 16-bit timers that can be interconnected as two 32-bit timers
- Inverse multiplexing for ATM capabilities (IMA) (MPC8280 only). Supported by eight transfer transmission convergence (TC) layers between the TDMs and FCC2.
- Transmission convergence (TC) layer (MPC8280 only)

2 **Operating Conditions**

This table shows the maximum electrical ratings.

Table 3. Absolute Maximum Ratings¹

Rating	Symbol	Value	Unit
Core supply voltage ²	VDD	-0.3 - 2.25	V
PLL supply voltage ²	VCCSYN	-0.3 - 2.25	V
I/O supply voltage ³	VDDH	-0.3 - 4.0	V
Input voltage ⁴	VIN	GND(-0.3) - 3.6	V
Junction temperature	Тј	120	°C
Storage temperature range	T _{STG}	(–55) – (+150)	°C

¹ Absolute maximum ratings are stress ratings only; functional operation (see Table 4) at the maximums is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage.

Thermal Characteristics

4.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor model can be used with the thermal simulation of the application, or a more accurate and complex model of the package can be used in the thermal simulation.

4.5 **Experimental Determination**

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 Ψ_{JT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the case to avoid measurement errors caused by cooling effects of the thermocouple wire.

4.6 Layout Practices

Each VDD and VDDH pin should be provided with a low-impedance path to the board's power supplies. Each ground pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The VDD and VDDH power supplies should be bypassed to ground using bypass capacitors located as close as possible to the four sides of the package. For filtering high frequency noise, a capacitor of 0.1uF on each VDD and VDDH pin is recommended. Further, for medium frequency noise, a total of 2 capacitors of 47uF for VDD and 2 capacitors of 47uF for VDDH are also recommended. The capacitor leads and associated printed circuit traces connecting to chip VDD, VDDH and ground should be kept to less than half an inch per capacitor lead. Boards should employ separate inner layers for power and GND planes.

All output pins on the SoC have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized to minimize overdamped conditions and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the VDD and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

AC Electrical Characteristics

AC Electrical Characteristics 6

The following sections include illustrations and tables of clock diagrams, signals, and CPM outputs and inputs for 66.67/83.33/100 MHz devices. Note that AC timings are based on a 50-pf load for MAX Delay and 10-pf load for MIN delay. Typical output buffer impedances are shown in this table.

Output Buffers	Typical Impedance (Ω)						
60x bus	45 or 27 ²						
Local bus	45						
Memory controller	45 or 27 ²						
Parallel I/O	45						
PCI	27						

Table 8.	Output	Buffer	Impedances ¹
----------	--------	--------	-------------------------

1 These are typical values at 65° C. Impedance may vary by ±25% with process and temperature.

2 On silicon revision 0.0 (mask #: 0K49M), selectable impedance is not available. Impedance is set at 45 Ω .

On all other revisions, impedance value is selected through the SIUMCR[20,21]. See the SoC reference manual.

6.1 **CPM AC Characteristics**

FCC outputs-external clock (NMSI)

SCC/SMC/SPI/I2C outputs-internal

SCC/SMC/SPI/I2C outputs-external

This table lists CPM output characteristics.

clock (NMSI)

clock (NMSI)

PIO outputs

TDM outputs/SI

TIMER/IDMA outputs

Spec N	lumber	Characteristic			Value	e (ns)		
Max	Min		Ма	Maximum Delay Minimum Delay			ay	
			66 MHz	83 MHz	100 MHz	66 MHz	83 MHz	10
sp36a	sp37a	FCC outputs—internal clock (NMSI)	6	5.5	5.5	0.5	0.5	

8

10

8

11

11

11

8

10

8

11

11

11

8

10

8

11

11

11

2

0

2

2.5

0.5

0.5

2

0

2

2.5

0.5

0.5

Table 9. AC Characteristics for CPM Outputs¹

Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

100 MHz

0.5

2

0

2

2.5

0.5

0.5

sp36b

sp38a

sp38b

sp40

sp42

sp42a

sp37b

sp39a

sp39b

sp41

sp43

sp43a

NOTE

Activating data pipelining (setting BRx[DR] in the memory controller) improves the AC timing.

This table lists SIU input characteristics.

Table 13. AC Characteristics for SIU Inputs ¹	
--	--

Spec Number			Value (ns)							
Setup	Hold	Characteristic		Setup			Hold	old		
			66 MHz	83 MHz	100 MHz	66 MHz	83 MHz	100 MHz		
sp11	sp10	AACK/TA/TS/DBG/BG/BR/ARTRY/ TEA	6	5	3.5	0.5	0.5	0.5		
sp12	sp10	Data bus in normal mode	5	4	3.5	0.5	0.5	0.5		
sp13	sp10	Data bus in ECC and PARITY modes	7	5	3.5	0.5	0.5	0.5		
sp13a	sp10	Pipeline mode—Data bus (with or without ECC/PARITY)	5	4	2.5	0.5	0.5	0.5		
sp14	sp10	DP pins	7	5	3.5	0.5	0.5	0.5		
sp14a	sp10	Pipeline mode—DP pins	_	4	2.5	_	0.5	0.5		
sp15	sp10	All other pins	5	4	3.5	0.5	0.5	0.5		

¹ Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

This table lists SIU output characteristics.

Table 14. AC Characte	ristics for SIU	Outputs ¹
-----------------------	-----------------	----------------------

Spec Number			Value (ns)							
Max	Min	Characteristic	Ма	ximum De	lay	Minimum Delay				
			66 MHz	83 MHz	100 MHz	66 MHz	83 MHz	100 MHz		
sp31	sp30	PSDVAL/TEA/TA	7	6	5.5	1	1	1		
sp32	sp30	ADD/ADD_atr./BADDR/CI/GBL/WT	8	6.5	5.5	1	1	1		
sp33a	sp30	Data bus ²	6.5	6.5	5.5	0.7	0.7	0.7		
sp33b	sp30	DP	6	5.5	5.5	1	1	1		
sp34	sp30	Memory controller signals/ALE	6	5.5	5.5	1	1	1		
sp35	sp30	All other signals	6	5.5	5.5	1	1	1		
sp35a	sp30	AP	7	7	7	1	1	1		

¹ Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

 2 To achieve 1 ns of hold time at 66, 83, or 100 MHz, a minimum loading of 20 pF is required.

AC Electrical Characteristics

This figure shows signal behavior for all parity modes (including ECC, RMW parity, and standard parity).

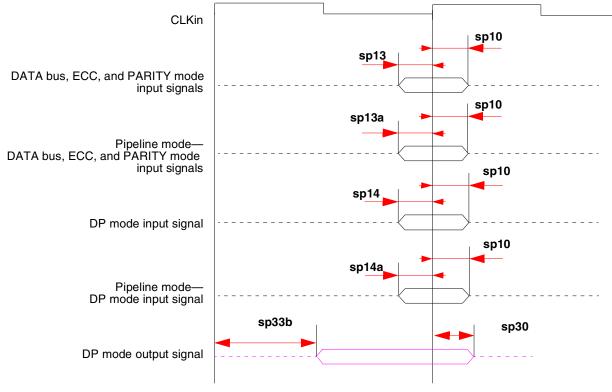
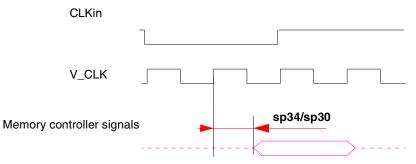



Figure 10. Parity Mode Diagram

This figure shows signal behavior in MEMC mode.

NOTE

Generally, all SoC bus and system output signals are driven from the rising edge of the input clock (CLKin). Memory controller signals, however, trigger on four points within a CLKin cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge, and T3 at the falling edge, of CLKin. However, the spacing of T2 and T4 depends on the PLL clock ratio selected, as shown in Table 15.

	Pins		PCI Clock Frequency Range	Reference	
PCI_MODE	PCI_CFG[0]	PCI_MODCK ¹	Clocking Mode	(MHZ)	helefelide
1		_	Local bus	—	Table 18
0	0	0	PCI host	50–66	Table 19
0	0	1		25–50	Table 20
0	1	0	PCI agent	50–66	Table 21
0	1	1		25–50	Table 22

Table 17. SoC Clocking Modes

¹ Determines PCI clock frequency range. See Section 7.2, "PCI Host Mode," and Section 7.3, "PCI Agent Mode."

Within each mode, the configuration of bus, core, PCI, and CPM frequencies is determined by seven bits during the power-on reset—three hardware configuration pins (MODCK[1–3]) and four bits from hardware configuration word[28–31] (MODCK_H). Both the PLLs and the dividers are set according to the selected clock operation mode as described in the following sections.

7.1 Local Bus Mode

This table lists clock configurations for the SoC in local bus mode. The frequencies listed are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device.

NOTE

Clock configurations change only after PORESET is asserted.

Mode ²		Clock ³ IHz)	CPM CPM Clock (MHz)			CPU Multiplication	CPU Clock (MHz)				
MODCK_H-MODCK[1:3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High			
Default Modes (MODCK_H= 0000)											
0000_000	37.5	133.3	3	112.5	400.0	4	150.0	533.3			
0000_001	33.3	133.3	3	100.0	400.0	5	166.7	666.7			
0000_010	37.5	100.0	4	150.0	400.0	4	150.0	400.0			
0000_011	30.0	100.0	4	120.0	400.0	5	150.0	500.0			
0000_100	60.0	167.0	2	120.0	334.0	2.5	150.0	417.5			
0000_101	50.0	167.0	2	100.0	334.0	3	150.0	501.0			
0000_110	60.0	160.0	2.5	150.0	400.0	2.5	150.0	400.0			
0000_111	50.0	160.0	2.5	125.0	400.0	3	150.0	480.0			
	•		Full Configurat	ion Mode	S						
0001_000	50.0	167.0	2	100.0	334.0	4	200.0	668.0			

Table 18. Clock Configurations for Local Bus Mode¹

Clock Configuration Modes

Table 19. Clock Configurations for PCI Host Mode (PCI_MODCK=0)^{1,2} (continued)

Mode ³	Bus Clock ⁴ (MHz)		СРМ		Clock Hz)	CPU		Clock Hz)	PCI		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Multiplication Factor ⁵	Low	High	- Multiplication Factor ⁶	Low	High	Division Factor	Low	High
0110_011	60.0	80.0	2.5	150.0	200.0	4	240.0	320.0	3	50.0	66.7
0110_100	60.0	80.0	2.5	150.0	200.0	4.5	270.0	360.0	3	50.0	66.7
0110_101	60.0	80.0	2.5	150.0	200.0	5	300.0	400.0	3	50.0	66.7
0110_110	60.0	80.0	2.5	150.0	200.0	6	360.0	480.0	3	50.0	66.7
0111_000						Reserved					
0111_001	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0111_010	50.0	66.7	3	150.0	200.0	3.5	175.0	233.3	3	50.0	66.7
0111_011	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
0111_100	50.0	66.7	3	150.0	200.0	4.5	225.0		3	50.0	66.7
											<u> </u>
1000_000						Reserved					
1000_001	66.7	88.9	3	200.0	266.6	3	200.0	266.6	4	50.0	66.7
1000_010	66.7	88.9	3	200.0	266.6	3.5	233.3	311.1	4	50.0	66.7
1000_011	66.7	88.9	3	200.0	266.6	4	266.7	355.5	4	50.0	66.7
1000_100	66.7	88.9	3	200.0	266.6	4.5	300.0	400.0	4	50.0	66.7
1000_101	66.7	88.9	3	200.0	266.6	6	400.0	533.3	4	50.0	66.7
1000_110	66.7	88.9	3	200.0	266.6	6.5	433.3	577.7	4	50.0	66.7
1001_000						Deserved					
						Reserved					
1001_001	F7 4	70.0	0.5	000.0	000.0		000.0	000.0	4	50.0	00.7
1001_010	57.1	76.2	3.5	200.0	266.6	3.5	200.0		4	50.0	66.7
1001_011	57.1	76.2	3.5		266.6	4		304.7	4	50.0	66.7
1001_100	57.1	76.2	3.5	200.0	266.6	4.5	257.1	342.8	4	50.0	66.7
1001_101	85.7	114.3	3.5	300.0	400.0	5	428.6	571.4	6	50.0	66.7
1001_110	85.7	114.3	3.5	300.0	400.0	5.5	471.4		6	50.0	66.7
1001_111	85.7	114.3	3.5	300.0	400.0	6	514.3		6	50.0	66.7
1010_000	75.0	100.0	2	150.0	200.0	2	150.0	200.0	3	50.0	66.7
1010_001	75.0	100.0	2	150.0	200.0	2.5	187.5	250.0	3	50.0	66.7
1010_010	75.0	100.0	2	150.0	200.0	3	225.0	300.0	3	50.0	66.7

Mode ³		Clock ⁴ Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	k PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High	Factor	Low	High
0010_110	37.5	75.0	4	150.0	300.0	6	225.0	450.0	6	25.0	50.0
			r		•						1
0011_000	30.0	50.0	5	150.0	250.0	5	150.0	250.0	5	30.0	50.0
0011_001	25.0	50.0	5	125.0	250.0	6	150.0	300.0	5	25.0	50.0
0011_010	25.0	50.0	5	125.0	250.0	7	175.0	350.0	5	25.0	50.0
0011_011	25.0	50.0	5	125.0	250.0	8	200.0	400.0	5	25.0	50.0
0100_000						Reserved					
0100_001	25.0	50.0	6	150.0	300.0	6	150.0	300.0	6	25.0	50.0
0100_010	25.0	50.0	6	150.0	300.0	7	175.0	350.0	6	25.0	50.0
0100_011	25.0	50.0	6	150.0	300.0	8	200.0	400.0	6	25.0	50.0
			l								1
0101_000	60.0	100.0	2	120.0	200.0	2.5	150.0	250.0	4	30.0	50.0
0101_001	50.0	100.0	2	100.0	200.0	3	150.0	300.0	4	25.0	50.0
0101_010	50.0	100.0	2	100.0	200.0	3.5	175.0	350.0	4	25.0	50.0
0101_011	50.0	100.0	2	100.0	200.0	4	200.0	400.0	4	25.0	50.0
0101_100	50.0	100.0	2	100.0	200.0	4.5	225.0	450.0	4	25.0	50.0
										•	
0110_000	60.0	120.0	2.5	150.0	300.0	2.5	150.0	300.0	6	25.0	50.0
0110_001	60.0	120.0	2.5	150.0	300.0	3	180.0	360.0	6	25.0	50.0
0110_010	60.0	120.0	2.5	150.0	300.0	3.5	210.0	420.0	6	25.0	50.0
0110_011	60.0	120.0	2.5	150.0	300.0	4	240.0	480.0	6	25.0	50.0
0110_100	60.0	120.0	2.5	150.0	300.0	4.5	270.0	540.0	6	25.0	50.0
0110_101	60.0	120.0	2.5	150.0	300.0	5	300.0	600.0	6	25.0	50.0
0110_110	60.0	120.0	2.5	150.0	300.0	6	360.0	720.0	6	25.0	50.0
0111_000						Reserved					
0111_001	50.0	100.0	3	150.0	300.0	3	150.0	300.0	6	25.0	50.0
0111_010	50.0	100.0	3	150.0	300.0	3.5	175.0	350.0	6	25.0	50.0
0111_011	50.0	100.0	3	150.0	300.0	4	200.0	400.0	6	25.0	50.0
0111_100	50.0	100.0	3	150.0	300.0	4.5	225.0	450.0	6	25.0	50.0

Table 20. Clock Configurations for PCI Host Mode (PCI_MODCK=1)^{1,2} (continued)

Table 20. Clock Configurations for PCI Host Mode (PCI_MODCK=1)^{1,2} (continued)

Mode		Clock ⁴ Hz)	CPM Multiplication	CPM Clock (MHz)		CPU Multiplication	CPU Clock (MHz)			PCI Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High	Factor	Low	High
1000_000						Reserved					
1000_001	66.7	133.3	3	200.0	400.0	3	200.0	400.0	8	25.0	50.0
1000_010	66.7	133.3	3	200.0	400.0	3.5	233.3	466.7	8	25.0	50.0
1000_011	66.7	133.3	3	200.0	400.0	4	266.7	533.3	8	25.0	50.0
1000_100	66.7	133.3	3	200.0	400.0	4.5	300.0	600.0	8	25.0	50.0
1000_101	66.7	133.3	3	200.0	400.0	6	400.0	800.0	8	25.0	50.0
1000_110	66.7	133.3	3	200.0	400.0	6.5	433.3	866.7	8	25.0	50.0
1001_000						Reserved					
1001_001						Reserved					
1001_010	57.1	114.3	3.5	200.0	400.0	3.5	200.0	400.0	8	25.0	50.0
1001_011	57.1	114.3	3.5	200.0	400.0	4	228.6	457.1	8	25.0	50.0
1001_100	57.1	114.3	3.5	200.0	400.0	4.5	257.1	514.3	8	25.0	50.0
1001_101	42.9	85.7	3.5	150.0	300.0	5	214.3	428.6	6	25.0	50.0
1001_110	42.9	85.7	3.5	150.0	300.0	5.5	235.7	471.4	6	25.0	50.0
1001_111	42.9	85.7	3.5	150.0	300.0	6	257.1	514.3	6	25.0	50.0
1010_000	75.0	150.0	2	150.0	300.0	2	150.0	300.0	6	25.0	50.0
1010_001	75.0	150.0	2	150.0		2.5	187.5	375.0	6	25.0	50.0
1010_010	75.0	150.0	2	150.0		3	225.0	450.0	6	25.0	50.0
1010_011	75.0	150.0	2	150.0		3.5	262.5	525.0	6	25.0	50.0
1010_100	75.0	150.0	2	150.0	300.0	4	300.0	600.0	6	25.0	50.0
1011_000						Reserved					
1011_001	80.0	160.0	2.5	200.0	400.0	2.5	200.0	400.0	8	25.0	50.0
1011_010	80.0	160.0	2.5	200.0	400.0	3	240.0	480.0	8	25.0	50.0
1011_011	80.0	160.0	2.5	200.0	400.0	3.5	280.0	560.0	8	25.0	50.0
1011_100	80.0	160.0	2.5	200.0	400.0	4	320.0	640.0	8	25.0	50.0
1011_101	80.0	160.0	2.5	200.0	400.0	4.5	360.0	720.0	8	25.0	50.0
1101_000	50.0	100.0	2.5	125.0	250.0	3	150.0	300.0	5	25.0	50.0

Clock Configuration Modes

Mode ³		Clock ⁴ Hz)	CPM Multiplication	YM (MHz) CPU		CPU Clock (MHz)		PCI Division		PCI Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High	Factor	Low	High
1101_001	50.0	100.0	2.5	125.0	250.0	3.5	175.0	350.0	5	25.0	50.0
1101_010	50.0	100.0	2.5	125.0	250.0	4	200.0	400.0	5	25.0	50.0
1101_011	50.0	100.0	2.5	125.0	250.0	4.5	225.0	450.0	5	25.0	50.0
1101_100	50.0	100.0	2.5	125.0	250.0	5	250.0	500.0	5	25.0	50.0
1101_101	62.5	125.0	2	125.0	250.0	3	187.5	375.0	5	25.0	50.0
1101_110	62.5	125.0	2	125.0	250.0	4	250.0	500.0	5	25.0	50.0
1110_000	50.0	100.0	3	150.0	300.0	3.5	175.0	350.0	6	25.0	50.0
1110_001	50.0	100.0	3	150.0	300.0	4	200.0	400.0	6	25.0	50.0
1110_010	50.0	100.0	3	150.0	300.0	4.5	225.0	450.0	6	25.0	50.0
1110_011	50.0	100.0	3	150.0	300.0	5	250.0	500.0	6	25.0	50.0
1110_100	50.0	100.0	3	150.0	300.0	5.5	275.0	550.0	6	25.0	50.0
								11		I	
1100_000						Reserved					
1100_001		Reserved									
1100_010		Reserved									

Table 20. Clock Configurations for PCI Host Mode (PC	PCI_MODCK=1) ^{1,2} (continued)
--	---

¹ The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not violate the frequency rating of the user's device. The minimum CPM frequency is 120 MHz. Minimum CPU frequency is determined by the clock mode. For modes with a CPU multiplication factor <= 3, the minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. For modes with a CPU multiplication factor >= 3.5: for Rev0.1 the minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices.

- ² As Table 17 shows, PCI_MODCK determines the PCI clock frequency range. See Table 20 for higher configurations.
- ³ MODCK_H = hard reset configuration word [28–31]. MODCK[1-3] = three hardware configuration pins.
- ⁴ 60x and local bus frequency. Identical to CLKIN.
- ⁵ CPM multiplication factor = CPM clock/bus clock
- ⁶ CPU multiplication factor = Core PLL multiplication factor

7.3 PCI Agent Mode

These tables show configurations for PCI agent mode. The frequency values listed are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. Note that in PCI agent mode the following:

Clock Configuration Modes

NOTE: PCI_MODCK

In PCI mode only, PCI_MODCK comes from the LGPL5 pin and MODCK_H[0–3] comes from {LGPL0, LGPL1, LGPL2, LGPL3}.

NOTE: Tval (Output Hold)

The minimum Tval = 2 ns when PCI_MODCK = 1, and the minimum Tval = 1 ns when PCI_MODCK = 0. Therefore, designers should use clock configurations that fit this condition to achieve PCI-compliant AC timing.

Table 21. Clock C	onfigurations	for PCI	Agent Mode	(PCI	_MODCK=0) ^{1,2}

Mode ³	PCI ((M	Clock Hz)	CPM Multiplication	CPM (M	Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
Default Modes (MODCK_H=0000											
0000_000	60.0	66.7	2	120.0	133.3	2.5	150.0	166.7	2	60.0	66.7
0000_001	50.0	66.7	2	100.0	133.3	3	150.0	200.0	2	50.0	66.7
0000_010	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0000_011	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
0000_100	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
0000_101	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
0000_110	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
0000_111	50.0	66.7	4	200.0	266.6	3	240.0	320.0	2.5	80.0	106.7
	Full Configuration Modes										
0001_001	60.0	66.7	2	120.0	133.3	5	150.0	166.7	4	30.0	33.3
0001_010	50.0	66.7	2	100.0	133.3	6	150.0	200.0	4	25.0	33.3
0001_011	50.0	66.7	2	100.0	133.3	7	175.0	233.3	4	25.0	33.3
0001_100	50.0	66.7	2	100.0	133.3	8	200.0	266.6	4	25.0	33.3
0010_001	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
0010_010	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
0010_011	50.0	66.7	3	150.0	200.0	4	240.0	320.0	2.5	60.0	80.0
0010_100	50.0	66.7	3	150.0	200.0	4.5	270.0	360.0	2.5	60.0	80.0
0011_000						Reserved					
0011_001						Reserved					
0011_010		Reserved									
0011_011		Reserved									
0011_100						Reserved					

Mode ³		Clock Hz)	-		Clock Hz)	CPU Multiplication	CPU Clock (MHz)		Bus Division	Bus Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Eastar ⁵	Low	High	Factor	Low	High
1110_011	50.0	66.7	5	250.0	333.3	4	500.0	666.6	2	125.0	166.7
	•			•						•	
1110_100	50.0	66.7	5	250.0	333.3	4	333.3	444.4	3	83.3	111.1
1110_101	50.0	66.7	5	250.0	333.3	4.5	375.0	500.0	3	83.3	111.1
1110_110	50.0	66.7	5	250.0	333.3	5	416.7	555.5	3	83.3	111.1
1110_111	50.0	66.7	5	250.0	333.3	5.5	458.3	611.1	3	83.3	111.1
1100_000		Reserved									
1100_001		Reserved									
1100_010						Reserved					

Table 21. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2} (continued)

¹ The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not violate the frequency rating of the user's device. The minimum CPM frequency is 120 MHz. Minimum CPU frequency is determined by the clock mode. For modes with a CPU multiplication factor <= 3, the minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. For modes with a CPU multiplication factor >= 3.5: for Rev 0.1 the minimum CPU frequency is 250 MHz; for Rev A or later the minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices.

² As shown in Table 17, PCI_MODCK determines the PCI clock frequency range. See Table 20 for lower configurations.

³ MODCK_H = hard reset configuration word [28–31]. MODCK[1-3] = three hardware configuration pins.

⁴ CPM multiplication factor = CPM clock/PCI clock

⁵ CPU multiplication factor = Core PLL multiplication factor

Table 22. Clock Configurations for PCI Agent Mode (PCI_MODCK=1)^{1,2}

Mode ³		Clock Hz)	CPM Multiplication	CPM Clock (MHz)		CPU Multiplication	CPU Clock (MHz)		Bus Division	Bus Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
			De	fault M	odes (N	/IODCK_H=0000)	L				
0000_000	30.0	50.0	4	120.0	200.0	2.5	150.0	250.0	2	60.0	100.0
0000_001	25.0	50.0	4	100.0	200.0	3	150.0	300.0	2	50.0	100.0
0000_010	25.0	50.0	6	150.0	300.0	3	150.0	300.0	3	50.0	100.0
0000_011	25.0	50.0	6	150.0	300.0	4	200.0	400.0	3	50.0	100.0
0000_100	25.0	50.0	6	150.0	300.0	3	180.0	360.0	2.5	60.0	120.0
0000_101	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0
0000_110	25.0	50.0	8	200.0	400.0	3.5	233.3	466.7	3	66.7	133.3

- ² As shown in Table 17, PCI_MODCK determines the PCI clock range. See Table 20 for higher range configurations.
- ³ MODCK_H = hard reset configuration word [28–31]. MODCK[1-3] = three hardware configuration pins.
- ⁴ CPM multiplication factor = CPM clock/PCI clock
- ⁵ CPU multiplication factor = Core PLL multiplication factor

8 Pinout

This section provides the pin assignments and pinout lists for both HiP7 PowerQUICC II packages.

8.1 ZU and VV Packages—MPC8280 and MPC8270

The following figures and table represent the standard 480 TBGA package. For information on the alternate package, see Section 8.2, "VR and ZQ Packages—MPC8275 and MPC8270."

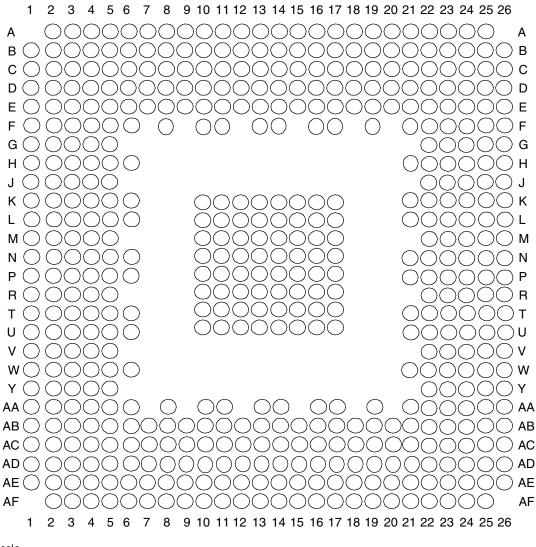


Table 23, MPC8280 and MPC8270 (ZU and VV Packages) Pinout List (continued)

Pin Na	me	Dell
MPC8280/MPC8270	MPC8280 only	Ball
D18		D15
D19		C13
D20		B11
D21		A8
D22		A5
D23		C5
D24		C19
D25		C17
D26		C15
D27		D13
D28		C11
D29		B8
D30		A4
D31		E6
D32		E18
D33		B17
D34		A15
D35		A12
D36		D11
D37		C8
D38		E7
D39		A3
D40		D18
D41		A17
D42		A14
D43		B12
D44		A10
D45		D8
D46		B6
D47		C4
D48		C18
D49		E16
D50		B14

This figure shows the pinout of the VR and ZQ packages as viewed from the top surface.

Not to Scale

Figure 14. Pinout of the 516 PBGA Package (View from Top)

This table shows the pinout list of the MPC8275 and MPC8270. Table 24 defines conventions and acronyms used in Table 25.

Pin N	Ball	
MPC8275/MPC8270		
BR	C16	
BG	D2	
ABB/IRQ2	C1	
TS	D1	

Pinout

Pin Name		D-11
MPC8275/MPC8270	MPC8275 only	Ball
A0		D5
A1		E8
A2		C4
A3		B4
A4		A4
A5		D7
A6		D8
A7		C6
A8		B5
A9		B6
A10		C7
A11		C8
A12		A6
A13		D9
A14		F11
A15		B7
A16		B8
A17		C9
A18		A7
A19		B9
A20		E11
A21		A8
A22		D11
A23		B10
A24		C11
A25		A9
A26		B11
A27		C12
A28		D12
A29		A10
A30		B12
A31		B13
ТТО		E7

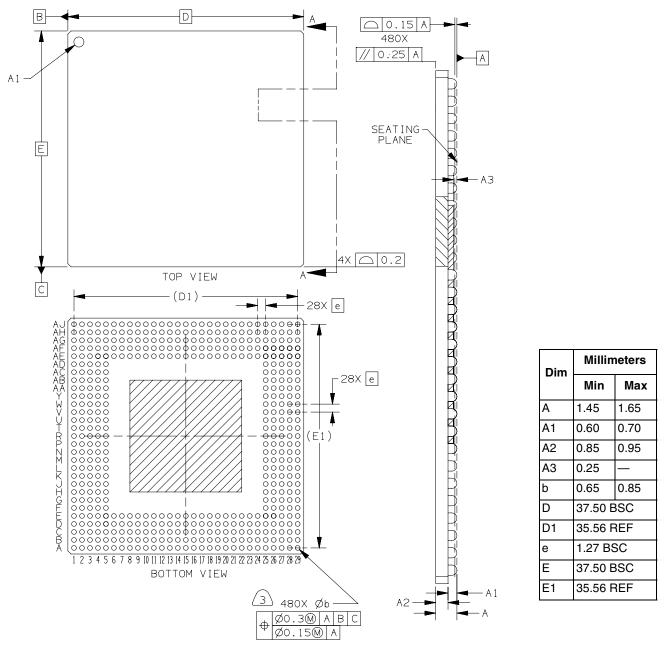
Table 25. MPC8275 and MPC8270 (VR and ZQ Packages) Pinout List (continued)

Pin Name		
MPC8275/MPC8270	MPC8275 only	Ball
TT1		B3
TT2		F8
ТТ3		A3
TT4		C3
TBST		F5
TSIZ0		E3
TSIZ1		E2
TSIZ2		E1
TSIZ3		E4
AACK		D3
ARTRY		C2
DBG		A14
DBB/IRQ3		C15
D0		W4
D1		Y1
D2		V1
D3		P4
D4		N3
D5		K5
D6		J4
D7		G1
D8		AB1
D9		U4
D10		U2
D11		N6
D12		N1
D13		L1
D14		J5
D15		G3
D16		AA2
D17		W1
D18		Т3
D19		T1

Table 25. MPC8275 and MPC8270 (VR and ZQ Packages) Pinout List (continued)

Pinout

Table 25. MPC8275 and MPC8270 (VR and ZQ Packages) Pinout List (continued)


Pin Name		D-11
MPC8275/MPC8270	MPC8275 only	Ball
PC5/SI2_L1ST3/FCC2_CTS	FCC2_UTM_TXCLAV/ FCC2_UTS_TXCLAV	AC25 ²
PC6/FCC1_CD	FCC1_UTM_RXADDR2/ FCC1_UTS_RXADDR2/ FCC1_UTM_RXCLAV1	AB25 ²
PC7/FCC1_CTS	FCC1_UTM_TXADDR2/ FCC1_UTS_TXADDR2/ FCC1_UTM_TXCLAV1	AA24 ²
PC8/ CD4 /RENA4/SI2_L1ST2/ CTS3 / USB_RN	FCC1_UT16_TXD0	Y24 ²
PC9/CTS4/CLSN4/SI2_L1ST1/ L1TSYNCA2/L1GNTA2/USB_RP	FCC1_UT16_TXD1	U22 ²
PC10/CD3/RENA3	FCC1_UT16_TXD2/FCC2_UT8_RXD3	V23 ²
PC11/CTS3/CLSN3/L1TXD3A2	FCC2_UT8_RXD2	U23 ²
PC12/CD2/RENA2	FCC1_UTM_RXADDR1/ FCC1_UTS_RXADDR1	T26 ²
PC13/CTS2/CLSN2	FCC1_UTM_TXADDR1/ FCC1_UTS_TXADDR1	R26 ²
PC14/CD1/RENA1	FCC1_UTM_RXADDR0/ FCC1_UTS_RXADDR0	P26 ²
PC15/CTS1/CLSN1/SMTXD2	FCC1_UTM_TXADDR0/ FCC1_UTS_TXADDR0	P24 ²
PC16/CLK16/TIN4		M26 ²
PC17/CLK15/TIN3/BRGO8		L26 ²
PC18/CLK14/TGATE2		M24 ²
PC19/CLK13/BRGO7/SPICLK		L22 ²
PC20/CLK12/TGATE1/USB_OE		K25 ²
PC21/CLK11/BRGO6		J25 ²
PC22/CLK10/DONE1	FCC1_UT_TXPRTY	G26 ²
PC23/CLK9/BRGO5/DACK1		F26 ²
PC24/CLK8/TOUT4	FCC2_UT8_TXD3	G24 ²
PC25/CLK7/BRGO4	FCC2_UT8_TXD2	E25 ²
PC26/CLK6/TOUT3/TMCLK		G23 ²
PC27/FCC3_TXD/FCC3_MII_TXD0/ FCC3_RMII_TXD0/CLK5/BRGO3		B23 ²
PC28/CLK4/TIN1/TOUT2/CTS2/CLSN2	FCC2_UT_RXADDR4	E22 ²
PC29/CLK3/TIN2/BRGO2/CTS1/CLSN1		E21 ²
PC30/CLK2/TOUT1	FCC2_UT8_TXD3	D21 ²

Package Description

9.2 Mechanical Dimensions

This figure provides the mechanical dimensions and bottom surface nomenclature of the 480 TBGA (ZU/VV) package. See Table 2, "HiP7 PowerQUICC II Device Packages."

Notes:

- 1. Dimensions and Tolerancing per ASME Y14.5M-1994.
- 2. Dimensions in millimeters.
- 3. Dimension b is measured at the maximum solder ball diameter, parallel to primary data A.
- 4. Primary data A and the seating plane are defined by the spherical crowns of the solder balls.

Figure 17. Mechanical Dimensions and Bottom Surface Nomenclature—480 TBGA

Revision	Date	Substantive Changes
1.0	2/2004	 Removal of "Advance Information" and "Preliminary." The MPC8280 is fully qualified. Table 2: New Figure 1: Modification to note 2 Section 1.1: Core frequency range is 166–450 MHz Addition of ZQ (516 PBGA with Lead spheres) package references Table 4: VDD and VCCSYN modified to 1.45–1.60 V Note following Table 4: Modified Table 5: Addition of note 2 regarding TRST and PORESET (see VIH row of Table 5) Table 5: Moved QREQ to V_{QL}: _{QL} = 3.2 mA Table 5: Moved QREQ to V_{QL}: _{QL} = 3.2 mA Table 10: Addition of rutical interrupt (CINT) to TRQ5 for V_{QL} (_{QL} = 6.0mA) Table 12: Modified power values (+ 150mW to each) Table 13: Modified power values (+ 150mW to each) Table 14: Addition of note 2. Changed PCI impedance to 27 Ω. Table 12: Modified power values (+ 150mW to each) Table 12: Changes to sp16a, sp18a, sp20 and sp21 Section 6.2: Addition of Note: CLKIN Jitter and Duty Cycle Table 12: Changes to sp16a (and 83 MHz, sp14 @ 83 MHz) Table 12: Changes to sp30 (data bus signals). Changes to sp33b. Removal of note 2. Table 12: Change to sp30 to CPM port pin PB14. Previously omitted. Table 23: Addition of RXD3 to CPM port pin PB14. Previously omitted. Table 23: Addition of RXD3 to CPM port pin PB14. Previously omitted. Table 23: Addition of note 1 to TRST (HA1) and PORESET (AG6) Table 23: Addition of RXD3 to CPM port pin PB14. Previously omitted. Table 23: Addition of note 1 to TRST (F22) and PORESET (B25) Table 25: Addition of reviously omitted signals that are multiplexed with CPM port pins: PA6—FCC2_UT_RXADDR3 PA7—FCC2_UT_RXADDR4 Table 25: Removal of serial interface 1 (SI1) signals from port pins (see note 2 in Figure 1): PA(6-9), PE(6-7, 10-13), PD[4, 10-13, 16, 23-28] Table 25: Addition of roitical interrupt (CINT) to AC1 and B14. Previously omitted.<