

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 23x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1566-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3:	PIC16LF1567 PINOUT DESCRIPTION (
		 £

Name	Function	Input Type	Output Type	Description
	RB3	TTL	CMOS	General Purpose I/O with IOC and WPU.
RB3/AN28/PWM23	AN28	AN	—	ADC Channel Input for ADC2.
	PWM23	—	CMOS	PWM Output for PWM2.
	RB4	TTL	CMOS	General Purpose I/O with IOC and WPU.
	AN18	AN	—	ADC Channel Input for ADC1.
RB4/AN18/AD1GRDA('//AD2GRDA('/	AD1GRDA	—	CMOS	ADC1 Guard Ring Output A.
	AD2GRDA	—	CMOS	ADC2 Guard Ring Output A.
	RB5	TTL	CMOS	General Purpose I/O with IOC and WPU.
	AN29	AN	—	ADC Channel Input for ADC2.
RB5/AN29/AD1GRDA ⁽¹⁾ /AD2GRDA ⁽¹⁾ /	AD1GRDA	—	CMOS	ADC1 Guard Ring Output A.
	AD2GRDA	—	CMOS	ADC2 Guard Ring Output A.
	T1G	ST	—	Timer1 Gate Input
	RB6	TTL	CMOS	General Purpose I/O with IOC and WPU.
	AN19	AN	—	ADC Channel Input for ADC1.
RB6/AN19/AD1GRDB ⁽¹⁾ /AD2GRDB ⁽¹⁾ /	AD1GRDB	—	CMOS	ADC1 Guard Ring Output B.
ICSPCLK/ICDCLK	AD2GRDB	—	CMOS	ADC2 Guard Ring Output B.
	ICSPCLK	ST	CMOS	ICSP™ Programming Clock.
	ICDCLK	ST	CMOS	In-Circuit Debug Clock.
	RB7	TTL	CMOS	General Purpose I/O with IOC and WPU.
	AN40	AN	—	ADC Channel Input for ADC2.
RB7/AN40/AD1GRDB ⁽¹⁾ /AD2GRDB ⁽¹⁾ /	AD1GRDB	—	CMOS	ADC1 Guard Ring Output B.
ICSPDAT/ICDDAT	AD2GRDB	—	CMOS	ADC2 Guard Ring Output B.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
	ICDDAT	ST	CMOS	In-Circuit Debug Data.
	RC0	TTL	CMOS	General Purpose I/O.
	AN12	AN	_	ADC Channel Input for ADC1.
RC0/AN12/11CKI/SDO2	T1CKI	ST	_	Timer1 Clock Input.
	SDO2	_	CMOS	SPI Data Output for MSSP2.
	RC1	TTL	CMOS	General Purpose I/O.
	AN23	AN	_	ADC Channel Input for ADC2.
RC1/AN23/PWM2/SCL2/SCK2	PWM2	—	CMOS	PWM Output for PWM2.
	SCL2	l ² C	OD	I ² C Clock for MSSP2.
	SCK2	ST	CMOS	SPI Clock for MSSP2.
	RC2	TTL	CMOS	General Purpose I/O.
	AN13	AN	—	ADC Channel Input for ADC1.
RC2/AN13/PWM1/SDA2/SDI2	PWM1	—	CMOS	PWM Output for PWM1.
	SDA2	l ² C	OD	I ² C Data for MSSP2.
	SDI2	CMOS	—	SPI Data Input for MSSP2.
	RC3	TTL	CMOS	General Purpose I/O.
	AN24	AN	—	ADC Channel Input for ADC2.
RC3/AN24/SCL1/SCK1	SCL1	l ² C	OD	I ² C Clock for MSSP1.
	SCK1	ST	CMOS	SPI Clock for MSSP1.

© 2015-2016 Microchip Technology Inc.

TABLE 3-5:PIC16LF1566/1567 MEMORY MAP, BANKS 8-15

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h															
401h															
402h															
403h															
404h															
405h							CPU Core Registe	r. see Ta	ble 3-2 for specifics						
406h							 	,							
407h															
408h															
409n															
40An															
40BN		40.0%		FOCH		FOCH		COCH		COCH		7005		70.01	
40Ch	_	48Ch	_	50Ch	_	58CN		60Ch		68Ch		7000	_	7801	_
40DH		40D11		SODI		50DII		60DH		COLU					
40EN		40E11		50Eh		50Eh		60Eh		69Eh		70EH		70E11	
40FII		40FII		510h		500h		610b		600h		70FII 710b		70FII 700h	
410H	_	49011 401b		510H	_	501h		611b		601h		710H		790H	
41111 412h		49111 402h		512h		502h		612h	PWWIDCL PWM1DCH	602h		71111 712h		79111 702h	ADZCONU
41211 /13b		402h		513h		503h		613h	PWM1CON	603h		712h		703h	
414h		49311 494h		514h		594h		614h	PWM2DCI	694h		713h		794h	
415h	TMR4	495h		515h		595h		615h	PWM2DCH	695h	AD2TX1	715h	ADSTAT	795h	
416h	PR4	496h		516h		596h		616h	PWM2CON	696h	-	716h		796h	AD2PRECON
417h	T4CON	497h	_	517h		597h		617h	_	697h		717h	AD1ACQCON	797h	AD2ACQCON
418h		498h	_	518h	_	598h		618h	_	698h	_	718h	AD1GRD	798h	AD2GRD
419h	_	499h		519h	_	599h	_	619h	_	699h	_	719h	AD1CAPCON	799h	AD2CAPCON
41Ah	_	49Ah	_	51Ah	_	59Ah	_	61Ah	_	69Ah	_	71Ah	AAD1RES0L	79Ah	AAD2RES0L
41Bh	_	49Bh	_	51Bh	_	59Bh	_	61Bh	_	69Bh	_	71Bh	AAD1RES0H	79Bh	AAD2RES0H
41Ch	_	49Ch	_	51Ch	_	59Ch		61Ch	_	69Ch		71Ch	AAD1RES1L	79Ch	AAD2RES1L
41Dh	_	49Dh		51Dh	_	59Dh	_	61Dh	PWMTMRS	69Dh	_	71Dh	AAD1RES1H	79Dh	AAD2RES1H
41Eh	—	49Eh	_	51Eh	_	59Eh	—	61Eh	PWM1AOE	69Eh	_	71Eh	AD1CH0	79Eh	AD2CH0
41Fh	—	49Fh	—	51Fh	—	59Fh	—	61Fh	PWM2AOE	69Fh	-	71Fh	AD1CH1	79Fh	AD2CH1
420h		4A0h		520h		5A0h		620h 64Fh	General Purpose Register 48 Bytes	6A0h		720h		7A0h	
	General Purpose Register 80 Bytes		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes	650h	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h 47Fh	Accesses 70h – 7Fh	4F0h 4FFh	Accesses 70h – 7Fh	570h 57Fh	Accesses 70h – 7Fh	5F0h	Accesses 70h – 7Fh	670h 67Fh	Accesses 70h – 7Fh	6F0h 6FFh	Accesses 70h – 7Fh	770h 77Fh	Accesses 70h – 7Fh	7F0h 7FFh	Accesses 70h – 7Fh

Note 1: These ADC registers are the same as the registers in Bank 1.

-						•		,			
Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank	31										
F80h	INDF0 ⁽¹⁾	Addressing	this location us	ses contents o	f FSR0H/FSR	ROL to addres	s data memor	y (not a physic	al register)	XXXX XXXX	uuuu uuuu
F81h	INDF1 ⁽¹⁾	Addressing	this location us	ses contents o	f FSR1H/FSR	1L to addres	s data memor	y (not a physic	al register)	XXXX XXXX	uuuu uuuu
F82h	PCL ⁽¹⁾			Program (Counter (PC)	Least Signific	ant Byte			0000 0000	0000 0000
F83h	STATUS ⁽¹⁾	—	_	—	TO	PD	Z	DC	С	1 1000	q quuu
F84h	FSR0L ⁽¹⁾		•	Indirect Da	ata Memory A	ddress 0 Lov	v Pointer	•	•	0000 0000	uuuu uuuu
F85h	FSR0H ⁽¹⁾			Indirect Da	ata Memory A	ddress 0 Hig	h Pointer			0000 0000	0000 0000
F86h	FSR1L ⁽¹⁾			Indirect Da	ata Memory A	ddress 1 Lov	v Pointer			0000 0000	uuuu uuuu
F87h	FSR1H ⁽¹⁾			Indirect Da	ata Memory A	ddress 1 Hig	h Pointer			0000 0000	0000 0000
F88h	BSR ⁽¹⁾	—	—	—			BSR<4:0>			0 0000	0 0000
F89h	WREG ⁽¹⁾				Working F	Register				0000 0000	uuuu uuuu
F8Ah	PCLATH ⁽¹⁾	—		Write B	uffer for the u	pper 7 bits of	the Program	Counter		-000 0000	-000 0000
F8Bh	INTCON ⁽¹⁾	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
F8Ch	ICDIO	PORT_ ICDDAT	PORT_ ICDCLK	LAT_ ICDDAT	LAT_ ICDCLK	TRIS_ ICDDAT	TRIS_ ICDCLK	—	—	xxxxxx	
F8Dh	ICDCON0	INBUG	FREEZ	SSTEP	_	DBGINEX	—	—	RSTVEC	xxx-xx	
F8Eh to F90h	-		Unimplemented							-	-
F91h	ICDSTAT	TRP1HLTF	TRP0HLTF	_	_	_		USRHLTF		xxx-	
F92h to F95h	-		Unimplemented						_	-	
F96h	ICDINSTL	DBGIN7	DBGIN6	DBGIN5	DBGIN4	DBGIN3	DBGIN2	DBGIN1	DBGIN0	xxxxxxx	
F97h	ICDINSTH	_	—	DBGIN13	DBGIN12	DBGIN11	DBGIN10	DBGIN9	DBGIN8	xxxxxx	
F98h to F9Bh	-				Unimpler	mented				_	-
F9Ch	ICDBK0CON	BKEN	—	—	—	_	_	_	BKHLT	xx	
F9Dh	ICDBK0L	BKA7	BKA6	BKA5	BKA4	BKA3	BKA2	BKA1	BKA0	xxxxxxx	
F9Eh	ICDBK0H	_	BKA14	BKA13	BKA12	BKA11	BKA10	BKA9	BKA8	-xxxxxxx	
F9Fh					Unimpler	mented				—	_
FA0h to FBFh	-				Unimpler	mented				_	-
FC0h to FCFh	-		Unimplemented							-	-
FD0h to FE2h	-				Unimpler	mented				-	-
FE3h	BSRICDSHAD	—	_	—			BSR_ICDSHA	٨D		xxxxx	_
FE4h	STATUS SHAD	-	-	—	—	—	Z_SHAD	DC_SHAD	C_SHAD	xxx	uuu
FE5h	WREG_SHAD				WREG_	SHAD				xxxx xxxx	uuuu uuuu
FE6h	BSR_SHAD	—	-	—			BSR_SHAD)		x xxxx	u uuuu
FE7h	PCLATH SHAD	—			Р	CLATH_SHA	ND			-xxx xxxx	uuuu uuuu
FE8h	FSR0L_SHAD				FSR0L_	SHAD				XXXX XXXX	uuuu uuuu
FE9h	FSR0H_SHAD				FSR0H_	SHAD				XXXX XXXX	uuuu uuuu
FEAh	FSR1L_SHAD				FSR1L_	SHAD				XXXX XXXX	uuuu uuuu
FEBh	FSR1H_SHAD		FSR1H_SHAD								uuuu uuuu

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Note 1: These registers can be accessed from any bank.

2: PIC16LF1567.

3: These registers/bits are available at two address locations, in Bank 1 and Bank 14.

4: PIC16LF1566 only.

5: Unimplemented, read as '1'.

REVISIONID: REVISION ID REGISTER⁽¹⁾ REGISTER 4-4: R R R R R R REV<13:8> bit 13 bit 8 R R R R R R R R REV<7:0> bit 7 bit 0 Legend: R = Readable bit

'0' = Bit is cleared'1' = Bit is setx = Bit is unknown

bit 13-0 **REV<13:0>:** Revision ID bits

These bits are used to identify the device revision.

Note 1: This location cannot be written.

FIGURE 5-3:	INTERNAL OSCILLATOR SWITCH TIMING
1999 (1997) (1997) 	(FINTORC (WOT disabled)
HFINTOSC	
LFINTOSC	
IRCF <3:0>	$\neq 0$ $= 0$
System Clock	
\$	LFINTOSC (WET ensibled)
HFINTOSC	
LFINTOSC	
IRCF <3:0>	$\neq 0$ $= 0$
System Clock	
	REINTOSC funns off univers VOT is snabled
LEINECSIC	Sart-up Time/2-cycla Gyrup Rurreing
MERITORO	
<0.5× 30.08	
System Clock	

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

FIGURE 7-2: INTERRUPT LATENCY

EXAMPLE 10-2: ERASING ONE ROW OF PROGRAM MEMORY

; This	row erase p	coutine assumes	the following:
; 1. A	valid addre	ess within the o	erase row is loaded in ADDRH:ADDRL
; 2. A	DDRH and ADI	DRL are located	in shared data memory 0x70 - 0x7F (common RAM)
	BCF BANKSEL MOVF MOVWF MOVF BCF BSF BSF	INTCON, GIE PMADRL ADDRL, W PMADRL ADDRH, W PMADRH PMCON1, CFGS PMCON1, FREE PMCON1, WREN	 ; Disable ints so required sequences will execute properly ; Load lower 8 bits of erase address boundary ; Load upper 6 bits of erase address boundary ; Not configuration space ; Specify an erase operation ; Enable writes
Required Sequence	MOVLW MOVWF MOVWF BSF NOP NOP	55h PMCON2 0AAh PMCON2 PMCON1,WR	<pre>; Start of required sequence to initiate erase ; Write 55h ; ; Write AAh ; Set WR bit to begin erase ; NOP instructions are forced as processor starts ; row erase of program memory. ; ; ; The processor stalls until the erase process is complete ; after erase processor continues with 3rd instruction</pre>
	BCF	PMCON1,WREN	; Disable writes
	BSF	INTCON,GIE	; Enable interrupts

10.3 Modifying Flash Program Memory

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

FIGURE 10-7: FLA

FLASH PROGRAM MEMORY MODIFY FLOWCHART

11.7 PORTC Registers

11.7.1 DATA REGISTER

PORTC is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISC (Register 11-12). Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., disable the output driver). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 11-1 shows how to initialize an I/O port.

Reading the PORTC register (Register 11-11) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATC).

11.7.2 DIRECTION CONTROL

The TRISC register (Register 11-12) controls the PORTC pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISC register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

11.7.3 ANALOG CONTROL

The ANSELC register (Register 11-14) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELC bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELC bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELC bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSELx bits
	must be initialized to '0' by user software.

11.7.4 PORTC FUNCTIONS AND OUTPUT PRIORITIES

Each PORTC pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 11-8.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input and some digital input functions are not included in the output priority list. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in the output priority list.

TABLE 11-8: PORTC OUTPUT PRIORI

Pin Name	Function Priority ⁽¹⁾
RC0	T1CKI SDO2 RC0
RC1	SCK2 SCL2 PWM2 RC1
RC2	SDA2 SDI2 PWM1 RC2
RC3	SCK1 SCL1 RC3
RC4	SDA1 SDI1 RC4
RC5	I2CLVL SDO1 RC5
RC6	TX CK RC6
RC7	RX DT RC7

Note 1: Priority listed from highest to lowest.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0>		ADNREF	GO/DONE_ALL	ADPRI	EF<1:0>
bit 7							bit 0
Legend:							
R = Reada	ıble bit	W = Writable	bit	U = Unimple	emented bit, read as	s 'O'	
u = Bit is u	nchanged	x = Bit is unk	nown	-n/n = Value	e at POR and BOR/	/alue at all oth	ner Resets
'1' = Bit is	set	'0' = Bit is cle	ared				
bit 7	ADFM: ADC 1 = Right ju loaded. 0 = Left jus loaded.	C Result Forma Istified. Six Mos tified. Six Leas	t Select bit st Significant t Significant b	bits of ADxRE	SxH are set to '0' w SxL are set to '0' w	hen the conve hen the conve	ersion result is ersion result is
bit 6-4	ADCS<2:0>: ADC Conversion Clock Select bits 111 = FRC (clock supplied from an internal RC oscillator) 110 = Fosc/64 101 = Fosc/16 100 = Fosc/4 011 = FRC (clock supplied from an internal RC oscillator) 010 = Fosc/32 001 = Fosc/8 000 = Fosc/2						
bit 3	bit 3 ADNREF: ADC Negative Voltage Reference Configuration bit 1 = VREFL is connected to external VREF- pin ⁽⁴⁾ 0 = VREFL is connected to AVSS.						
bit 2	 t 2 GO/DONE_ALL⁽³⁾: Synchronized ADC Conversion Status bit 1 = Synchronized ADC conversion in progress. Setting this bit starts conversion in any ADC with ADxON = 1. 0 = Synchronized ADC conversion completed/ not in progress. 						any ADC with
bit 1-0	ADPREF<1 11 = VREFH 10 = VREFH 01 = Reser 00 = VREFH	:0>: ADC Posit is connected to is connected to ved is connected to	ive Voltage R o internal Fixe o external VR o VDD	Reference Con ed Voltage Re _{EF+} pin ⁽⁴⁾	figuration bits ference.		
Note 1:	Bank 1 name is	ADCON1.					
2:	Bank 14 name is	s ADCOMCON					
3:	Setting this bit tr	iggers the GO/	DONEx bits ir	n both ADCs.	Each ADC <u>will r</u> un a	conversion a	ccording to its

REGISTER 15-3: ADCON1⁽¹⁾/ADCOMCON⁽²⁾: ADC CONTROL REGISTER 1

control register settings. This bit reads as an OR of the individual GO/DONEx bits.
4: When selecting the VREF+ or VREF- pin as the source of the positive or negative reference, be aware that a minimum voltage specification exists. See Section 25.0 "Electrical Specifications" for details.

18.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMR1H:TMR1L)
- · Programmable internal or external clock source
- · 2-bit prescaler
- · Optionally synchronized comparator out
- Multiple Timer1 gate (count enable) sources

- · Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- ADC Auto-Conversion Trigger(s)
- · Selectable Gate Source Polarity
- · Gate Toggle mode
- · Gate Single-Pulse mode
- Gate Value Status
- · Gate Event Interrupt

Figure 18-1 is a block diagram of the Timer1 module.

FIGURE 18-1: TIMER1 BLOCK DIAGRAM

20.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a chip select known as Slave Select.

The SPI bus specifies four signal connections:

- Serial Clock (SCKx)
- Serial Data Out (SDOx)
- · Serial Data In (SDIx)
- Slave Select (SSx)

Figure 20-1 shows the block diagram of the MSSPx module when operating in SPI mode.

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 20-4 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 20-5 shows a typical connection between two processors configured as master and slave devices.

Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The master device transmits information out on its SDOx output pin which is connected to, and received by, the slave's SDIx input pin. The slave device transmits information out on its SDOx output pin, which is connected to, and received by, the master's SDIx input pin.

To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register.

During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its shift register (on its SDOx pin) and the slave device is reading this bit

and saving it as the LSb of its shift register, that the slave device is also sending out the MSb from its shift register (on its SDOx pin) and the master device is reading this bit and saving it as the LSb of its shift register.

After eight bits have been shifted out, the master and slave have exchanged register values.

If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data), depends on the application software. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data.
- Master sends useful data and slave sends useful data.
- Master sends dummy data and slave sends useful data.

Transmissions may involve any number of clock cycles. When there is no more data to be transmitted, the master stops sending the clock signal and it deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line must disregard the clock and transmission signals and must not transmit out any data of its own.

20.4.5 START CONDITION

The I^2C specification defines a Start condition as a transition of SDAx from a high to a low state while SCLx line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an Active state. Figure 20-12 shows wave forms for Start and Stop conditions.

A bus collision can occur on a Start condition if the module samples the SDAx line low before asserting it low. This does not conform to the I²C Specification that states no bus collision can occur on a Start.

20.4.6 STOP CONDITION

A Stop condition is a transition of the SDAx line from low-to-high state while the SCLx line is high.

Note: At least one SCLx low time must appear before a Stop is valid, therefore, if the SDAx line goes low then high again while the SCLx line stays high, only the Start condition is detected.

20.4.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid. A master can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart has the same effect on the slave that a Start would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave. Figure 20-13 shows the wave form for a Restart condition.

In 10-bit Addressing Slave mode a Restart is required for the master to clock data out of the addressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a Restart and the high address byte with the R/\overline{W} bit set. The slave logic will then hold the clock and prepare to clock out data.

After a full match with R/\overline{W} clear in 10-bit mode, a prior match flag is set and maintained. Until a Stop condition, a high address with R/\overline{W} clear, or high address match fails.

20.4.8 START/STOP CONDITION INTERRUPT MASKING

The SCIE and PCIE bits of the SSPxCON3 register can enable the generation of an interrupt in Slave modes that do not typically support this function. Slave modes where interrupt on Start and Stop detect are already enabled, these bits will have no effect.

20.5.6 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCLx line low effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCLx.

The CKP bit of the SSPxCON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCLx line to go low and then hold it. Setting CKP will release SCLx and allow more communication.

20.5.6.1 Normal Clock Stretching

Following an \overline{ACK} if the R/W bit of SSPxSTAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSPxBUF with data to transfer to the master. If the SEN bit of SSPxCON2 is set, the slave hardware will always stretch the clock after the \overline{ACK} sequence. Once the slave is ready; CKP is set by software and communication resumes.

- **Note 1:** The BF bit has no effect on if the clock will be stretched or not. This is different than previous versions of the module that would not stretch the clock, clear CKP, if SSPxBUF was read before the ninth falling edge of SCLx.
 - 2: Previous versions of the module did not stretch the clock for a transmission if SSPxBUF was loaded before the ninth falling edge of SCLx. It is now always cleared for read requests.

20.5.6.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set, the clock is always stretched. This is the only time the SCLx is stretched without CKP being cleared. SCLx is released immediately after a write to SSPxADD.

Note:	Previous versions of the module did not
	stretch the clock if the second address byte
	did not match.

20.5.6.3 Byte NACKing

When the AHEN bit of SSPxCON3 is set; CKP is cleared by hardware after the eighth falling edge of SCLx for a received matching address byte. When the DHEN bit of SSPxCON3 is set; CKP is cleared after the eighth falling edge of SCLx for received data.

Stretching after the eighth falling edge of SCLx allows the slave to look at the received address or data and decide if it wants to ACK the received data.

20.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCLx line to go low and then hold it. However, clearing the CKP bit will not assert the SCLx output low until the SCLx output is already sampled low. Therefore, the CKP bit will not assert the SCLx line until an external I^2C master device has already asserted the SCLx line. The SCLx output will remain low until the CKP bit is set and all other devices on the I^2C bus have released SCLx. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCLx (see Figure 20-23).

FIGURE 20-23: CLOCK SYNCHRONIZATION TIMING

20.6 I²C MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in the SSPxCON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSPx module is disabled. Control of the I²C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDAx and SCLx lines.

The following events will cause the SSPx Interrupt Flag bit, SSPxIF, to be set (SSPx interrupt, if enabled):

- Start condition detected
- · Stop condition detected
- Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSPx module, when configured in I²C Master mode, does not allow queuing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur
 - 2: Master mode suspends Start/Stop detection when sending the Start/Stop condition by means of the SEN/PEN control bits. The SSPIF bit is set at the end of the Start/Stop generation when hardware clears the control bit.

20.6.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDAx, while SCLx outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDAx, while SCLx outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCLx. See **Section 20.7** "**Baud Rate Generator**" for more detail.

FIGURE 21-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

0803	ie secosek ruhuhuhy	etezete NANAN	(asesese)e funununun	iociosiosios hununun	jasjasiak fumunu	ienjezijenje: nunununu	eoleoloo Ununun	aqastaqas Nyununu	iokio Aufi	dociodox) LAUNYALA	94040404 VANANI
	💡 BR set by e	366	(lanan 1	,	Bearad
80 (809%) 	,,		te i i		< < <			e e		· · · · · · · · · · · · · · · · · · ·	
2000/01212030	3 3		;	`!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!				7111,771117771111	geographic C y		
6551943	: :			5 5 5 7	X		· · · · · · · · · · · · · · · · · · · ·	····;	;) 	
1.111	:			;		03	දිනයේ එයෙ	to Çeer Reac) et 74	aan in t	
10000 3. 10000 3.	11111111111111111111111111111111111111	()))))))))))))))))))))))))))))))))))))	IIIIIIIIIIIIIIIIIIIIII Se viese tre VEE	inininininini Si bada seta							

FIGURE 21-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

	0404040404	60903904 <u>(</u> 8-902	\$0092-\$(© (001030400302	kosjakja das	ijanja (j	2400808(04)	e (ozjenio-d
evec a	punununujiu	nunununun.	A Magana ang Sang Sang Sang Sang Sang Sang			www.jww.	nupupun.	a Windji	www.www.	WWWW.
	- BR Stat by Weet	· ·····	·····						, januar (h. 60).	Oestad – L
X8385.88								1. 2		
	·····							mindu		
	* · · · · · · · · · · · · · · · · · · ·		23					18 i .	·	
386165	*	; 	,		in tanan			eren en e	······ · · · · · · · · · · · · · /	\$
	Stary Command Executed		uesa 👔	Sievę Bo	48 (0066960	398 00 ENSKA N	(669) (562)	69,253,253X	

More 3: In the wate-up event requires long container warm-up time, the account in cleaning of the WUE bit can constructed the organic agrical account while the organic agrical account of the presence of Q cleaks.

 \mathbb{C}^{n} . The SUSARY reveales is the while the VUE bits each

						,			
Mnemonic, Operands		Description	Cycles	14-Bit Opcode				Status	Notos
		Description		MSb			LSb	Affected	Notes
		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	-	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	-	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
		INHERENT OPERA	TIONS						
CLRWDT	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	-	No Operation	1	00	0000	0000	0000		
OPTION	-	Load OPTION_REG register with W	1	00	0000	0110	0010		
RESET	-	Software device Reset	1	00	0000	0000	0001		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED						
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm					kkkk		
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	1nmm	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	kkkk		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk			2

TABLE 24-3: ENHANCED MID-RANGE INSTRUCTION SET (CONTINUED)

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

TABLE 25-4: I/O PORTS

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature } -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$								
Param. No.	Sym.	Characteristic	Min.	Typ.† Max.		Units	Conditions				
		Input Low Voltage	•		•		•				
		I/O PORT:									
D030		with TTL buffer	_	_	0.15 VDD	V	$1.8V \leq V\text{DD} \leq 3.6V$				
D031	VIL	with Schmitt Trigger buffer	_	_	0.2 VDD	V	$2.0V \leq V\text{DD} \leq 3.6V$				
		with SMBus levels	—	—	0.8	V	$3.0V \le VDD \le 3.6V$				
		with I ² CLVL enabled	—	—	0.3 VI2CLVL	V	$TBD \leq Vi2CLVL \leq VDD$				
D032		MCLR	—	_	0.2 VDD	V					
	VIH	Input High Voltage									
		I/O ports:		_	—						
D040		with TTL buffer	0.25 VDD + 0.8	_	—	V	$1.8V \leq V\text{DD} \leq 3.6V$				
D041		with Schmitt Trigger buffer	0.8 VDD		—	V	$2.0V \leq V\text{DD} \leq 3.6V$				
		with SMBus levels	2.1		—	V	$3.0V \le VDD \le 3.6V$				
		with I ² CLVL enabled	0.7 VI2CLVL		—	V	TBD ≤ VI2CLVL ≤ VDD				
D042		MCLR	0.8 VDD		—	V					
	lı∟	Input Leakage Current ⁽¹⁾									
D060		I/O ports	—	± 5	± 125	nA	$Vss \leq V \text{PIN} \leq V \text{DD}, \ Pin$				
				± 5	± 1000	nA	at high-impedance at 85°C 125°C				
D061		MCLR ⁽²⁾	—	± 50	± 200	nA	$Vss \le VPIN \le VDD at$ 85°C				
	IPUR	Weak Pull-up Current									
D070*			25	100	200	μΑ	VDD = 3.3V, VPIN = VSS				
	Vol	Output Low Voltage ⁽³⁾									
D080		I/O ports	_	_	0.6	V	IOL = 6mA, VDD = 3.3V IOL = 1.8mA, VDD = 1.8V				
	Voн	Output High Voltage ⁽³⁾									
D090		I/O ports	VDD - 0.7	_	_	V	ІОН = 3mA, VDD = 3.3V ІОН = 1mA, VDD = 1.8V				
		Capacitive Loading Specs or	n Output Pins								
D101A*	Cio	All I/O pins	—		50	pF					

These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Negative current is defined as current sourced by the pin.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Including OSC2 in CLKOUT mode.

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-156A Sheet 1 of 2