

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 23x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1566-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN DIAGRAMS

FIGURE 4.

FIGURE I.	20-FIN 3FDIF, 3010, 330F DIAU	экаі	VIFUR FIGTOLF1500	
	VPP/MCLR/RE3 [1 RA0 [2 RA1 [3 RA2 [4		28 RB7/ICSPDAT 27 RB6/ICSPCLK 26 RB5 25 RB4	
	RA3 [5 RA4] 6 RA5 [7 Vss] 8 RA7] 9 RA6 [10 RC0] 11 RC1 [12 RC2 [13 RC3 [14	PIC16LF1566	24 RB3 23 RB2 22 RB1 21 RB0 20 VDD 19 Vss 18 RC7 17 RC6 16 RC5 15 RC4	
Note:	See Table 2 for the pin allocation tables.			

28 DIN SODID SOLC SSOD DIACDAM FOD DICASI F4566

FIGURE 2: 28-PIN UQFN DIAGRAM FOR PIC16LF1566

TABLE 1-3: PIC16LF1567 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
	RA0	TTL	CMOS	General Purpose I/O.
$P_{A,O}(AN)OO(P)A/AdO(OOd(1))$	AN20	AN	—	ADC Channel Input for ADC2.
RAU/AN20/PWM10/SS1	PWM10	—	CMOS	PWM Output for PWM1.
	SS1	ST	_	Slave Select Input for MSSP1.
	RA1	TTL	CMOS	General Purpose I/O.
	AN10	AN	_	ADC Channel Input for ADC1.
RA1/AN10/PWM11/SS2	PWM11	—	CMOS	PWM Output for PWM1.
	SS2	ST	—	Slave Select Input for MSSP2.
	RA2	TTL	CMOS	General Purpose I/O.
	AN0	AN	—	ADC Channel Input for both ADC1 and ADC2.
RAZ/ANU/PWM12	V _{REF-}	AN	—	ADC Negative Voltage Reference Input
	PWM12	—	CMOS	PWM Output for PWM1.
	RA3	TTL	CMOS	General Purpose I/O.
	AN1	AN	—	ADC Channel Input for both ADC1 and ADC2.
RA3/AN1/V _{REF+} /PWM13	V _{REF+}	AN	—	ADC Positive Voltage Reference Input.
	PWM13	—	CMOS	PWM Output for PWM1.
	RA4	TTL	CMOS	General Purpose I/O.
RA4/AN2/T0CKI	AN2	AN		ADC Channel Input for both ADC1 and ADC2.
	T0CKI	ST	—	Timer0 Clock Input.
	RA5	TTL	CMOS	General Purpose I/O.
RA5/AN21/SS1 ⁽¹⁾	AN21	AN	—	ADC Channel Input for ADC2.
	SS1	ST	_	Slave Select Input for MSSP1.
	RA6	TTL	CMOS	General Purpose I/O.
	AN22	AN	_	ADC Channel Input for ADC2.
RA6/AN22/ADTRIG/CLKOUT	ADTRIG	ST	_	ADC Conversion Trigger Input.
	CLKOUT	—	CMOS	F _{OSC} /4 Output.
	RA7	TTL	CMOS	General Purpose I/O.
RA7/AN11/CLKIN	AN11	AN		ADC Channel Input for ADC1.
	CLKIN	CMOS	_	External Clock Input (EC mode).
	RB0	TTL	CMOS	General Purpose I/O with IOC and WPU.
	AN16	AN	_	ADC Channel Input for ADC1.
	PWM20	—	CMOS	PWM Output for PWM2.
	INT	ST	_	External Interrupt.
	RB1	TTL	CMOS	General Purpose I/O with IOC and WPU.
RB1/AN27/PWM21	AN27	AN		ADC Channel Input for ADC2.
	PWM21	—	CMOS	PWM Output for PWM2.
	RB2	TTL	CMOS	General Purpose I/O with IOC and WPU.
RB2/AN17/PWM22	AN17	AN		ADC Channel Input for ADC1.
	PWM22	—	CMOS	PWM Output for PWM2.

FIGURE 3-2: BANKED MEMORY PARTITIONING

TABLE 3-4: PIC16LF1567 MEMORY MAP, BANKS 0-7

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h															
001h															
002h															
003h															
004h															
00511 006h							CPU Core Registe	r, see Tal	ble 3-2 for specifics						
00011 007h															
008h															
009h															
00Ah															
00Bh															
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch		28Ch	_	30Ch	_	38Ch	_
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	_	30Dh	_	38Dh	_
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	_	28Eh	_	30Eh	_	38Eh	_
00Fh	PORTD	08Fh	TRISD	10Fh	LATD	18Fh	ANSELD	20Fh		28Fh		30Fh	—	38Fh	—
010h	PORTE	090h	TRISE	110h	LATE	190h	ANSELE	210h	WPUE	290h	—	310h	—	390h	—
011h	PIR1	091h	PIE1	111h	_	191h	PMADRL	211h	SSP1BUF	291h	—	311h	_	391h	
012h	PIR2	092h	PIE2	112h	_	192h	PMADRH	212h	SSP1ADD	292h	—	312h	_	392h	
013h	_	093h	_	113h	_	193h	PMDATL	213h	SSP1MSK	293h	_	313h	_	393h	_
014h	—	094h	—	114h	—	194h	PMDATH	214h	SSP1STAT	294h	—	314h	—	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	—	195h	PMCON1	215h	SSP1CON1	295h	_	315h	—	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	SSP1CON2	296h	_	316h	—	396h	IOCBF
017h	IMR1H	097h	WDICON	117h	FVRCON	197h		217h	SSP1CON3	297h	—	317h	—	397h	—
018h	I 1CON	098h		118h	—	198h		218h	SSPLVL	298h	_	318h	—	398h	—
019h	TIGCON	099h	OSCCON	119h	_	199h	RCREG	219h	SSP2BUF	299h	_	319h		399h	—
	TMR2	09An			_	19An	IAREG	21An	SSPZADD	29An	_	31An		39An	
01Bh		09Bn	ADRESL	11Ch		19Bn	SPBRGL	21BN 21Ch	SSPZINSK	29Bn		31BN 21Ch		39BN	
0101	12001		ADCONO	11Dh		1901 10Dh	POSTA	2101 21Dh	SSP201A1	29011 20Dh		31Dh		390H	
01Eh		09Dh	ADCON1	11Eh	-	19Dh	ТХСТА	21D1 21Eh	SSP2CON2	29Dh 20Eh		31Eh		39Eh	
01Fh	_	09Fh	ADCON2	11Fh	_	19Fh	BAUDCON	21Eh	SSP2CON3	29Fh	_	31Fh	_	39Fh	_
020h		0A0h	1.500112	120h		1A0h	2/1020011	220h	00.200.00	2A0h		320h		3A0h	
			General		General		General		General		General		General		General
	- ·		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose
	General		Register		Register		Register		Register		Register		Register		Register
	Register		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes
	96 Bytes														
	-														
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		u⊢un		170h		1F0n		270n		2F0n		370n		3⊢0n	
			Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses

070h 07Fh Legend:

egend: = Unimplemented data memory locations, read as '0'.

Note 1: These ADC registers are the same as the registers in Bank 14.

Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets			
Bank	15 · · · · · · · · · · · · · · · · · · ·													
780h	INDF0 ⁽¹⁾	Addressing t	his location us	ses contents of	f FSR0H/FSR	0L to addres	s data memor	y (not a physic	al register)	xxxx xxxx	uuuu uuuu			
781h	INDF1 ⁽¹⁾	Addressing t	his location us	ses contents o	f FSR1H/FSR	1L to addres	s data memor	y (not a physic	al register)	XXXX XXXX	uuuu uuuu			
782h	PCL ⁽¹⁾			Program C	Counter (PC)	Least Signific	ant Byte			0000 0000	0000 0000			
783h	STATUS ⁽¹⁾	—	_	_	TO	PD	Z	DC	С	1 1000	q quuu			
784h	FSR0L ⁽¹⁾			Indirect Da	ata Memory A	ddress 0 Lov	v Pointer			0000 0000	uuuu uuuu			
785h	FSR0H ⁽¹⁾			Indirect Da	ata Memory A	ddress 0 Higl	h Pointer			0000 0000	0000 0000			
786h	FSR1L ⁽¹⁾			Indirect Da	ata Memory A	ddress 1 Lov	v Pointer			0000 0000	uuuu uuuu			
787h	FSR1H ⁽¹⁾			Indirect Da	ata Memory A	ddress 1 Higl	h Pointer			0000 0000	0000 0000			
788h	BSR ⁽¹⁾	—	_	_			BSR<4:0>			0 0000	0 0000			
789h	WREG ⁽¹⁾				Working F	Register				0000 0000	uuuu uuuu			
78Ah	PCLATH ⁽¹⁾	—		Write B	uffer for the u	oper 7 bits of	the Program	Counter		-000 0000	-000 0000			
78Bh	INTCON ⁽¹⁾	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 000u			
78Ch	—				_	_								
78Dh	—					_	_							
78Eh	—			Unimplemented							_			
78Fh	—				Unimpler	nented				_	_			
790h	—				Unimpler	nented				_	_			
791h	AD2CON0			CHS<5	5:0>			GO/DONE2	AD2CON	0000 0000	0000 0000			
792h	—				Unimpler	nented				_	_			
793h	AD2CON2	—	٦	RIGSEL<2:0>	>	—	_	_	_	-000	-000			
794h	AD2CON3	AD2EPPOL	AD2IPPOL	—	_	—	_	AD2IPEN	AD2DSEN	0000	0000			
795h	—				Unimpler	nented				_	_			
796h	AD2PRECON	—		ADPRE<6:0>							-000 0000			
797h	AD2ACQCON	—				ADACQ<6:0>	>			-000 0000	-000 0000			
798h	AD2GRD	GRD2BOE	GRD2AOE	GRD2POL	_	_	_	_	TX2POL	000x	000u			
799h	AD2CAPCON	—	_	_	_		ADD2C	AP<3:0>		0000	0000			
79Ah	AAD2RES0L				ADRE	ESL				XXXX XXXX	uuuu uuuu			
79Bh	AAD2RES0H				ADRE	SH				xxxx xxxx	uuuu uuuu			
79Ch	AAD2RES1L				ADRE	ESL				xxxx xxxx	uuuu uuuu			
79Dh	AAD2RES1H				ADRE	SH				xxxx xxxx	uuuu uuuu			
79Eh	AD2CH0	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	0000 0000	0000 0000			
705	AD2CH1	—	—	—	—	—	CH40	CH29	CH28	000	000			
/9FN	AD2CH1 ⁽²⁾	CH45	CH44	CH43	CH42	CH41	CH40	CH29	CH28	00000000	00000000			

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: These registers can be accessed from any bank.

2: PIC16LF1567.

3: These registers/bits are available at two address locations, in Bank 1 and Bank 14.

4: PIC16LF1566 only.

5: Unimplemented, read as '1'.

RE 3-5:	ACCESS	ING THE ST	ACK EXAMPLE	E 2
				Rev. 10.0000438 7/302013
			_ [
		0x0	F	
		0x0		
		0x0		
		0x0		
		0x0	A	
		0x0	a	This figure shows the stack configuration
		0x0	8	after the first CALL or a single interrupt.
		0x0	7	If a RETURN instruction is executed, the return address will be placed in the
		0x0	6	Program Counter and the Stack Pointer
		0x0	5	decremented to the empty state (UX1F).
		0x0	4	
		0x0	3	
		0x0	2	
		0x0	1	
TOSH:7	TOSL	0x0	0 Return Addre	STKPTR = 0x00
	ACCESS	SING THE ST		Ξ 3
२E 3-6:	ACCESS	SING THE ST		E 3
RE 3-6:	ACCESS	SING THE ST	ACK EXAMPLE	E 3
RE 3-6:	ACCESS	SING THE ST	ACK EXAMPLE	E 3
RE 3-6:	ACCESS	SING THE STA	ACK EXAMPLE	<u>E</u> 3
<u>RE 3-6:</u>	ACCESS	OxOF 0xOF 0xOE 0xOD	ACK EXAMPLE	= 3
<u>२</u>	ACCESS	SING THE STA		E 3
रE 3-6:	ACCESS	OxOF OxOF OxOE OxOD OxOC OxOB	ACK EXAMPLE	E 3
RE 3-6:	ACCESS	OXOF OXOE OXOD OXOD OXOC OXOB OXOA		After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into
RE 3-6:	ACCESS	OxOF OxOF OxOE OxOC OxOB OxOA OxOA		After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 3-6:	ACCESS	OXOF OXOE OXOE OXOB OXOB OXOB OXOA OXOB OXOA OXOB		After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 3-6:	ACCESS	0x0F 0x0F 0x0D 0x0A 0x0A 0x0B 0x0A 0x0A 0x0A 0x0A 0x0A		After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 3-6:	ACCESS	0x0F 0x0E 0x0D 0x0C 0x0B 0x0A	ACK EXAMPLE	After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 3-6: TOSH:TC		0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x0A 0x0B 0x0A 0x0A 0x0B 0x0A 0x0A 0x0A 0x05	ACK EXAMPLE	After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 3-6:	ACCESS	0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x0B 0x0A 0x0B 0x0A 0x0B 0x0A 0x0B 0x0A 0x0B 0x0A 0x03 0x06 0x05 0x04	ACK EXAMPLE	After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 3-6:	ACCESS	0x0F 0x0E 0x0D 0x0D 0x0D 0x0D 0x0D 0x0D 0x0D 0x0D 0x0D 0x0A 0x09 0x08 0x07 0x06 0x05 0x04 0x03	ACK EXAMPLE	The result of the second secon
RE 3-6:	ACCESS	0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x0B 0x0A 0x0B 0x0A 0x0B 0x0A 0x09 0x08 0x07 0x08 0x07 0x08 0x07 0x08 0x07 0x08 0x07 0x08 0x07 0x04 0x03 0x02	ACK EXAMPLE ACK EXAMPLE Return Address Return Address Return Address Return Address Return Address Return Address Return Address	The seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 3-6:	ACCESS	0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x0A 0x09 0x08 0x07 0x08 0x01 0x02 0x01	ACK EXAMPLE ACK EXAMPLE	The seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.

5.0 **OSCILLATOR MODULE**

5.1 **Overview**

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 5-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external clock oscillators. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

Selectable system clock source between external or internal sources via software.

The oscillator module can be configured in one of the following clock modes.

- 1. ECL External Clock Low-Power mode (0 MHz to 0.5 MHz)
- 2. ECM External Clock Medium Power mode (0.5 MHz to 4 MHz)
- 3. ECH External Clock High-Power mode (4 MHz to 20 MHz)
- 4. INTOSC Internal oscillator (31 kHz to 32 MHz)

Clock source modes are selected by the FOSC<1:0> bits in the Configuration Words. The FOSC bits determine the type of oscillator that will be used when the device is first powered.

The EC clock mode relies on an external logic level signal as the device clock source.

The INTOSC internal oscillator block produces low and high-frequency clock sources, designated LFINTOSC and HFINTOSC (see Internal Oscillator Block, Figure 5-1). A wide selection of device clock frequencies may be derived from these clock sources.

5.3 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS) bits of the OSCCON register. The following clock sources can be selected using the SCS bits:

- Default system oscillator determined by FOSC bits in Configuration Words
- Internal Oscillator Block (INTOSC)

5.3.1 SYSTEM CLOCK SELECT (SCS) BITS

The System Clock Select (SCS) bits of the OSCCON register selects the system clock source that is used for the CPU and peripherals.

- When the SCS bits of the OSCCON register = 00, the system clock source is determined by value of the FOSC<1:0> bits in the Configuration Words.
- When the SCS bits of the OSCCON register = 1x, the system clock source is chosen by the internal oscillator frequency selected by the IRCF<3:0> bits of the OSCCON register. After a Reset, the SCS bits of the OSCCON register are always cleared.

When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 5-1.

Switch From	Switch To	Frequency	Oscillator Delay
Sleep	LFINTOSC ⁽¹⁾ MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31 kHz 31.25 kHz-500 kHz 31.25 kHz-16 MHz	Oscillator Warm-Up Delay Twarm ⁽²⁾
Sleep/POR	EC ⁽¹⁾	DC – 32 MHz	2 cycles
LFINTOSC	EC ⁽¹⁾	DC – 32 MHz	1 cycle of each
Any clock source	MFINTOSC ⁽¹⁾ HFINTOSC	31.25 kHz-500 MHz 31.25 kHz-16 MHz	2 μs (approx.)
Any clock source	LFINTOSC	31 kHz	1 cycle of each
PLL inactive	PLL active	16-32 MHz	2 ms (approx.)

TABLE 5-1: OSCILLATOR SWITCHING DELAYS

Note 1: PLL inactive

2: See Section 25.0 "Electrical Specifications"

15.4 ADC Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 15-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 15-4. **The maximum recommended impedance for analog sources is 10** k Ω . As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an ADC acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 15-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 15-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature = 50°C and external impedance of 10 kΩ 3.3V VDD TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient= TAMP + TC + TCOFF= 2 µs + TC + [(Temperature - 25°C)(0.05 µs/°C)]The value for TC can be approximated with the following equations: $<math display="block">VAPPLIED\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = VCHOLD \qquad ;[1] VCHOLD charged to within 1/2 lsb$ $VAPPLIED\left(1 - e^{\frac{-TC}{RC}}\right) = VCHOLD \qquad ;[2] VCHOLD charge response to VAPPLIED$ $<math display="block">VAPPLIED\left(1 - e^{\frac{-TC}{RC}}\right) = VAPPLIED\left(1 - \frac{1}{(2^{n+1}) - 1}\right) \qquad ;combining [1] and [2]$ Note: Where n = number of bits of the ADC. Solving for TC:

 $TC = -CHOLD(RIC + RSS + RS) \ln(1/2047)$ $= -15 pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)$ $= 2.06 \ \mu s$

Therefore: $TACQ = 2\mu s + 2.06\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$ = 5.31 \mu s

Note 1: The reference voltage (VRPOS) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.
- **4:** The calculation above assumed CHOLD = 15pF. This value can be larger than 15pF by setting the AADxCAP register.

REGISTER	(16-7: ADX)	CONZ: ADC C	UNIRUL RE	GISTER Z			
U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
		TRIGSEL<2:0>		—	—	_	—
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is un	ichanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is s	et	'0' = Bit is cle	ared				
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-4	TRIGSEL<2	2:0>: Auto-Conv	ersion Trigger	Selection bits			
	111 = ADTF 110 = ADTF 101 = TMR 100 = Time 011 = Time 010 = TMR 001 = Rese 000 = No A	RIG Falling Edge RIG Rising Edge 2 match to PR2 ⁽¹⁾ r1 Overflow ⁽¹⁾ r0 Overflow ⁽¹⁾ 4 match to PR4 rved uto Conversion	: I) Frigger selecte	ed			
bit 3-0	Unimpleme	ented: Read as '	0'				

REGISTER 16-7: ADxCON2: ADC CONTROL REGISTER 2⁽¹⁾

Note 1: Signal also sets its corresponding interrupt flag.

FIGURE 18-5:	TIMER1 GATE SINGLE-PU	ULSE MODE	
TMR1GF			_
T1GPOL			_
T1GSPM			_
T1GGO/ DONE	← Set by software	Cleared by hardware on falling edge of T1GVAL	
t1g_in	rising edge of T1G		_
т1СКІ			_
T1GVAL	T		-
Timer1	N	N + 1 N + 2	- -
TMR1GIF	— Cleared by software	← Set by hardware on ← Set by hardware on falling edge of T1GVAL	ared by ftware

© 2015-2016 Microchip Technology Inc.

Preliminary

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0
ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN
bit 7							bit 0
r							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, reac	l as '0'	
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	ABDOVF: Au	to-Baud Deteo	t Overflow bit				
	Asynchronous 1 = Auto-bauc 0 = Auto-bauc <u>Synchronous</u> Don't care	<u>s mode</u> : d timer overflov d timer did not <u>mode</u> :	wed overflow				
bit 6	RCIDL: Receit Asynchronous 1 = Receiver i 0 = Start bit h Synchronous Don't care	ive Idle Flag bi <u>s mode</u> : is idle as been receiv <u>mode</u> :	t ved and the re	ceiver is receiv	ving		
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	SCKP: Synch	ronous Clock	Polarity Select	t bit			
	Asynchronous 1 = Transmit i 0 = Transmit i Synchronous 1 = Data is all	<u>s mode</u> : nverted data to non-inverted d <u>mode</u> : pokod on riging	o the TX/CK p ata to the TX/0	in CK pin			
	1 = Data is closed	ocked on fallin	a edge of the	clock			
bit 3	BRG16: 16-bi	it Baud Rate G	Senerator bit				
	1 = 16-bit Bau 0 = 8-bit Bau	ud Rate Gener d Rate Genera	rator is used ator is used				
bit 2	Unimplemen	ted: Read as '	0'				
bit 1	WUE: Wake-u	up Enable bit					
	Asynchronous mode: 1 = Receiver is waiting for a falling edge. No character will be received, RCIF bit will be set. WUE will automatically clear after RCIF is set. 0 = Receiver is operating normally Synchronous mode: Don't care						
bit 0	ABDEN: Auto	-Baud Detect	Enable bit				
	Asynchronous 1 = Auto-Bau 0 = Auto-Bau <u>Synchronous</u> Don't care	<u>s mode</u> : Id Detect mode Id Detect mode <u>mode</u> :	e is enabled (o e is disabled	clears when au	ito-baud is comp	olete)	

REGISTER 21-3: BAUDCON: BAUD RATE CONTROL REGISTER

FIGURE 23-2: PICkit[™] PROGRAMMER STYLE CONNECTOR INTERFACE

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 23-3 for more information.

FIGURE 23-3: TYPICAL CONNECTION FOR ICSP™ PROGRAMMING

MOVIW	Move INDFn to W
Syntax:	[<i>label</i>] MOVIW ++FSRn [<i>label</i>] MOVIWFSRn [<i>label</i>] MOVIW FSRn++ [<i>label</i>] MOVIW FSRn [<i>label</i>] MOVIW k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01,10,11] -32 ≤ k ≤ 31
Operation:	$\begin{split} &\text{INDFn} \rightarrow W \\ &\text{Effective address is determined by} \\ &\text{• FSR + 1 (preincrement)} \\ &\text{• FSR - 1 (predecrement)} \\ &\text{• FSR + k (relative offset)} \\ &\text{After the Move, the FSR value will be either:} \\ &\text{• FSR + 1 (all increments)} \\ &\text{• FSR - 1 (all decrements)} \\ &\text{• Unchanged} \end{split}$
Status Affected:	Z

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

MOVLB Move literal to BSR

Syntax:	[<i>label</i>]MOVLB k			
Operands:	$0 \leq k \leq 31$			
Operation:	$k \rightarrow BSR$			
Status Affected:	None			
Description:	The 5-bit literal 'k' is loaded into the Bank Select Register (BSR).			

MOVLP	Move literal to PCLATH					
Syntax:	[<i>label</i>] MOVLP k					
Operands:	$0 \le k \le 127$					
Operation:	$k \rightarrow PCLATH$					
Status Affected:	None					
Description:	The 7-bit literal 'k' is loaded into the PCLATH register.					
MOVLW	Move literal to W					
Syntax:	[<i>label</i>] MOVLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$k \rightarrow (W)$					
Status Affected:	None					
Description:	The 8-bit literal 'k' is loaded into W reg- ister. The "don't cares" will assemble as '0's.					
Words:	1					
Cycles:	1					
Example:	MOVLW 0x5A					
	After Instruction W = 0x5A					
MOVWF	Move W to f					
Syntax:	[<i>label</i>] MOVWF f					
Operands:	0 < f < 127					

Oyntax.	
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVWF OPTION_REG
	Before Instruction OPTION_REG = 0xFF W = 0x4F After Instruction OPTION_REG = 0x4F W = 0x4F

TABLE 25-7: CLOCK OSCILLATOR TIMING REQUIREMENTS

Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C \leq TA \leq +125°C							
Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions	
Fosc	External CLKIN Frequency ⁽¹⁾	DC		0.5	MHz	EC Oscillator mode (low)	
		DC	—	4	MHz	EC Oscillator mode (medium)	
		DC	—	20	MHz	EC Oscillator mode (high)	
Tosc	External CLKIN Period ⁽¹⁾	50	_	8	ns	EC mode	
TCY	Instruction Cycle Time ⁽¹⁾	200	_	DC	ns	Tcy = Fosc/4	
	d Oper g temp Sym. Fosc Tosc Tcy	d Operating Conditions (unless other g temperature -40°C ≤ TA ≤ +125°C Sym. Characteristic Fosc External CLKIN Frequency ⁽¹⁾ Tosc External CLKIN Period ⁽¹⁾ TCY Instruction Cycle Time ⁽¹⁾	d Operating Conditions (unless otherwise states g temperature -40°C \leq TA \leq +125°CSym.CharacteristicMin.FoscExternal CLKIN Frequency ⁽¹⁾ DCDCDCDCToscExternal CLKIN Period ⁽¹⁾ 50TCYInstruction Cycle Time ⁽¹⁾ 200	d Operating Conditions (unless otherwise stated) g temperature -40°C \leq TA \leq +125°CSym.CharacteristicMin.Typ.†FoscExternal CLKIN Frequency ⁽¹⁾ DCDCDCDCToscExternal CLKIN Period ⁽¹⁾ 50TcyInstruction Cycle Time ⁽¹⁾ 200	d Operating Conditions (unless otherwise stated) g temperature -40°C \leq TA \leq +125°CSym.CharacteristicMin.Typ.†Max.FoscExternal CLKIN Frequency ⁽¹⁾ DC—0.5DC—4DC4DCDC2020ToscExternal CLKIN Period ⁽¹⁾ 50— ∞ TCYInstruction Cycle Time ⁽¹⁾ 200—DC	d Operating Conditions (unless otherwise stated) g temperature -40°C \leq TA \leq +125°CSym.CharacteristicMin.Typ.†Max.UnitsFoscExternal CLKIN Frequency ⁽¹⁾ DC0.5MHzDC4MHzDC20MHzToscExternal CLKIN Period ⁽¹⁾ 50 ∞ nsTcyInstruction Cycle Time ⁽¹⁾ 200DCns	

These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to CLKIN pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

TABLE 25-8:OSCILLATOR PARAMETERS

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽¹⁾	—	16.0		MHz	$0^{\circ}C \leq T\!A \leq \textbf{+85}^{\circ}C$
OS08A	HFTOL	Frequency Tolerance	_	±3	_	%	25°C, 16 MHz
			—	±6	—	%	$0^{\circ}C \leq T\!A \leq$ +85°C, 16 MHz
OS09	LFosc	Internal LFINTOSC Frequency	_	31	_	kHz	$-40^\circ C \le TA \le +125^\circ C$
OS10* Twarm	HFINTOSC Wake-up from Sleep Start-up Time	—	5	15	μS		
	TWARM	LFINTOSC Wake-up from Sleep Start-up Time	—	0.5	—	ms	

* These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

FIGURE 25-7: BROWN-OUT RESET TIMING AND CHARACTERISTICS

© 2015-2016 Microchip Technology Inc.

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Microchip Technology Drawing C04-076C Sheet 1 of 2