

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 34x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1567-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank		-								•	
280h	INDF0 ⁽¹⁾	Addressing t	his location us	ses contents of	f FSR0H/FSR	OL to addres	s data memor	y (not a physic	al register)	XXXX XXXX	uuuu uuuu
281h	INDF1 ⁽¹⁾	Addressing t	his location us					y (not a physic	al register)	XXXX XXXX	uuuu uuuu
282h	PCL ⁽¹⁾		-	Program C	Counter (PC)	Least Signific	ant Byte	-		0000 0000	0000 0000
283h	STATUS ⁽¹⁾	_	—	—	TO	PD	Z	DC	С	1 1000	q quuu
284h	FSR0L ⁽¹⁾			Indirect Da	ata Memory A	ddress 0 Lov	v Pointer			0000 0000	uuuu uuuu
285h	FSR0H ⁽¹⁾			Indirect Da	ata Memory A	ddress 0 Hig	h Pointer			0000 0000	0000 0000
286h	FSR1L ⁽¹⁾			Indirect Da	ata Memory A	ddress 1 Lov	v Pointer			0000 0000	uuuu uuuu
287h	FSR1H ⁽¹⁾			Indirect Da	ata Memory A	ddress 1 Hig	h Pointer			0000 0000	0000 0000
288h	BSR ⁽¹⁾	_	_	_			BSR<4:0>			0 0000	0 0000
289h	WREG ⁽¹⁾				Working F	Register				0000 0000	uuuu uuuu
28Ah	PCLATH ⁽¹⁾	—		Write B	uffer for the u	oper 7 bits of	the Program	Counter		-000 0000	-000 0000
28Bh	INTCON ⁽¹⁾	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
28Ch	_		•	•	Unimpler	nented	•	•	•	_	_
28Dh	_				Unimpler	nented				_	_
28Eh	_				Unimpler	nented				_	_
28Fh	_				Unimpler	nented				_	_
290h	_				Unimpler	mented				_	_
291h	_				Unimpler	mented				_	_
292h	_				Unimpler	nented				_	_
293h	_				Unimpler	nented				_	_
294h	_				Unimpler	nented				_	_
295h	_				Unimpler	nented				_	_
296h	_				Unimpler	nented				_	_
297h	_				Unimpler	nented				_	_
298h	_				Unimpler	nented				_	_
299h	_				Unimpler	nented				_	_
29Ah	_				Unimpler	nented				_	_
29Bh	—				Unimpler	mented				_	—
29Ch	—				Unimpler	mented				_	—
29Dh	—				Unimpler	mented				_	—
29Eh	_				Unimpler	nented				_	—
29Fh	—	l l			Unimpler	mented				_	_

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend:x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.Note1:These registers can be accessed from any bank.

2: PIC16LF1567.

3: These registers/bits are available at two address locations, in Bank 1 and Bank 14.

4: PIC16LF1566 only.

5: Unimplemented, read as '1'.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

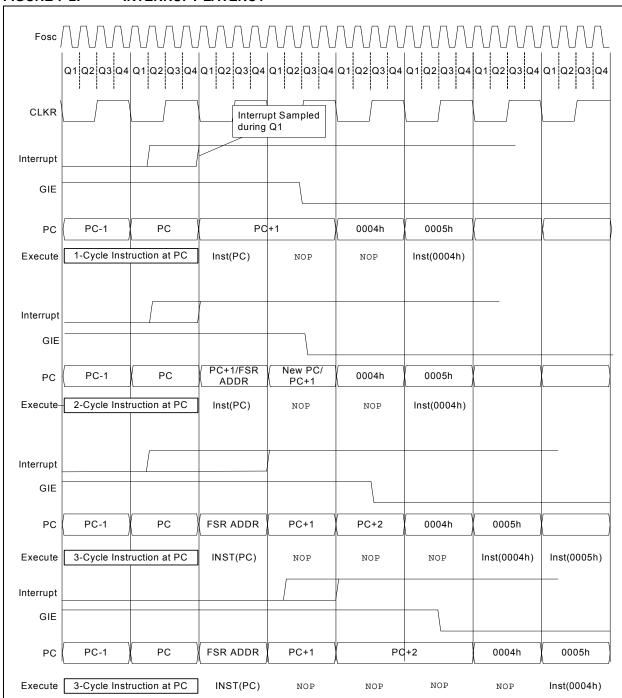


FIGURE 7-2: INTERRUPT LATENCY

REGISTER 10-3: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			PMAD	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplem	nented bit, read	as '0'	

bit 7-0 **PMADR<7:0>**: Specifies the Least Significant bits for program memory address

'0' = Bit is cleared

REGISTER 10-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—				PMADR<14:8	}>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

'1' = Bit is set

bit 6-0 **PMADR<14:8>**: Specifies the Most Significant bits for program memory address

REGISTE	R 10-5: PMC	ON1: PROGR	AM MEMOR	Y CONTROL	. 1 REGISTE	र	
U-1	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
	CFGS	LWLO	FREE	WRERR	WREN	WR	RD
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
S = Bit ca	n only be set	x = Bit is unk	nown	-n/n = Value a	at POR and BC	R/Value at all c	ther Resets
'1' = Bit is	set	'0' = Bit is cle	ared	HC = Bit is cl	eared by hardw	/are	
bit 7	Unimpleme	nted: Read as	'1'				
bit 6	CFGS: Con	figuration Selec	t bit				
		Configuration,		evice ID Regist	ters		
		Flash program	-				
bit 5		d Write Latches					-
		e addressed pro dressed progran					
		tches will be init	•		•		grammenner
bit 4	FREE: Prog	ram Flash Eras	e Enable bit				
	1 = Perform	ns an erase ope	ration on the n			cleared upon c	ompletion)
		ns a write opera		t WR comman	ld		
bit 3		ogram/Erase E	•				
		on indicates an tically on any se				mpt or termina	tion (bit is se
		gram or erase of					
bit 2	-	gram/Erase Ena		5			
	1 = Allows	program/erase	cycles				
	0 = Inhibits	programming/e	rasing of progr	am Flash			
bit 1	WR: Write C						
		a program Flas eration is self-tir			hardwara anaa	oporation is as	malata
		R bit can only be				operation is co	inplete.
		n/erase operation	· ·	,			
bit 0	RD: Read C	ontrol bit					
		a program Flas		takes one cycle	e. RD is cleared	d in hardware. 1	he RD bit car
		set (not cleared		d			
Note 1:		ot initiate a prog			vation (EDEE -	- 1)	
NULE 1. 2.	The LWLO bit is The WRERR bit						oration is

REGISTER 10-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

2: The WRERR bit is automatically set by hardware when a program memory write or erase operation is started (WR = 1).

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0
bit 7						•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 11-17: LATD⁽¹⁾: PORTD DATA LATCH REGISTER

bit 7-0 LATD<7:0>: PORTD Output Latch Value bits⁽²⁾

Note 1: Functions not available on PIC16LF1566.

2: Writes to PORTD are actually written to corresponding LATD register. Reads from PORTD register is return of actual I/O pin values.

REGISTER 11-18: ANSELD⁽¹⁾: PORTD ANALOG SELECT REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSD7 | ANSD6 | ANSD5 | ANSD4 | ANSD3 | ANSD2 | ANSD1 | ANSD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ANSD<7:0>**: Analog Select between Analog or Digital Function on pins RD<7:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽²⁾. Digital input buffer disabled.

0 = Digital I/O. Pin is assigned to port or digital special function.

Note 1: Functions not available on PIC16LF1566.

2: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELD ⁽¹⁾	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	127
LATD ⁽¹⁾	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	127
PORTD ⁽¹⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	126
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	126

TABLE 11-11: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTD.

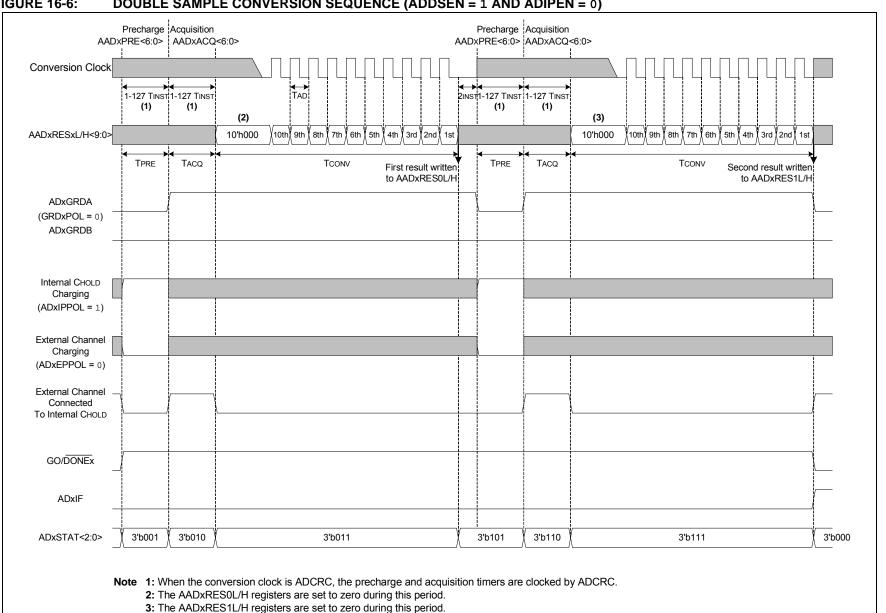
Note 1: Functions not available on PIC16LF1566.

15.2.6 INDIVIDUAL ADC CONVERSION PROCEDURE

This is an example procedure for using the ADCx to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRISx register)
 - Configure pin as analog (Refer to the ANSELx register)
 - Disable weak pull-ups either globally (Refer to the OPTION_REG register) or individually (Refer to the appropriate WPUx register)
- 2. Configure the ADCx module:
 - Select ADCx conversion clock
 - Configure voltage reference
 - Select ADCx input channel
 - Turn on ADCx module
- 3. Configure ADCx interrupt (optional):
 - · Clear ADCx interrupt flag
 - · Enable ADCx interrupt
 - · Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONEx bit.
- 6. Wait for ADCx conversion to complete by one of the following:
 - Polling the GO/DONEx bit
 - Waiting for the ADCx interrupt (interrupts enabled)
- 7. Read ADCx Result.
- 8. Clear the ADCx interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.


2: Refer to Section 15.4 "ADC Acquisition Requirements".

EXAMPLE 15-1: ADC CONVERSION

;This code block configures the ADC1 ;for polling, Vdd and Vss references, FRC ;oscillator and AN0 input.

;Conversion start and polling for completion ;are included.

'		
BANKSEL	ADCON1	;
MOVLW	B'11110000'	;Right justify, FRC
		;oscillator
MOVWF	ADCON1	;VDD is VREFH
BANKSEL	TRISA	;
BSF	TRISA,0	;Set RAO to input
BANKSEL	ANSELA	;
BSF	ANSELA,0	;Set RAO to analog
BANKSEL	WPUA	
BCF	wpua,0	;Disable RA0 weak
		pull-up
BANKSEL	ADCON0	;
MOVLW	B'0000001'	;Select channel AN0
MOVWF	ADCON0	;Turn ADC On
MOVLW	.5	
MOVWF	AAD1ACQ	;Acquisiton delay
BSF	ADCON0, ADGO	;Start conversion
BTFSC	ADCON0, ADGO	;Is conversion done?
GOTO	\$-1	;No, test again
BANKSEL	AD1RESOH	;
MOVF	AD1RESOH,W	;Read upper 2 bits
MOVWF	RESULTHI	;store in GPR space
BANKSEL	AD1RESOL	;
MOVF	AD1RES0L,W	;Read lower 8 bits
MOVWF	RESULTLO	;Store in GPR space

FIGURE 16-6: DOUBLE SAMPLE CONVERSION SEQUENCE (ADDSEN = 1 AND ADIPEN = 0)

18.5.2.1 T1G Pin Gate Operation

The T1G pin is one source for Timer1 gate control. It can be used to supply an external source to the Timer1 gate circuitry.

18.5.2.2 Timer0 Overflow Gate Operation

When Timer0 increments from FFh to 00h, a low-tohigh pulse will automatically be generated and internally supplied to the Timer1 gate circuitry.

18.5.3 TIMER1 GATE TOGGLE MODE

When Timer1 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a Timer1 gate signal, as opposed to the duration of a single level pulse.

The Timer1 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 18-4 for timing details.

Timer1 Gate Toggle mode is enabled by setting the T1GTM bit of the T1GCON register. When the T1GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

Note:	Enabling Toggle mode at the same time
	as changing the gate polarity may result in
	indeterminate operation.

18.5.4 TIMER1 GATE SINGLE-PULSE MODE

When Timer1 Gate Single-Pulse mode is enabled, it is possible to capture a single pulse gate event. Timer1 Gate Single-Pulse mode is first enabled by setting the T1GSPM bit in the T1GCON register. Next, the T1GGO/ DONE bit in the T1GCON register must be set. The Timer1 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the T1GGO/ DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1 until the T1GGO/DONE bit is once again set in software. See Figure 18-5 for timing details.

If the Single Pulse Gate mode is disabled by clearing the T1GSPM bit in the T1GCON register, the T1GGO/DONE bit should also be cleared.

Enabling the Toggle mode and the Single-Pulse mode simultaneously will permit both sections to work together. This allows the cycle times on the Timer1 gate source to be measured. See Figure 18-6 for timing details.

18.5.5 TIMER1 GATE VALUE STATUS

When Timer1 Gate Value Status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the T1GVAL bit in the T1GCON register. The T1GVAL bit is valid even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

18.5.6 TIMER1 GATE EVENT INTERRUPT

When Timer1 Gate Event Interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of T1GVAL occurs, the TMR1GIF flag bit in the PIR1 register will be set. If the TMR1GIE bit in the PIE1 register is set, then an interrupt will be recognized.

The TMR1GIF flag bit operates even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

FIGURE 18-5:	TIMER1 GATE SINGLE-PU	ULSE MODE	
TMR1GE			_
T1GPOL			_
T1GSPM			_
T1GGO/ DONE	Set by software Counting enabled on	Cleared by hardware on falling edge of T1GVAL	
t1g_in	rising edge of T1G		_
т1СКІ			_
T1GVAL	T		-
Timer1	N	N + 1 N + 2	- -
TMR1GIF	— Cleared by software	← Set by hardware on falling edge of T1GVAL	ared by ftware

The $\mathrm{I}^2\mathrm{C}$ interface supports the following modes and features:

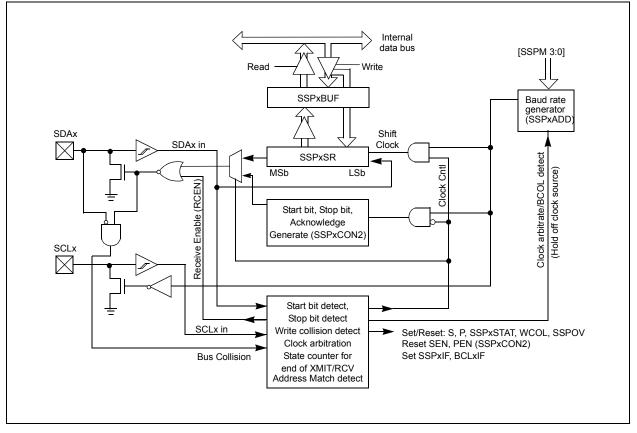
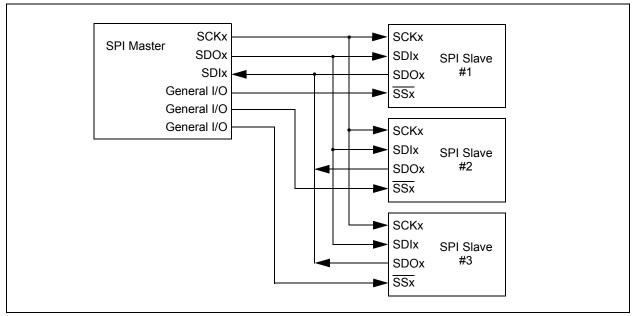

- Master mode
- Slave mode
- Byte NACKing (Slave mode)
- · Limited Multi-master support
- · 7-bit and 10-bit addressing
- · Start and Stop interrupts
- Interrupt masking
- Clock stretching
- · Bus collision detection
- General call address matching
- · Address masking
- · Address Hold and Data Hold modes
- · Selectable SDAx hold times

Figure 20-2 is a block diagram of the I^2C Interface module in Master mode. Figure 20-3 is a diagram of the I^2C interface module in Slave mode.


The PIC12LF1552 has two MSSP modules, MSSP1 and MSSP2, each module operating independently from the other.

- Note 1: In devices with more than one MSSP module, it is very important to pay close attention to SSPxCONx register names. SSP1CON1 and SSP1CON2 registers control different operational aspects of the same module, while SSP1CON1 and SSP2CON1 control the same features for two different modules.
 - 2: Throughout this section, generic references to an MSSP module in any of its operating modes may be interpreted as being equally applicable to MSSP1 or MSSP2. Register names, module I/O signals, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module when required.

FIGURE 20-2: MSSPX BLOCK DIAGRAM (I²C MASTER MODE)

20.2.1 SPI MODE REGISTERS

The MSSPx module has five registers for SPI mode operation. These are:

- MSSPx STATUS register (SSPxSTAT)
- MSSPx Control register 1 (SSPxCON1)
- MSSPx Control register 3 (SSPxCON3)
- MSSPx Data Buffer register (SSPxBUF)
- MSSPx Address register (SSPxADD)
- MSSPx Shift register (SSPxSR) (Not directly accessible)

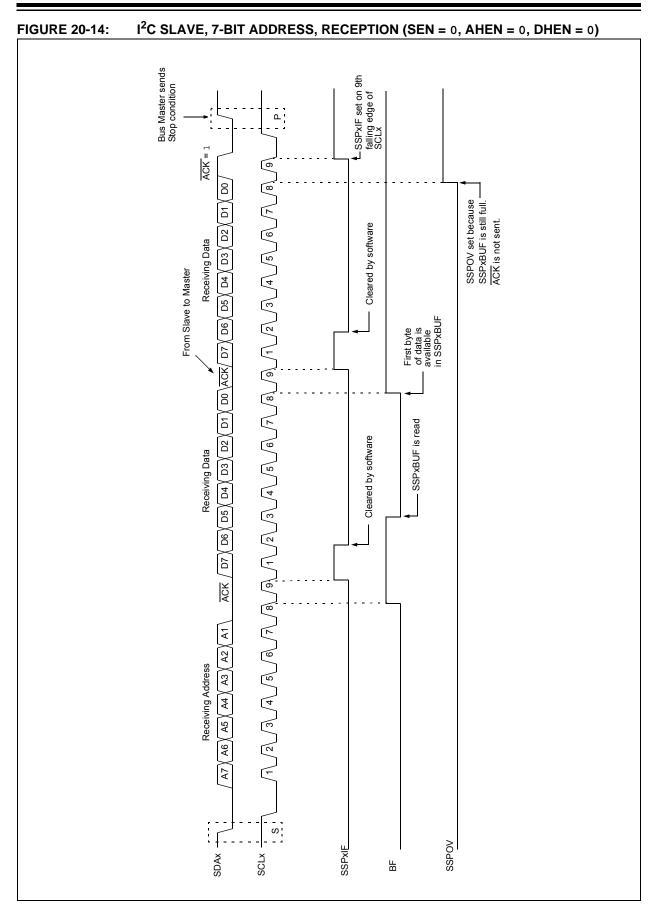
SSPxCON1 and SSPxSTAT are the control and STATUS registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower six bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

In one SPI master mode, SSPxADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section 20.7 "Baud Rate Generator"**.

SSPxSR is the shift register used for shifting data in and out. SSPxBUF provides indirect access to the SSPxSR register. SSPxBUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSPxSR and SSPxBUF together create a buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.


20.2.2 SPI MODE OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPxCON1<5:0> and SSPxSTAT<7:6>). These control bits allow the following to be specified:

- · Master mode (SCKx is the clock output)
- Slave mode (SCKx is the clock input)
- Clock Polarity (Idle state of SCKx)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCKx)
- Clock Rate (Master mode only)
- · Slave Select mode (Slave mode only)

To enable the serial port, SSPx Enable bit, SSPEN of the SSPxCON1 register, must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPxCONx registers and then set the SSPEN bit. This configures the SDIx, SDOx, SCKx and SSx pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:

- · SDIx must have corresponding TRIS bit set
- SDOx must have corresponding TRIS bit cleared
- SCKx (Master mode) must have corresponding TRIS bit cleared
- SCKx (Slave mode) must have corresponding TRIS bit set
- SSx must have corresponding TRIS bit set

© 2015-2016 Microchip Technology Inc.

Preliminary

REGISTER 20-5: SSPxMSK: SSPx MASK REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
			MSK	<7:0>			
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'	
u = Bit is unchanged x =		x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-1	MSK<7:1>:	Mask bits					
		eived address b eived address b					atch

bit 0 MSK<0>: Mask bit for I²C Slave mode, 10-bit Address

I²C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):

1 = The received address bit 0 is compared to SSPxADD<0> to detect I^2C address match

0 = The received address bit 0 is not used to detect I²C address match

I²C Slave mode, 7-bit address, the bit is ignored

21.3 Register Definitions: EUSART Control

REGISTER 21-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7					•		bit (
Legend:							
R = Readal		W = Writable		-	mented bit, read		
u = Bit is ur	-	x = Bit is unk	nown	-n/n = Value	at POR and BOI	R/Value at all	other Resets
'1' = Bit is s	set	'0' = Bit is cle	ared				
bit 7	Asynchronou Don't care Synchronous 1 = Master		nerated interr)		
bit 6	TX9: 9-bit Tr 1 = Selects	ansmit Enable 9-bit transmiss 8-bit transmiss	bit ion	,			
bit 5	1 = Transmi	TXEN: Transmit Enable bit ⁽¹⁾ 1 = Transmit enabled 0 = Transmit disabled					
bit 4	SYNC: EUS 1 = Synchro 0 = Asynchr		ect bit				
bit 3	Asynchronou 1 = Send Sy	nc Break on ne eak transmissic	ext transmissio	on (cleared by	hardware upon o	completion)	
bit 2	BRGH: High <u>Asynchronou</u> 1 = High spe 0 = Low spe <u>Synchronous</u> Unused in th	eed ed <u>s mode:</u>	ect bit				
bit 1	TRMT: Trans 1 = TSR em	TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full					
bit 0	TX9D: Ninth	hit of Tronomit	Data				

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \leq k \leq 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<6:3> \rightarrow PC<14:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.

IORLW	Inclusive OR literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.

INCF	Increment f
Syntax:	[<i>label</i>] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

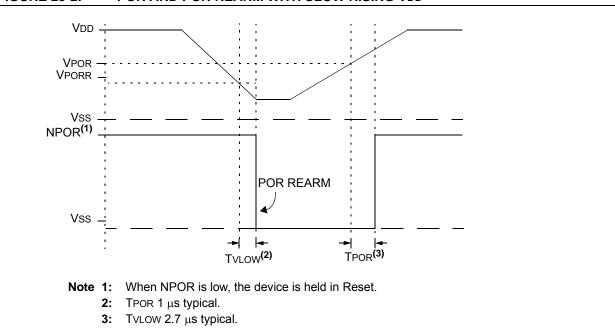
RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
	C Register f

SUBLW	Subtract W	/ from literal
Syntax:	[label] SL	JBLW k
Operands:	$0 \le k \le 255$	
Operation:	$k -(W) \to (W$)
Status Affected:	C, DC, Z	
Description:	complement	er is subtracted (2's method) from the 8-bit e result is placed in the W
	C = 0	W > k
	C = 1	$W \leq k$

DC = 0

DC = 1

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT,} \\ 0 \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its pres- caler are cleared. The processor is put into Sleep mode with the oscillator stopped.


SUBWF	Subtract W from f									
Syntax:	[<i>label</i>] SUBWF f,d									
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$									
Operation:	(f) - (W) \rightarrow (destination)									
Status Affected:	C, DC, Z									
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.									
	C = 0 W > f									

C = 0	W > f
C = 1	$W \leq f$
DC = 0	W<3:0> > f<3:0>
DC = 1	$W<3:0> \le f<3:0>$

W<3:0> > k<3:0>

 $W<3:0> \le k<3:0>$

SUBWFB	Subtract W from f with Borrow							
Syntax:	SUBWFB f {,d}							
Operands:	$0 \le f \le 127$ $d \in [0,1]$							
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$							
Status Affected:	C, DC, Z							
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's comple- ment method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.							

FIGURE 25-2: POR AND POR REARM WITH SLOW RISING VDD

TABLE 25-2: SUPPLY CURRENT (IDD)

PIC16LF	1566/1567	$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Param. Device		Trend		Unite		Conditions					
No.	Characteristics	Min.	Тур.†	Max.	Units	Vdd	Note				
Supply Current (IDD) ^(1, 2)											
D010			2.5	18	μA	1.8	Fosc = 31 kHz				
			4	20	μA	3.0	LFINTOSC mode				
D011		_	0.35	0.70	mA	1.8	Fosc = 8 MHz				
		_	0.55	1.10	mA	3.0	HFINTOSC mode				
D012		_	0.5	1.2	mA	1.8	Fosc = 16 MHz				
		_	0.8	1.75	mA	3.0	HFINTOSC mode				
D013		—	1.5	3.5	mA	3.0	Fosc = 32 MHz HFINTOSC mode with PLL				
D014		_	3	17	μA	1.8	Fosc = 32 kHz				
		—	5	20	μA	3.0	ECL mode				
D015		—	12	40	μA	1.8	Fosc = 500 kHz				
			18	60	μA	3.0	ECL mode				
D016			25	65	μA	1.8	Fosc = 1 MHz				
			40	100	μA	3.0	ECM mode				

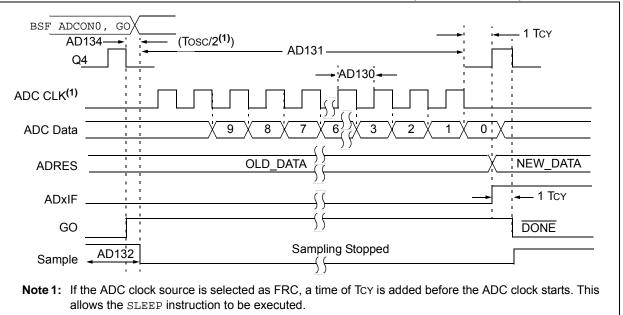
† Data in "Typ." column is at 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: CLKIN = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

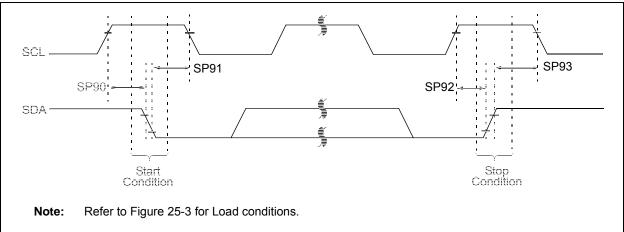
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

TABLE 25-13: PIC16LF1566/1567 ADC CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C < Ta < +125^{\circ}C$


Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions		
AD130*	TAD	ADC Clock Period	0.25 0.7 0.7		25 25 8	μs μs μs	Tosc-based, -40°C to +85°C, VREF \ge 2.4V Tosc-based, -40°C to +85°C, VREF $<$ 2.4V Tosc-based, +86°C to +125°C		
		ADC Internal FRC Oscillator Period	1.0	1.6	6.0	μS	ADCS<1:0> = 11 (ADFRC mode)		
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	-	11	—	Tad	Set GO/DONEx bit to conversion complete		
AD132*	TACQ	Acquisition Time	—	5.0		μS			

* These parameters are characterized but not tested.


† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.

FIGURE 25-9: PIC16LF1566/1567 ADC CONVERSION TIMING (NORMAL MODE)

FIGURE 25-17: I²C BUS START/STOP BITS TIMING

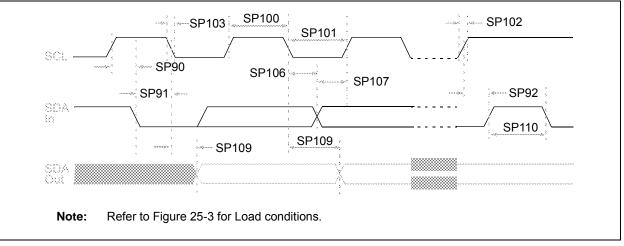


TABLE 25-17: I²C BUS START/STOP BITS REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Symbol	Characteristic		Min.	Тур.	Max.	Units	Conditions	
SP90*	TSU:STA	Start condition	100 kHz mode	4700	—		ns	Only relevant for Repeated	
		Setup time	400 kHz mode	600	—	—		Start condition	
SP91*	THD:STA	Start condition	100 kHz mode	4000	_		ns	After this period, the first clock pulse is generated	
		Hold time	400 kHz mode	600	-	_			
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700	_	_	ns		
		Setup time	400 kHz mode	600	-	_			
SP93	THD:STO	Stop condition	100 kHz mode	4000	_		ns		
		Hold time	400 kHz mode	600	_				

* These parameters are characterized but not tested.

FIGURE 25-18: I²C BUS DATA TIMING

Param. No.	Symbol Thigh	Charact	Min.	Max.	Units	Conditions	
SP100*		Clock high time	100 kHz mode	4.0		μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5TCY			
SP101*	SP101* TLOW	Clock low time	100 kHz mode	4.7	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μS	Device must operate at a minimum of 10 MHz
		SSP module	1.5TCY	_			
SP102*		SDA and SCL rise time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
SP103*	TF	SDA and SCL fall	100 kHz mode	—	250	ns	
	time	400 kHz mode	20 + 0.1Св	250	ns	CB is specified to be from 10-400 pF	
SP106*	THD:DAT	Data input hold time	100 kHz mode	0		ns	
			400 kHz mode	0	0.9	μs	
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250	_	ns	(Note 2)
			400 kHz mode	100	—	ns	
SP109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	(Note 1)
	clock	400 kHz mode	—		ns		
SP110*	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
		400 kHz mode	1.3	_	μS	before a new transmis- sion can start	
SP111	Св	Bus capacitive load	ing	_	400	pF	

TABLE 25-18: I²C BUS DATA REQUIREMENTS

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.