

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 34x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1567-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The PIC16LF1566/1567 devices are described within this data sheet. The block diagram of these devices is shown in Figure 1-1, the available peripherals are shown in Table 1-1 and the pinout descriptions are shown in Table 1-2 and Table 1-3.

TABLE 1-1: DEVICE PERIPHERAL SUMMARY

Peripheral		PIC16LF1566	PIC16LF1567
Analog-to-Digital Converter (ADC)			
	ADC1	٠	٠
	ADC2	٠	٠
Hardware Capacitive Voltage Divid	er (CVD)	٠	٠
Enhanced Universal Synchronous/Asynchronous Receiver/Transmitter (EUSART)	•	•	
Fixed Voltage Reference (FVR)		•	•
Temperature Indicator	•	•	
Master Synchronous Serial Ports			-
	MSSP1	•	•
	MSSP2	٠	•
PWM Modules			
	PWM1	٠	•
	PWM2	٠	•
Timers			
	Timer0	•	•
	Timer1	٠	•
	Timer2	•	•
	Timer4	٠	٠

PIC16LF1566/1567

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) **TABLE 3-11**:

Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets				
Bank	12														
600h	INDF0 ⁽¹⁾	Addressing	this location us	ses contents o	of FSR0H/FSR	0L to addres	s data memor	y (not a physic	al register)	xxxx xxxx	uuuu uuuu				
601h	INDF1 ⁽¹⁾	Addressing	this location us	ses contents o	of FSR1H/FSR	1L to addres	s data memor	y (not a physic	al register)	xxxx xxxx	uuuu uuuu				
602h	PCL ⁽¹⁾			Program (Counter (PC) I	Least Signific	ant Byte			0000 0000	0000 0000				
603h	STATUS ⁽¹⁾	—	_	_	TO	PD	Z	DC	С	1 1000	q quuu				
604h	FSR0L ⁽¹⁾			Indirect D	ata Memory A	ddress 0 Lov	v Pointer			0000 0000	uuuu uuuu				
605h	FSR0H ⁽¹⁾			Indirect Da	ata Memory A	ddress 0 Hig	h Pointer			0000 0000	0000 0000				
606h	FSR1L ⁽¹⁾			Indirect D	ata Memory A	ddress 1 Lov	v Pointer			0000 0000	uuuu uuuu				
607h	FSR1H ⁽¹⁾			Indirect Da	ata Memory A	ddress 1 Hig	h Pointer			0000 0000	0000 0000				
608h	BSR ⁽¹⁾	—	_	_			BSR<4:0>			0 0000	0 0000				
609h	WREG ⁽¹⁾				Working F	Register				0000 0000	uuuu uuuu				
60Ah	PCLATH ⁽¹⁾	—		Write B	uffer for the up	oper 7 bits of	the Program	Counter		-000 0000	-000 0000				
60Bh	INTCON ⁽¹⁾	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000				
60Ch	—		Unimplemented								—				
60Dh	—				Unimpler	nented				—	—				
60Eh	—		Unimplemented							—	—				
60Fh	—				Unimpler	nented				—	—				
610h	—				Unimpler	nented				—	—				
611h	PWM1DCL	PWM1D0	CL<7:6>	—	—	—	—	—	—	xx	uu				
612h	PWM1DCH				PWM1	DCH				xxxx xxxx	uuuu uuuu				
613h	PWM1CON	PWM1EN	PWM10E	PWM10UT	PWM1POL	_	—	—	—	00x0	00x0				
614h	PWM2DCL	PWM2D0	CL<7:6>	—	—	—	—	—	—	xx	uu				
615h	PWM2DCH				PWM2	DCH				xxxx xxxx	uuuu uuuu				
616h	PWM2CON	PWM2EN	PWM2OE	PWM2OUT	PWM2POL	—	—	—	—	00x0	0x00				
617h	—				Unimpler	nented				—	—				
618h	—				Unimpler	nented				—	—				
619h	—				Unimpler	nented				—	—				
61Ah	—				Unimpler	nented				—	—				
61Bh	—				Unimpler	nented				—	-				
61Ch	—				Unimpler	nented				_	_				
61Dh	PWMTMRS						P2TSEL		P1TSEL	0-0	0-0				
61Eh	PWM1AOE	PWM10E							0000	0000					
61Fh	PWM2AOE						PW	M2OE		0000	0000				
Legend	d: x = unknow	/n, u = unchang	ed. a = depen	nds on conditio	on = unimple	uend: $x = unknown u = unchanged a = depends on condition - = unimplemented read as '0' r = reserved. Shaded locations unimplemented read as '0'$									

Legend:

These registers can be accessed from any bank. Note 1:

2: PIC16LF1567.

These registers/bits are available at two address locations, in Bank 1 and Bank 14. 3:

4: PIC16LF1566 only.

Unimplemented, read as '1'. 5:

PIC16LF1566/1567

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank	14										
700h	INDF0 ⁽¹⁾	Addressing t	his location us	ses contents o	f FSR0H/FSR	0L to addres	s data memor	y (not a physic	al register)	XXXX XXXX	uuuu uuuu
701h	INDF1 ⁽¹⁾	Addressing t	his location us	ses contents o	f FSR1H/FSR	1L to addres	s data memor	y (not a physic	al register)	XXXX XXXX	uuuu uuuu
702h	PCL ⁽¹⁾			Program (Counter (PC)	Least Signific	ant Byte			0000 0000	0000 0000
703h	STATUS ⁽¹⁾	—	_	_	TO	PD	Z	DC	С	1 1000	q quuu
704h	FSR0L ⁽¹⁾			Indirect Da	ata Memory A	ddress 0 Lov	v Pointer			0000 0000	uuuu uuuu
705h	FSR0H ⁽¹⁾			Indirect Da	0000 0000	0000 0000					
706h	FSR1L ⁽¹⁾			Indirect Da	ata Memory A	ddress 1 Lov	v Pointer			0000 0000	uuuu uuuu
707h	FSR1H ⁽¹⁾			Indirect Da	ata Memory A	ddress 1 Hig	h Pointer			0000 0000	0000 0000
708h	BSR ⁽¹⁾	—		—			BSR<4:0>			0 0000	0 0000
709h	WREG ⁽¹⁾				Working F	Register				0000 0000	uuuu uuuu
70Ah	PCLATH ⁽¹⁾	—		Write B	uffer for the up	oper 7 bits of	the Program	Counter		-000 0000	-000 0000
70Bh	INTCON ⁽¹⁾	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 000u
70Ch	—				Unimpler	mented				—	—
70Dh	—				Unimpler	mented				—	—
70Eh	—				Unimpler	mented				—	—
70Fh	—				Unimpler	mented				—	—
710h	—				Unimpler	mented				—	—
711h	AD1CON0	CHS15	CHS14	CHS13	CHS12	CHS11	CHS10	GO/DONE1	AD10N	0000 0000	0000 0000
712h	ADCOMCON	ADFM		ADCS<2:0>		ADNREF	GO/ DONE_ALL	ADPRE	F<1:0>	0000 0000	0000 0000
713h	AD1CON2	—	7	RIGSEL<2:0	>	—	—	—	—	-000	-000
714h	AD1CON3	AD1EPPOL	AD1IPPOL	—	—	—	—	AD1IPEN	AD1DSEN	0000	0000
715h	ADSTAT	—	AD2CONV	AD2ST	G<1:0>	—	AD1CONV	AD19	STG	-000 -000	-000 -000
716h	AD1PRECON	—				ADPRE<6:0>	•			-000 0000	-000 0000
717h	AD1ACQCON	—				ADACQ<6:0>	>			-000 0000	-000 0000
718h	AD1GRD	GRD1BOE	GRD1AOE	GRD1POL	—	—	—	—	TX1POL	0000	0000
719h	AD1CAPCON	—		—	—		ADDC	AP<3:0>		0000	0000
71Ah	AAD1RES0L				ADRE	ESL				XXXX XXXX	uuuu uuuu
71Bh	AAD1RES0H				ADRE	SH				XXXX XXXX	uuuu uuuu
71Ch	AAD1RES1L				ADRE	ESL				XXXX XXXX	uuuu uuuu
71Dh	AAD1RES1H				ADRE	SH				xxxx xxxx	uuuu uuuu
71Eh	AD1CH0	CHS17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	0000 0000	0000 0000
7156	AD1CH1	—	_	_	_	_	_	CH19	CH18	00	00
/ 1611	AD1CH1 ⁽²⁾	CH35	CH34	CH33	CH32	CH31	CH30	CH19	CH18	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: These registers can be accessed from any bank.

2: PIC16LF1567.

3: These registers/bits are available at two address locations, in Bank 1 and Bank 14.

4: PIC16LF1566 only.

5: Unimplemented, read as '1'.

5.2.2.3 Internal Oscillator Frequency Selection

The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register.

The outputs of the 16 MHz HFINTOSC postscaler and the LFINTOSC connect to a multiplexer (see Figure 5-1). The Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register select the frequency. One of the following frequencies can be selected via software:

- 32 MHz (requires 4x PLL)
- 16 MHz
- 8 MHz
- 4 MHz
- 2 MHz
- 1 MHz
- 500 kHz (default after Reset)
- 250 kHz
- 125 kHz
- 62.5 kHz
- 31.25 kHz
- 31 kHz (LFINTOSC)
- Note: Following any Reset, the IRCF<3:0> bits of the OSCCON register are set to '0111' and the frequency selection is set to 500 kHz. The user can modify the IRCF bits to select a different frequency.

The IRCF<3:0> bits of the OSCCON register allow duplicate selections for some frequencies. These duplicate choices can offer system design trade-offs. Lower power consumption can be obtained when changing oscillator sources for a given frequency. Faster transition times can be obtained between frequency changes that use the same oscillator source.

5.2.2.4 Internal Oscillator Clock Switch Timing

When switching between the HFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 5-3). If this is the case, there is a delay after the IRCF<3:0> bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows:

- 1. IRCF<3:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. Clock switch is complete.

See Figure 5-3 for more details.

If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected.

Start-up delay specifications are located in the oscillator tables of **Section 25.0** "**Electrical Specifications**".

5.2.2.5 32 MHz Internal Oscillator Frequency Selection

The Internal Oscillator Block can be used with the 4x PLL to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSC bits in Configuration Word 1 must be set to use the INTOSC source as the device system clock (FOSC<1:0> = 00).
- The SCS bits in the OSCCON register must be cleared to use the clock determined by FOSC<1:0> in Configuration Word 1 (SCS<1:0> = 00).
- The IRCF bits in the OSCCON register must be set to the 8 MHz HFINTOSC set to use (IRCF<3:0> = 1110).
- The SPLLEN bit in the OSCCON register must be set to enable the 4x PLL.

The 4x PLL is not available for use with the internal oscillator when the SCS bits of the OSCCON register are set to '1x'. The SCS bits must be set to '00' to use the 4x PLL with the internal oscillator.

7.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

This chapter contains the following information for interrupts:

- Operation
- Interrupt latency
- Interrupts during Sleep
- INT pin
- · Automatic context saving

Many peripherals produce interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 7-1.

Register Definitions: Watchdog Control 9.6

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0
_	—			WDTPS<4:0	>		SWDTEN
bit 7	•	-					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set	0	'0' = Bit is cle	ared				
bit 7-6	Unimplemer	nted: Read as '	0'				
bit 5-1	WDTPS-4.0	S: Watchdog Ti	° mer Period S	elect hits(1)			
bit 5-1	Rit Value = I	Prescale Rate					
	11111 - Pc	served Result	s in minimum	interval (1.32)			
	•		5 III IIIIIIIIIIIIIIIIIIIIIIIIII				
	•						
	•						
	10011 = Re	eserved. Result	s in minimum	interval (1:32)			
		2222					
	10010 = 1:8	3388608 (2=°) (Interval 256s	nominal)			
	10001 = 1.2	+194304 (2) (2007152 (2 ²¹) (Interval 1208	ominal)			
	10000 = 1.2	1048576 (2 ²⁰) (Interval 32s n	ominal)			
	01110 = 1:	524288 (2 ¹⁹) (Ir	iterval 16s no	minal)			
	01101 = 1:2	262144 (2 ¹⁸) (Ir	terval 8s non	ninal)			
	01100 = 1:	131072 (2 ¹⁷) (Ir	nterval 4s non	ninal)			
	01011 = 1:6	65536 (Interval	2s nominal) (Reset value)			
	01010 = 1:3	32768 (Interval	1s nominal)				
	01001 = 1:	16384 (Interval	512 ms nomiı	nal)			
	01000 = 1:8	3192 (Interval 2	56 ms nomina	al)			
	00111 = 1:4	4096 (Interval 1	28 ms nomina	al)			
	00110 = 1:2	2048 (Interval 6	4 ms nominal)			
	00101 = 1:	1024 (Interval 3	2 ms nominal)			
	00100 = 13	512 (Interval 16	ms nominal)				
	00011 = 12	256 (Interval 8 r	ns nominal)				
	00010 = 1.	120 (Interval 4 I					
	00001 = 1.0	32 (Interval 2 III 32 (Interval 1 m	s nominal)				
hit 0		oftware Enable	Disable for M	/atchdog Timer	bit		
DILU				atchuog niner	DIL		
	This hit is iar	$r = \pm x$.					
		> = 01					
	1 = WDT is 1	turned on					
	0 = WDT is	turned off					
	If WDTE<1:0	> = 00:					
	This bit is iar	ored					

15.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- · Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- · Interrupt control
- Result formatting

15.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRISx and ANSELx bits. Refer to **Section 11.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined							
	as a digital input may cause the input							
	buffer to conduct excess current.							

15.1.2 CHANNEL SELECTION

There are 24 channel selections available for PIC16LF1566 and 35 for PIC16LF1567. Three channels (AN0, AN1 and AN2) can be selected by both ADC1 and ADC2. The following channels can be selected by either of the ADCs:

- AN<2:0> pins
- Temperature Indicator
- FVR Buffer 1
- VREFH

The CHS bits of the ADxCON0 register determine which channel is connected to the sample and hold circuit of ADCx.

When changing channels, a delay (TACQ) is required before starting the next conversion. Refer to Section 15.2.6 "Individual ADC Conversion Procedure" for more information.

15.1.3 ADC VOLTAGE REFERENCE

The ADC module uses a positive and a negative voltage reference. The positive reference is labeled VREFH and the negative reference is labeled VREFL.

The positive voltage reference (VREFH) is selected by the ADPREF bits in the ADCON1 register. The positive voltage reference source can be:

- VREF+ pin
- Vdd
- The negative voltage reference (VREFL) source is:
- Vss

15.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (internal RC oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 15-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the ADC conversion requirements in **Section 25.0 "Electrical Specifications"** for more information. Table 15-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0>		ADNREF	GO/DONE_ALL	ADPRI	EF<1:0>
bit 7							bit 0
Legend:							
R = Reada	ıble bit	W = Writable	bit	U = Unimple	emented bit, read as	s 'O'	
u = Bit is u	nchanged	x = Bit is unk	nown	-n/n = Value	e at POR and BOR/	/alue at all oth	ner Resets
'1' = Bit is	set	'0' = Bit is cle	ared				
bit 7	ADFM: ADC 1 = Right ju loaded. 0 = Left jus loaded.	C Result Forma Istified. Six Mos tified. Six Leas	t Select bit st Significant t Significant b	bits of ADxRE	SxH are set to '0' w SxL are set to '0' w	hen the conve hen the conve	ersion result is ersion result is
bit 6-4	ADCS<2:0> 111 = FRC 110 = Fosc 101 = Fosc 100 = Fosc 011 = FRC 010 = Fosc 001 = Fosc 001 = Fosc 000 = Fosc	: ADC Convers (clock supplied c/64 c/16 c/4 (clock supplied c/32 c/8 c/2	sion Clock Se I from an inte I from an inte	elect bits rnal RC oscilla rnal RC oscilla	ator) ator)		
bit 3	ADNREF: A 1 = VREFL is 0 = VREFL is	DC Negative V connected to connected to	oltage Refere external VREF AVss.	ence Configur - pin ⁽⁴⁾	ation bit		
bit 2	GO/DONE_ 1 = Synchro ADxON 0 = Synchro	ALL ⁽³⁾ : Synchr onized ADC co I = 1. onized ADC co	onized ADC (onversion in p nversion com	Conversion St progress. Sett pleted/ not in	atus bit ing this bit starts c progress.	onversion in	any ADC with
bit 1-0	ADPREF<1 11 = VREFH 10 = VREFH 01 = Reser 00 = VREFH	:0>: ADC Posit is connected to is connected to ved is connected to	ive Voltage R o internal Fixe o external VR o VDD	Reference Con ed Voltage Re _{EF+} pin ⁽⁴⁾	figuration bits ference.		
Note 1:	Bank 1 name is	ADCON1.					
2:	Bank 14 name is	s ADCOMCON					
3:	Setting this bit tr	iggers the GO/	DONEx bits ir	n both ADCs.	Each ADC <u>will r</u> un a	conversion a	ccording to its

REGISTER 15-3: ADCON1⁽¹⁾/ADCOMCON⁽²⁾: ADC CONTROL REGISTER 1

control register settings. This bit reads as an OR of the individual GO/DONEx bits.
4: When selecting the VREF+ or VREF- pin as the source of the positive or negative reference, be aware that a minimum voltage specification exists. See Section 25.0 "Electrical Specifications" for details.

R/W-0/	0 R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	
GRDxBO	E ⁽²⁾ GRDxAOE ⁽²⁾	GRDxPOL ^(1,2)	_	_	—	_	TXxPOL	
bit 7					•		bit C	
Legend:								
R = Reada	Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
u = Bit is u	nchanged	x = Bit is unknow	n	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is	set	'0' = Bit is cleared	d					
bit 7	GRDxBOE: G	uard Ring B Output	t Enable bit	(2,3,5)				
 1 = ADC guard ring output is enabled to ADxGRDB^(b) pin. Its corresponding TRISx bit must be closed 0 = No ADC guard ring function to this pin is enabled 							must be clear.	
bit 6	t 6 GRDxAOE: Guard Ring A Output Enable bit ^(1,3,5)							
	1 = ADC Guard Ring Output is enabled to $ADxGRDA^{(6)}$ pin. Its corresponding TRISx, x bit must be							
	0 = No ADC G	uard Ring function	is enabled					
bit 5	GRDxPOL: Gu	uard Ring Polarity S	Selection bi	t(4)				
	1 = ADCx gua 0 = ADCx gua	rd ring outputs star rd ring outputs star	rt as digital t as digital	high during pre low during pre	charge stage charge stage			
bit 4-1	Unimplemente	ed: Read as '0'						
bit 0	TXxPOL: ADC	x TX Polarity Sele	ect ^(3,4,5) . AD	xTXy registers	determine loo	cation of TX	pins.	
	1 = TX starts a	s digital high during	g Precharge	e stage				
	0 = TX starts a	s digital low during	Precharge	stage				
Note 1:	If precharge is enabl Charge Share. If pre set.	led (ADxPRE! = '00 charge is disabled	00000'), the , then Guar	en Guard A sw d A switches p	itches polarity olarity as soor	at the start on as the GO/I	of Acquisition / DONEx bit is	
2:	Output function "B" is constant throughout all stages of the conversion cycle. In a dual sample setup it will switch polarity at the start of precharge.							
3:	The corresponding 1	rRISx,x bit must be	e set to '0' to	o enable outpu	t.			
4:	When the ADxDSEN sion time. The store	I = 1 and ADxIPEN d bit value does no	l = 1; the po t change.	olarity of this o	utput is inverte	ed for the sec	cond conver-	
5:	Outputs are maintair	ned while ADxON =	= 1.					

REGISTER 16-12: ADxGRD: HARDWARE CVD GUARD RING CONTROL REGISTER

6: ADxGRD pin locations are selectable in APFCON, Register 3-9.

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	U-0	R/W-0/u	
TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL		T1GSS	
bit 7	1		•				bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimplemente	d bit, read as '0	,		
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value at PO	R and BOR/Val	ue at all oth	ner Resets	
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cleared	by hardware			
bit 7 TMR1GE: Timer1 Gate Enable bit <u>If TMR1ON = 0</u> : This bit is ignored <u>If TMR1ON = 1</u> : 1 = Timer1 counting is controlled by the Timer1 gate function 0 = Timer1 counts regardless of Timer1 gate function								
bit 6	T1GPOL: Timer1 Gate Polarity bit 1 = Timer1 gate is active-high (Timer1 counts when gate is high) 0 = Timer1 gate is active-low (Timer1 counts when gate is low)							
bit 5	T1GTM: Time 1 = Timer1 G 0 = Timer1 G Timer1 gate fli	r1 Gate Toggle ate Toggle moo ate Toggle moo ip-flop toggles o	Mode bit le is enabled le is disabled a on every rising	nd toggle flip-flop is edge.	cleared			
bit 4	T1GSPM: Tim 1 = Timer1 ga 0 = Timer1 ga	ner1 Gate Singl ate Single-Puls ate Single-Puls	e-Pulse Mode l e mode is enab e mode is disab	bit led and is controlling bled	g Timer1 gate			
bit 3	T1GGO/DON 1 = Timer1 ga 0 = Timer1 ga	E: Timer1 Gate ate single-pulse ate single-pulse	Single-Pulse A acquisition is a acquisition ha	Acquisition Status bit ready, waiting for an s completed or has r	edge not been started	I		
bit 2	T1GVAL: Time Indicates the o Unaffected by	er1 Gate Value current state of Timer1 Gate E	Status bit the Timer1 gat nable (TMR1G	e that could be provi E).	ded to TMR1H:	TMR1L.		
bit 1	Unimplement	ed: Read as 'o)'					
bit 0	T1GSS: Time 01 = Timer0 c 00 = Timer1 g	r1 Gate Source werflow output ate pin (T1G)	e Select bits (T0_overflow)					

REGISTER 18-2: T1GCON: TIMER1 GATE CONTROL REGISTER

I²C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 0) FIGURE 20-21: Received data is read from SSPxBUF Receive Data 10 UA 11 2 3 4 5 6 7 8 6 7 8 10 1 2 clears UA and releases SCLx Update of SSPxADD, Receive Data Set CKP with software releases SCLx Cleared by software ACK A7 \ A6 \ A5 \ A4 \ A3 \ A2 \ A1 \ A0 SSPxBUF can be read anytime before the next received byte Receive Second Address Byte Update to SSPxADD is not allowed until 9th falling edge of SCLx Cleared by software ACK R/W = 0Set by hardware ____ on 9th falling edge If when AHEN = 1; on the 8th falling edge of SCLx of an address⁻⁻⁻ byte, CKP is cleared ACKTIM is set by hardware on 8th falling edge of SCLx 0 / A9 X A8 Slave software clears ACKDT to <u>ACK</u> the received byte Receive First Address Byte -----Ч SSP_{xIF} ACKTIM ACKDT SCLX

© 2015-2016 Microchip Technology Inc.

SDAx

A

В

CKP

© 2015-2016 Microchip Technology Inc.

21.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous Full-Duplex is useful system. mode for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as ADC or DAC integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- · Two-character input buffer
- · One-character output buffer
- · Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- Input buffer overrun error detection
- · Received character framing error detection
- · Half-duplex synchronous master
- Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- Sleep operation

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- · Wake-up on Break reception
- · 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 21-1 and Figure 21-2.

The EUSART transmit output (TX_out) is available to the TX/CK pin and internally to the following peripherals:

• Configurable Logic Cell (CLC)

FIGURE 21-1: EUSART TRANSMIT BLOCK DIAGRAM

© 2015-2016 Microchip Technology Inc.

FIGURE 21-5: ASYNCHRONOUS RECEPTION

TABLE 21-2: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16		WUE	ABDEN	266
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	84
PIE1	TMR1GIE	AD1IE	RCIE	TXIE	SSP1IE	SSP2IE	TMR2IE	TMR1IE	85
PIR1	TMR1GIF	AD1IF	RCIF	TXIF	SSP1IF	SSP2IF	TMR2IF	TMR1IF	87
RCREG			EUS	ART Receiv	ve Data Reg	jister			260*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	265
SPBRGL				BRG	<7:0>				267*
SPBRGH	BRG<15:8>								267*
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	119
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	264

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous reception.

* Page provides register information.

21.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate.

The Auto-Baud Detect feature (see **Section 21.4.1** "**Auto-Baud Detect**") can be used to compensate for changes in the INTOSC frequency.

There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

© 2015-2016 Microchip Technology Inc.

21.4.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUDCON register starts the auto-baud calibration sequence (Figure 21-6). While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Table 21-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH:SPBRGL register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register the user can verify that the SPBRGL register did not overflow by checking for 00h in the SPBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 21-6. During ABD, both the SPBRGH and SPBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte following the Break character (see Section 21.4.3 "Auto-Wake-up on Break").
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - 3: During the auto-baud process, the auto-baud counter starts counting at 1. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRGL register pair.

TABLE 21-6:BRG COUNTER CLOCK
RATES⁽¹⁾

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note 1: During the ABD sequence, SPBRGL and SPBRGH registers are both used as a 16-bit counter, independent of BRG16 setting.

BRG Value	XXXXh	0000h		001Ch
RX pin		Start	Edge #1 Edge #2 Edge #3 Edge #4 bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit	Edge #5
BRG Clock	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	mmmm	www.www.www.www.	
	Set by User —	r 1 		Auto Cleared
ABDEN bit	·`]		
RCIDL		' '		
RCIF bit		· · · · · · · · · · · · · · · · · · ·		
(Interrupt)				
Read		1 1		
RCREG		1		
SPBRGL		1	XXh	1Ch
SPBRGH		1	XXh	00h
Note	I: The ABD sequ	ence requires the EUSA	RT module to be configured in Asynchronous mode.	

FIGURE 21-6: AUTOMATIC BAUD RATE CALIBRATION

22.1.5 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PRx is 255. The resolution is a function of the PRx register value as shown by Equation 22-4.

EQUATION 22-4: PWM RESOLUTION

Resolution = $\frac{\log[4(PRxs+1)]}{\log(2)}$ bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 22-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 32 MHz)

PWM Frequency	1.95 kHz	7.81 kHz	31.25 kHz	125 kHz	250 kHz	333.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 22-2:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS ((Fosc = 20 MHz)

PWM Frequency	0.31 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	64	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 22-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	0.31 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	64	4	1	1	1	1
PRx Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

22.1.6 OPERATION IN SLEEP MODE

In Sleep mode, the TMRx register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, TMRx will continue from its previous state.

22.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency (Fosc). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to **Section 5.0** "**Oscillator Module**" for additional details.

22.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWM registers to their Reset states.

22.2 Register Definitions: PWM Control

R/W-0 R/W-0 U-0 U-0 R/W-0 R-0 U-0 U-0 **PWMxEN PWMxOE PWMxOUT PWMxPOL** bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared bit 7 PWMxEN: PWM Enable Bit 1 = PWM module is enabled 0 = PWM module is disabled PWMxOE: PWM Output on pin PWMx Enable Bit bit 6 1 = Output to PWMx pin is enabled 0 = Output to PWMx pin is disabled (PWMxy pins may still be enabled, see Register 22-3) bit 5 PWMxOUT: PWM Output Value Bit 1 = PWM output is high 0 = PWM output is low bit 4 PWMxPOL: PWM Polarity Bit 1 = PWM output is active-low 0 = PWM output is active-high bit 3-0 Unimplemented: Read as '0'

REGISTER 22-1: PWMxCON: PWM CONTROL REGISTER

REGISTER 22-2: PWMTMRS: PWM TIMER SELECT REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0/0	U-0	R/W-0/0	U-0	R/W-0/0
				_	P2TSEL	—	P1TSEL
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3	Unimplemented: Read as '0'
bit 2	P2TSEL: PWM2 Timer Selection bit
	1 = PWM is based off Timer 40 = PWM is based off Timer 2
bit 1	Unimplemented: Read as '0'
bit 0	P1TSEL: PWM1 Timer Selection bit
	1 = PWM is based off Timer 4
	0 = PWM is based off Timer 2

PIC16LF1566/1567

SWAPF	Swap Nibbles in f				
Syntax:	[label] SWAPF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$				
Status Affected:	None				
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'is '1', the result is placed in register				

XORLW	Exclusive OR literal with W				
Syntax:	[<i>label</i>] XORLW k				
Operands:	$0 \le k \le 255$				
Operation:	(W) .XOR. $k \rightarrow (W)$				
Status Affected:	Z				
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.				

TRIS	Load TRIS Register with W
Syntax:	[label] TRIS f
Operands:	$5 \le f \le 7$
Operation:	(W) \rightarrow TRIS register 'f'
Status Affected:	None
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.

XORWF	Exclusive OR W with f					
Syntax:	[label] XORWF f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	(W) .XOR. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					

25.4 AC Characteristics

Timing Parameter Symbology has been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

Т			
F	Frequency	Т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	CLKIN
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDIx	SC	SCKx
do	SDO	SS	SS
dt	Data in	t0	ТОСКІ
io	I/O PORT	t1	T1CKI
mc	MCLR	wr	WR
Upperc	ase letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	z	High-impedance

FIGURE 25-3: LOAD CONDITIONS

FIGURE 25-4: CLOCK TIMING

28.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		
Dimension Limits		MIN	NOM	MAX	
Number of Pins	Ν	28			
Pitch	е	.100 BSC			
Top to Seating Plane	Α	-	-	.200	
Molded Package Thickness	A2	.120	.135	.150	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.290	.310	.335	
Molded Package Width	E1	.240	.285	.295	
Overall Length	D	1.345	1.365	1.400	
Tip to Seating Plane	L	.110	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.050	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	-	-	.430	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B