

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 34x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1567-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 ENHANCED MID-RANGE CPU

This family of devices contain an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and Relative Addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

- Automatic Interrupt Context Saving
- 16-level Stack with Overflow and Underflow
- File Select Registers
- Instruction Set

FIGURE 2-1: CORE BLOCK DIAGRAM

Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank	7										
380h	INDF0 ⁽¹⁾	Addressing t	his location us	ses contents o	f FSR0H/FSR	ROL to addres	s data memor	y (not a physic	al register)	xxxx xxxx	uuuu uuuu
381h	INDF1 ⁽¹⁾	Addressing t	Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register								uuuu uuuu
382h	PCL ⁽¹⁾	Program Counter (PC) Least Significant Byte								0000 0000	0000 0000
383h	STATUS ⁽¹⁾	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
384h	FSR0L ⁽¹⁾			Indirect Da	ata Memory A	ddress 0 Lov	v Pointer			0000 0000	uuuu uuuu
385h	FSR0H ⁽¹⁾	Indirect Data Memory Address 0 High Pointer								0000 0000	0000 0000
386h	FSR1L ⁽¹⁾			Indirect Da	ata Memory A	ddress 1 Lov	v Pointer			0000 0000	uuuu uuuu
387h	FSR1H ⁽¹⁾			Indirect Da	ata Memory A	ddress 1 Hig	h Pointer			0000 0000	0000 0000
388h	BSR ⁽¹⁾	_	_	_			BSR<4:0>			0 0000	0 0000
389h	WREG ⁽¹⁾		Working Register							0000 0000	uuuu uuuu
38Ah	PCLATH ⁽¹⁾	_		Write B	uffer for the up	pper 7 bits of	the Program	Counter		-000 0000	-000 0000
38Bh	INTCON ⁽¹⁾	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
38Ch	—	Unimplemented								_	_
38Dh	—	Unimplemented								_	_
38Eh	—				Unimpler	mented				_	_
38Fh	—				Unimpler	mented				_	_
390h	—				Unimpler	mented				_	_
391h	IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	0000 0000	0000 0000
392h	IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	0000 0000	0000 0000
393h	IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	0000 0000	0000 0000
394h	—				Unimpler	mented				—	—
395h	—				Unimpler	mented				—	—
396h	—				Unimpler	mented				—	—
397h	—				Unimpler	mented				_	_
398h	—				Unimpler	mented				_	_
399h	—				Unimpler	mented				_	_
39Ah	—				Unimpler	mented				_	_
39Bh	—				Unimpler	mented				_	_
39Ch	—				Unimpler	mented				_	_
39Dh	_				Unimpler	mented				_	_
39Eh	_				Unimpler	mented				_	_
39Fh	—				Unimpler	mented				_	_

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend:x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.Note1:These registers can be accessed from any bank.

2: PIC16LF1567.

3: These registers/bits are available at two address locations, in Bank 1 and Bank 14.

4: PIC16LF1566 only.

5: Unimplemented, read as '1'.

FIGURE 3-7:	ACCESSING THE ST	ACK EXAMPLE	4
			Rev. 10.000043D 7/300/013
	0x0F	Return Address]
	0x0E	Return Address	_
	0x0D	Return Address	
	0x0C	Return Address	
	0x0B	Return Address	
	0x0A	Return Address	When the stack is full, the next CALL or
	0x09	Return Address	an interrupt will set the Stack Pointer to
	0x08	Return Address	the stack will wrap and overwrite the
	0x07	Return Address	return address at 0x00. If the Stack
	0x06	Return Address	Reset will occur and location 0x00 will
	0x05	Return Address	not be overwritten.
	0x04	Return Address	
	0x03	Return Address	
	0x02	Return Address	
	0x01	Return Address	
ТС	DSH:TOSL 0x00	Return Address	$\left \left\langle \text{STKPTR} = 0 \times 10 \right\rangle \right $
	·		N

3.4.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words is programmed to '1', the device will be reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

5.2.2.3 Internal Oscillator Frequency Selection

The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register.

The outputs of the 16 MHz HFINTOSC postscaler and the LFINTOSC connect to a multiplexer (see Figure 5-1). The Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register select the frequency. One of the following frequencies can be selected via software:

- 32 MHz (requires 4x PLL)
- 16 MHz
- 8 MHz
- 4 MHz
- 2 MHz
- 1 MHz
- 500 kHz (default after Reset)
- 250 kHz
- 125 kHz
- 62.5 kHz
- 31.25 kHz
- 31 kHz (LFINTOSC)
- Note: Following any Reset, the IRCF<3:0> bits of the OSCCON register are set to '0111' and the frequency selection is set to 500 kHz. The user can modify the IRCF bits to select a different frequency.

The IRCF<3:0> bits of the OSCCON register allow duplicate selections for some frequencies. These duplicate choices can offer system design trade-offs. Lower power consumption can be obtained when changing oscillator sources for a given frequency. Faster transition times can be obtained between frequency changes that use the same oscillator source.

5.2.2.4 Internal Oscillator Clock Switch Timing

When switching between the HFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 5-3). If this is the case, there is a delay after the IRCF<3:0> bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows:

- 1. IRCF<3:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. Clock switch is complete.

See Figure 5-3 for more details.

If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected.

Start-up delay specifications are located in the oscillator tables of **Section 25.0** "**Electrical Specifications**".

5.2.2.5 32 MHz Internal Oscillator Frequency Selection

The Internal Oscillator Block can be used with the 4x PLL to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSC bits in Configuration Word 1 must be set to use the INTOSC source as the device system clock (FOSC<1:0> = 00).
- The SCS bits in the OSCCON register must be cleared to use the clock determined by FOSC<1:0> in Configuration Word 1 (SCS<1:0> = 00).
- The IRCF bits in the OSCCON register must be set to the 8 MHz HFINTOSC set to use (IRCF<3:0> = 1110).
- The SPLLEN bit in the OSCCON register must be set to enable the 4x PLL.

The 4x PLL is not available for use with the internal oscillator when the SCS bits of the OSCCON register are set to '1x'. The SCS bits must be set to '00' to use the 4x PLL with the internal oscillator.

Register Definitions: Watchdog Control 9.6

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0
_	—			WDTPS<4:0	>		SWDTEN
bit 7	•	-					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set	0	'0' = Bit is cle	ared				
bit 7-6	Unimplemer	nted: Read as '	0'				
bit 5-1	WDTPS-4.0	S: Watchdog Ti	° mer Period S	elect hits(1)			
bit 5-1	Rit Value = I	Prescale Rate					
	11111 = Pc	served Result	s in minimum	interval (1.32)			
	•		5 III IIIIIIIIIIIIIIIIIIIIIIIII				
	•						
	•						
	10011 = Re	eserved. Result	s in minimum	interval (1:32)			
		2222					
	10010 = 1:8	3388608 (2=°) (Interval 256s	nominal)			
	10001 = 1.2	+194304 (2) (2007152 (2 ²¹) (Interval 1208	ominal)			
	10000 = 1.2	1048576 (2 ²⁰) (Interval 32s n	ominal)			
	01110 = 1:	524288 (2 ¹⁹) (Ir	iterval 16s no	minal)			
	01101 = 1:2	262144 (2 ¹⁸) (Ir	terval 8s non	ninal)			
	01100 = 1:	131072 (2 ¹⁷) (Ir	nterval 4s non	ninal)			
	01011 = 1:6	65536 (Interval	2s nominal) (Reset value)			
	01010 = 1:3	32768 (Interval	1s nominal)				
	01001 = 1:	16384 (Interval	512 ms nomiı	nal)			
	01000 = 1:8	3192 (Interval 2	56 ms nomina	al)			
	00111 = 1:4	4096 (Interval 1	28 ms nomina	al)			
	00110 = 1:2	2048 (Interval 6	4 ms nominal)			
	00101 = 1:	1024 (Interval 3	2 ms nominal)			
	00100 = 13	512 (Interval 16	ms nominal)				
	00011 = 12	256 (Interval 8 r	ns nominal)				
	00010 = 1.	120 (Interval 4 I					
	00001 = 1.0	32 (Interval 2 III 32 (Interval 1 m	s nominal)				
hit 0		oftware Enable	Disable for M	/atchdog Timer	bit		
DILU				atchuog niner	DIL		
	This hit is iar	$r = \pm x$.					
		> = 01					
	1 = WDT is 1	turned on					
	0 = WDT is	turned off					
	If WDTE<1:0	> = 00:					
	This bit is iar	ored					

REGISTER 10-3: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			PMAD	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	pit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	inged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets

bit 7-0 **PMADR<7:0>**: Specifies the Least Significant bits for program memory address

'0' = Bit is cleared

REGISTER 10-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—				PMADR<14:8	}>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

'1' = Bit is set

bit 6-0 **PMADR<14:8>**: Specifies the Most Significant bits for program memory address

14.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of operating temperature falls between -40°C and +85°C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN1333, *"Use and Calibration of the Internal Temperature Indicator"* (DS01333) for more details regarding the calibration process.

14.1 Circuit Operation

Figure 14-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 14-1 describes the output characteristics of the temperature indicator.

EQUATION 14-1: VOUT RANGES

High Range: VOUT = VDD - 4VT

Low Range: VOUT = VDD - 2VT

The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See **Section 13.0 "Fixed Voltage Reference (FVR)"** for more information.

The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for low voltage operation.

FIGURE 14-1: TEMPERATURE CIRCUIT DIAGRAM

14.2 Minimum Operating VDD

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 14-1 shows the recommended minimum VDD vs. range setting.

TABLE 14-1: RECOMMENDED VDD vs. RANGE

Min. VDD, TSRNG = 1	Min. VDD, TSRNG = 0
3.6V	1.8V

14.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to **Section 15.0 "Analog-to-Digital Converter (ADC) Module"** for detailed information.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0>		ADNREF	GO/DONE_ALL	ADPRI	EF<1:0>
bit 7							bit 0
Legend:							
R = Reada	ıble bit	W = Writable	bit	U = Unimple	emented bit, read as	s 'O'	
u = Bit is u	nchanged	x = Bit is unk	nown	-n/n = Value	e at POR and BOR/	/alue at all oth	ner Resets
'1' = Bit is	set	'0' = Bit is cle	ared				
bit 7	ADFM: ADC 1 = Right ju loaded. 0 = Left jus loaded.	C Result Forma Istified. Six Mos tified. Six Leas	t Select bit st Significant t Significant b	bits of ADxRE	SxH are set to '0' w SxL are set to '0' w	hen the conve hen the conve	ersion result is ersion result is
bit 6-4	ADCS<2:0> 111 = FRC 110 = Fosc 101 = Fosc 100 = Fosc 011 = FRC 010 = Fosc 001 = Fosc 001 = Fosc 000 = Fosc	: ADC Convers (clock supplied c/64 c/16 c/4 (clock supplied c/32 c/8 c/2	sion Clock Se I from an inte I from an inte	elect bits rnal RC oscilla rnal RC oscilla	ator) ator)		
bit 3	ADNREF: A 1 = VREFL is 0 = VREFL is	DC Negative V connected to connected to	oltage Refere external VREF AVss.	ence Configur - pin ⁽⁴⁾	ation bit		
bit 2	GO/DONE_ 1 = Synchro ADxON 0 = Synchro	ALL ⁽³⁾ : Synchr onized ADC co I = 1. onized ADC co	onized ADC (onversion in p nversion com	Conversion St progress. Sett pleted/ not in	atus bit ing this bit starts c progress.	onversion in	any ADC with
bit 1-0	ADPREF<1 11 = VREFH 10 = VREFH 01 = Reser 00 = VREFH	:0>: ADC Posit is connected to is connected to ved is connected to	ive Voltage R o internal Fixe o external VR o VDD	Reference Con ed Voltage Re _{EF+} pin ⁽⁴⁾	figuration bits ference.		
Note 1:	Bank 1 name is	ADCON1.					
2:	Bank 14 name is	s ADCOMCON					
3:	Setting this bit tr	iggers the GO/	DONEx bits ir	n both ADCs.	Each ADC <u>will r</u> un a	conversion a	ccording to its

REGISTER 15-3: ADCON1⁽¹⁾/ADCOMCON⁽²⁾: ADC CONTROL REGISTER 1

control register settings. This bit reads as an OR of the individual GO/DONEx bits.
4: When selecting the VREF+ or VREF- pin as the source of the positive or negative reference, be aware that a minimum voltage specification exists. See Section 25.0 "Electrical Specifications" for details.

REGISTE	R 16-2: AD2C	ON0: ANALO	DG-TO-DIGI	TAL (ADC) 2	CONTROL I	REGISTER 0	
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
CHS25	CHS24	CHS23	CHS22	CHS21	CHS20	GO/DONE2(2)	AD2ON
bit 7							bit (
Legend:							
R = Readabl	le bit	W = Writable bi	t	U = Unimpleme	ented bit, read a	s '0'	
u = Bit is und	changed	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/	Value at all other Re	sets
'1' = Bit is se	et	'0' = Bit is clear	ed				
bit 7-2	CHS25<5:0>: A When AD2ON = 111111 = Fixe 111101 = Tem 111011 = VRE 101110 - 112 101001 - 102 101000 = Cha 011110 - 101 010100 - 011 000011 - 010 000010 = Cha 000001 = Cha 000000 = Cha	Analog Channel S = 0, all multiplexe ed Voltage Refere operature Indicato FFH (ADC Positive 1010 = Reserver 1011 = Channel 1011 = Reserver 1011 = Reserver 101	elect bits for AD r inputs are disc nce (FVREF) r Reference) d 41 through 45, (d 20 through 29, (d	C2 onnected. AN41 through AN AN20 through AN	45)⁽¹⁾ 29)		
bit 1 bit 0	GO/DONE2: AI If AD2ON = 1 1 = ADC co the ADC 0 = ADC co plete.) If this bi up to thi If AD2ON = 0 0 = ADC co AD2ON: ADC M 1 = ADC co	DC2 Conversion : nversion in progra C Module waits or nversion not in pro- t is cleared while is point will be tra nversion not in pr Module 2 Enable nverter module 2	Status bit ⁽²⁾ ess. Setting this he instruction belogress (This bit is a conversion is insferred to the re ogress bit is operating	bit starts the ADC fore starting the co s automatically cle in progress, the co esult registers, but	conversion. Wh onversion. ared by hardwar onversion will str t the AD2IF inte	en the RC clock sou re when the ADC cor op and the results of rrupt flag bit will not	rce is selected iversion is corr the conversio be set.
Note 1: 2:	0 = ADC co PIC16LF1567 only. N When the AD2DSEN	nverter module 2 Not implemented (I bit is set; the GC	is shut off and co on PIC16LF1566 D/DONE bit will c	onsumes no opera 5. lear after a secon	ating current. All d conversion ha	Analog channels are s completed.	e disconnecte

REGISTER 16-19: AADxRESxH: HARDWARE CVD RESULT REGISTER MSB ADFM = $0^{(1)}$

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	Sx<9:2>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 ADRESx<9:2>: ADC Result Register bits Upper eight bits of 10-bit conversion result

Note 1: See Section 16.1.13 "Hardware CVD Register Mapping" for more information.

REGISTER 16-20: AADxRESxL: HARDWARE CVD RESULT REGISTER LSL ADFM = $0^{(1)}$

R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0	U-0	U-0
ADRES	5x<1:0>	—	—	—	—	—	_
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 ADRESx<1:0>: ADC Result Register bits

Lower two bits of 10-bit conversion result

bit 5-0 **Reserved**: Do not use.

Note 1: See Section 16.1.13 "Hardware CVD Register Mapping" for more information.

20.4.9 ACKNOWLEDGE SEQUENCE

The ninth SCLx pulse for any transferred byte in I^2C is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDAx line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDAx line low indicated to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an $\overline{\text{ACK}}$ is placed in the ACKSTAT bit of the SSPxCON2 register.

Slave software, when the AHEN and DHEN bits are set, allow the user to set the ACK value sent back to the transmitter. The ACKDT bit of the SSPxCON2 register is set/cleared to determine the response.

Slave hardware will generate an ACK response if the AHEN and DHEN bits of the SSPxCON3 register are clear.

There are certain conditions where an \overline{ACK} will not be sent by the slave. If the BF bit of the SSPxSTAT register or the SSPOV bit of the SSPxCON1 register are set when a byte is received.

When the module is addressed, after the eighth falling edge of SCLx on the bus, the ACKTIM bit of the SSPxCON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled.

20.5 I²C SLAVE MODE OPERATION

The MSSPx Slave mode operates in one of four modes selected in the SSPM bits of SSPxCON1 register. The modes can be divided into 7-bit and 10-bit Addressing mode. 10-bit Addressing modes operate the same as 7-bit with some additional overhead for handling the larger addresses.

Modes with Start and Stop bit interrupts operated the same as the other modes with SSPxIF additionally getting set upon detection of a Start, Restart, or Stop condition.

20.5.1 SLAVE MODE ADDRESSES

The SSPxADD register (Register 20-6) contains the Slave mode address. The first byte received after a Start or Restart condition is compared against the value stored in this register. If the byte matches, the value is loaded into the SSPxBUF register and an interrupt is generated. If the value does not match, the module goes idle and no indication is given to the software that anything happened.

The SSPx Mask register (Register 20-5) affects the address matching process. See **Section 20.5.9 "SSPx Mask Register"** for more information.

20.5.1.1 I²C Slave 7-bit Addressing Mode

In 7-bit Addressing mode, the LSb of the received data byte is ignored when determining if there is an address match.

20.5.1.2 I²C Slave 10-bit Addressing Mode

In 10-bit Addressing mode, the first received byte is compared to the binary value of '1 1 1 1 0 A9 A8 0'. A9 and A8 are the two MSb's of the 10-bit address and stored in bits 2 and 1 of the SSPxADD register.

After the acknowledge of the high byte the UA bit is set and SCLx is held low until the user updates SSPxADD with the low address. The low address byte is clocked in and all eight bits are compared to the low address value in SSPxADD. Even if there is not an address match; SSPxIF and UA are set, and SCLx is held low until SSPxADD is updated to receive a high byte again. When SSPxADD is updated the UA bit is cleared. This ensures the module is ready to receive the high address byte on the next communication.

A high and low address match as a write request is required at the start of all 10-bit addressing communication. A transmission can be initiated by issuing a Restart once the slave is addressed, and clocking in the high address with the R/W bit set. The slave hardware will then acknowledge the read request and prepare to clock out data. This is only valid for a slave after it has received a complete high and low address byte match.

© 2015-2016 Microchip Technology Inc.

20.5.6 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCLx line low effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCLx.

The CKP bit of the SSPxCON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCLx line to go low and then hold it. Setting CKP will release SCLx and allow more communication.

20.5.6.1 Normal Clock Stretching

Following an \overline{ACK} if the R/W bit of SSPxSTAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSPxBUF with data to transfer to the master. If the SEN bit of SSPxCON2 is set, the slave hardware will always stretch the clock after the \overline{ACK} sequence. Once the slave is ready; CKP is set by software and communication resumes.

- Note 1: The BF bit has no effect on if the clock will be stretched or not. This is different than previous versions of the module that would not stretch the clock, clear CKP, if SSPxBUF was read before the ninth falling edge of SCLx.
 - 2: Previous versions of the module did not stretch the clock for a transmission if SSPxBUF was loaded before the ninth falling edge of SCLx. It is now always cleared for read requests.

20.5.6.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set, the clock is always stretched. This is the only time the SCLx is stretched without CKP being cleared. SCLx is released immediately after a write to SSPxADD.

Note:	Previous versions of the module did not
	stretch the clock if the second address byte
	did not match.

20.5.6.3 Byte NACKing

When the AHEN bit of SSPxCON3 is set; CKP is cleared by hardware after the eighth falling edge of SCLx for a received matching address byte. When the DHEN bit of SSPxCON3 is set; CKP is cleared after the eighth falling edge of SCLx for received data.

Stretching after the eighth falling edge of SCLx allows the slave to look at the received address or data and decide if it wants to ACK the received data.

20.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCLx line to go low and then hold it. However, clearing the CKP bit will not assert the SCLx output low until the SCLx output is already sampled low. Therefore, the CKP bit will not assert the SCLx line until an external I^2C master device has already asserted the SCLx line. The SCLx output will remain low until the CKP bit is set and all other devices on the I^2C bus have released SCLx. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCLx (see Figure 20-23).

FIGURE 20-23: CLOCK SYNCHRONIZATION TIMING

© 2015-2016 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	84	
PIE1	TMR1GIE	ADIE	RC1IE	TX1IE	SSP1IE	SSP2IE	TMR2IE	TMR1IE	85	
PIE2	—	AD2IE	_	-	BCL1IE	BCL2IE	TMR4IE	—	86	
PIR1	TMR1GIF	AD1IF	RCIF	TXIF	SSP1IF	SSP2IF	TMR2IF	TMR1IF	87	
PIR2	—	AD2IF			BCL1IF	BCL2IF	TMR4IF	—	88	
SSP1ADD				ADD<	:7:0>				253	
SSP2ADD				ADD<	:7:0>				253	
SSP1BUF	MSSPx Receive Buffer/Transmit Register									
SSP2BUF	MSSPx Rec	eive Buffer/Tra	ansmit Registe	er					201*	
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		248	
SSP2CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		248	
SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	RCEN PEN RSEN SEN			250	
SSP2CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	250	
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	251	
SSP2CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	251	
SSP1MSK				MSK<	:7:0>				252	
SSP2MSK	MSK<7:0>								252	
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	246	
SSP2STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	246	
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	123	
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	126	

TABLE 20-3: SUMMARY OF REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the MSSP module in I²C mode.

* Page provides register information.

Note 1: PIC16F/LF1829 only.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	266	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	84	
PIE1	TMR1GIE	AD1IE	RCIE	TXIE	SSP1IE	SSP2IE	TMR2IE	TMR1IE	85	
PIR1	TMR1GIF	AD1IF	RCIF	TXIF	SSP1IF	SSP2IF	TMR2IF	TMR1IF	87	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	265	
SPBRGL				BRG	<7:0>				267*	
SPBRGH	BRG<15:8>								267*	
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	119	
TXREG	EUSART Transmit Data Register							257		
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	264	

TABLE 21-1: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous transmission.

* Page provides register information.

21.4.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXSTA register. The Break character transmission is then initiated by a write to the TXREG. The value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXSTA register indicates when the transmit operation is active or idle, just as it does during normal transmission. See Figure 21-9 for the timing of the Break character sequence.

21.4.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

21.4.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RCSTA register and the received data as indicated by RCREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when;

- · RCIF bit is set
- FERR bit is set
- RCREG = 00h

The second method uses the Auto-Wake-up feature described in **Section 21.4.3** "**Auto-Wake-up on Break**". By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDCON register before placing the EUSART in Sleep mode.

FIGURE 21-9: SEND BREAK CHARACTER SEQUENCE

FIGURE 21-10: SYNCHRONOUS TRANSMISSION

FIGURE 21-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 21-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
BAUDCON	ABDOVF	RCIDL		SCKP	BRG16	_	WUE	ABDEN	266	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	84	
PIE1	TMR1GIE	AD1IE	RCIE	TXIE	SSP1IE	SSP2IE	TMR2IE	TMR1IE	85	
PIR1	TMR1GIF	AD1IF	RCIF	TXIF	SSP1IF	SSP2IF	TMR2IF	TMR1IF	87	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	265	
SPBRGL	BRG<7:0>								267*	
SPBRGH	BRG<15:8>								267*	
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	119	
TXREG	EUSART Transmit Data Register								257*	
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	264	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master transmission. * Page provides register information.

			\			,			
Mnemonic,		Description		14-Bit Opcode				Status	Notos
Oper	ands	Description	Cycles	MSb	LS		LSb	Affected	Notes
		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	-	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	-	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
		INHERENT OPERA	TIONS						
CLRWDT	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	-	No Operation	1	00	0000	0000	0000		
OPTION	-	Load OPTION_REG register with W	1	00	0000	0110	0010		
RESET	-	Software device Reset	1	00	0000	0000	0001		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED						
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm					kkkk		
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	1nmm	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	kkkk		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk			2

TABLE 24-3: ENHANCED MID-RANGE INSTRUCTION SET (CONTINUED)

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.