

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 34x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1567-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

01	40-Pin PDIP	40-Pin UQFN	44-Pin TQFP	Analog Channel	ADC and CVD	Timers	MWd	EUSART	MSSP	Interrupt	Pull-Up	Basic
RA0	2	17	19	AN20	—	—	PWM10	_	SS1 ⁽¹⁾	—	_	
RA1	3	18	20	AN10	—		PWM11		SS2		—	_
RA2	4	19	21	AN0	VREF-		PWM12	_	—	—	—	_
RA3	5	20	22	AN1	VREF+		PWM13	_	—	—	—	_
RA4	6	21	23	AN2		T0CKI	_	_			_	
RA5	7	22	24	AN21	—	—	—	—	SS1 ⁽¹⁾	_	—	—
RA6	14	29	31	AN22	ADTRIG	_		_	_	_	—	CLKOUT
RA7	13	28	30	AN11	—		—		_		—	CLKIN
RB0	33	8	8	AN16	—	—	PWM20	_	_	INT IOC	Y	_
RB1	34	9	9	AN27	—		PWM21		_	IOC	Υ	_
RB2	35	10	10	AN17	—		PWM22			IOC	Y	—
RB3	36	11	11	AN28	—		PWM23	_	_	IOC	Y	
RB4	37	12	14	AN18	AD1GRDA ⁽¹⁾ AD2GRDA ⁽¹⁾		_		—	IOC	Y	
RB5	38	13	15	AN29	AD1GRDA ⁽¹⁾ AD2GRDA ⁽¹⁾	T1G	_		_	IOC	Y	—
RB6	39	14	16	AN19	AD1GRDB ⁽¹⁾ AD2GRDB ⁽¹⁾	—	_		_	IOC	Y	ICSPCLK ICDCLK
RB7	40	15	17	AN40	AD1GRDB ⁽¹⁾ AD2GRDB ⁽¹⁾	—	—		_	IOC	Y	ICSPDAT ICDDAT
RC0	15	30	32	AN12	—	T1CKI		_	SDO2	_	_	_
RC1	16	31	35	AN23	—	—	PWM2	_	SCL2 SCK2	—	_	_
RC2	17	32	36	AN13	_	—	PWM1	—	SDA2 SDI2	—	—	_
RC3	18	33	37	AN24	_	_	—	_	SCL1 SCK1	_	—	_
RC4	23	38	42	AN14	—	_	—	—	SDA1 SDI1	_	_	_
RC5	24	39	43	AN25	_		_		SDO1 I2CLVL	_	—	_
RC6	25	40	44	AN15	—	—	—	TX CK	—	—	—	—
RC7	26	1	1	AN26	_	-	—	RX DT		—	—	_
RD0	19	34	38	AN42	—	—	—	—	—	—	—	—

TABLE 3: 40/44-PIN ALLOCATION TABLE (PIC16LF1567)

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constants		
DW	DATA0	; First constant
DW	DATA1	; Second constant
DW	DATA2	
DW	DATA3	
my_function		
; LOTS C	OF CODE	
MOVLW	DATA_INDEX	
ADDLW	LOW constan	its
MOVWF	FSR1L	
MOVLW	HIGH consta	ants; MSb is set
automatically		
MOVWF	FSR1H	
BTFSC	STATUS,C	; carry from ADDLW?
INCF	FSR1H,f	; yes
MOVIW	0[FSR1]	
;THE PROGRAM 1	MEMORY IS IN	N W

3.2 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-2):

- 12 core registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.5** "**Indirect Addressing**" for more information.

Data memory uses a 12-bit address. The upper five bits of the address define the Bank address and the lower seven bits select the registers/RAM in that bank.

3.2.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 3-2. For detailed information, see Table 3-10.

Addresses	BANKx	
x00h or x80h	INDF0	
x01h or x81h	INDF1	
x02h or x82h	PCL	
x03h or x83h	STATUS	
x04h or x84h	FSR0L	
x05h or x85h	FSR0H	
x06h or x86h	FSR1L	
x07h or x87h	FSR1H	
x08h or x88h	BSR	
x09h or x89h	WREG	
x0Ah or x8Ah	PCLATH	
x0Bh or x8Bh	INTCON	

3.2.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- · the arithmetic status of the ALU
- the Reset status

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (refer to **Section 24.0 "Instruction Set Summary"**).

Note 1: The <u>C</u> and <u>DC</u> bits operate as Borrow and Digit Borrow out bits, respectively, in subtraction.

TABLE 3-4: PIC16LF1567 MEMORY MAP, BANKS 0-7

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h															
001h															
002h															
003h															
004h															
00511 006h							CPU Core Registe	r, see Tal	ble 3-2 for specifics						
00011 007h															
008h															
009h															
00Ah															
00Bh															
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch		28Ch	_	30Ch	_	38Ch	_
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	_	30Dh	_	38Dh	_
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	_	28Eh	_	30Eh	_	38Eh	_
00Fh	PORTD	08Fh	TRISD	10Fh	LATD	18Fh	ANSELD	20Fh		28Fh		30Fh	—	38Fh	—
010h	PORTE	090h	TRISE	110h	LATE	190h	ANSELE	210h	WPUE	290h	—	310h	—	390h	—
011h	PIR1	091h	PIE1	111h	_	191h	PMADRL	211h	SSP1BUF	291h	—	311h	_	391h	
012h	PIR2	092h	PIE2	112h	_	192h	PMADRH	212h	SSP1ADD	292h	—	312h	_	392h	
013h	_	093h	_	113h	_	193h	PMDATL	213h	SSP1MSK	293h	_	313h	_	393h	_
014h	—	094h	—	114h	—	194h	PMDATH	214h	SSP1STAT	294h	—	314h	—	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	—	195h	PMCON1	215h	SSP1CON1	295h	_	315h	—	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	SSP1CON2	296h	_	316h	—	396h	IOCBF
017h	IMR1H	097h	WDICON	117h	FVRCON	197h		217h	SSP1CON3	297h	—	317h	—	397h	—
018h	I 1CON	098h		118h	—	198h		218h	SSPLVL	298h	_	318h	—	398h	—
019h	TIGCON	099h	OSCCON	119h	_	199h	RCREG	219h	SSP2BUF	299h	_	319h		399h	—
	TMR2	09An			_	19An	IAREG	21An	SSPZADD	29An	_	31An		39An	
01Bh		09Bn	ADRESL	11Ch		19Bn	SPBRGL	21BN 21Ch	SSPZINSK	29Bn		31BN 21Ch		39BN	
0101	12001		ADCONO	11Dh		1901 10Dh	POSTA	2101 21Dh	SSP201A1	29011 20Dh		31Dh		390H	
01Eh		09Dh	ADCON1	11Eh	-	19Dh	ТХСТА	21D1 21Eh	SSP2CON2	29Dn 20Eh		31Eh		39Eh	
01Fh	_	09Fh	ADCON2	11Fh	_	19Fh	BAUDCON	21Eh	SSP2CON3	29Fh	_	31Fh	_	39Fh	_
020h		0A0h	1.500112	120h		1A0h	2/1020011	220h	00.200.00	2A0h		320h		3A0h	
			General		General		General		General		General		General		General
	- ·		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose
	General		Register		Register		Register		Register		Register		Register		Register
	Register		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes
	96 Bytes														
	-														
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		u⊢un		170h		1F0n		270n		2F0n		370n		3⊢0n	
			Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses

070h 07Fh Legend:

egend: = Unimplemented data memory locations, read as '0'.

Note 1: These ADC registers are the same as the registers in Bank 14.

Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank	15										
780h	INDF0 ⁽¹⁾	Addressing t	his location us	al register)	xxxx xxxx	uuuu uuuu					
781h	INDF1 ⁽¹⁾	Addressing t	his location us	ses contents o	f FSR1H/FSR	1L to addres	s data memor	y (not a physic	al register)	XXXX XXXX	uuuu uuuu
782h	PCL ⁽¹⁾			Program C	Counter (PC)	Least Signific	ant Byte			0000 0000	0000 0000
783h	STATUS ⁽¹⁾	—	_	_	TO	PD	Z	DC	С	1 1000	q quuu
784h	FSR0L ⁽¹⁾			Indirect Da	ata Memory A	ddress 0 Lov	v Pointer			0000 0000	uuuu uuuu
785h	FSR0H ⁽¹⁾			Indirect Da	ata Memory A	ddress 0 Higl	h Pointer			0000 0000	0000 0000
786h	FSR1L ⁽¹⁾			Indirect Da	ata Memory A	ddress 1 Lov	v Pointer			0000 0000	uuuu uuuu
787h	FSR1H ⁽¹⁾			Indirect Da	ata Memory A	ddress 1 Higl	h Pointer			0000 0000	0000 0000
788h	BSR ⁽¹⁾	—	_	_			BSR<4:0>			0 0000	0 0000
789h	WREG ⁽¹⁾				Working F	Register				0000 0000	uuuu uuuu
78Ah	PCLATH ⁽¹⁾	—		Write B	uffer for the u	oper 7 bits of	the Program	Counter		-000 0000	-000 0000
78Bh	INTCON ⁽¹⁾	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 000u
78Ch	—					_	_				
78Dh	—					_	_				
78Eh	—				_	_					
78Fh	—					_	_				
790h	—				_	_					
791h	AD2CON0			CHS<5	0000 0000	0000 0000					
792h	—				Unimpler	nented				_	_
793h	AD2CON2	—	٦	RIGSEL<2:0>	>	—	_	_	_	-000	-000
794h	AD2CON3	AD2EPPOL	AD2IPPOL	—	_	—	_	AD2IPEN	AD2DSEN	0000	0000
795h	—				Unimpler	nented				_	_
796h	AD2PRECON	—				ADPRE<6:0>	>			-000 0000	-000 0000
797h	AD2ACQCON	—				ADACQ<6:0>	>			-000 0000	-000 0000
798h	AD2GRD	GRD2BOE	GRD2AOE	GRD2POL	_	_	_	_	TX2POL	000x	000u
799h	AD2CAPCON	—	_	_	_		ADD2C	AP<3:0>		0000	0000
79Ah	AAD2RES0L				ADRE	ESL				XXXX XXXX	uuuu uuuu
79Bh	AAD2RES0H		ADRESH XXXX XXX								uuuu uuuu
79Ch	AAD2RES1L				ADRE	ESL				xxxx xxxx	uuuu uuuu
79Dh	AAD2RES1H				ADRE	SH				xxxx xxxx	uuuu uuuu
79Eh	AD2CH0	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	0000 0000	0000 0000
705	AD2CH1	—	—	—	—	—	CH40	CH29	CH28	000	000
/9FN	AD2CH1 ⁽²⁾	CH45	CH44	CH43	CH42	CH41	CH40	CH29	CH28	00000000	00000000

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: These registers can be accessed from any bank.

2: PIC16LF1567.

3: These registers/bits are available at two address locations, in Bank 1 and Bank 14.

4: PIC16LF1566 only.

5: Unimplemented, read as '1'.

6.1 Power-on Reset (POR)

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

6.1.1 POWER-UP TIMER (PWRT)

The Power-up Timer provides a nominal 64 ms time-out on POR or Brown-out Reset.

The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an acceptable level. The Power-up Timer is enabled by clearing the PWRTE bit in Configuration Words.

The Power-up Timer starts after the release of the POR and BOR.

For additional information, refer to Application Note AN607, *"Power-up Trouble Shooting"* (DS00000607).

6.2 Brown-out Reset (BOR)

The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Words. The four operating modes are:

- · BOR is always on
- · BOR is off when in Sleep
- · BOR is controlled by software
- · BOR is always off

Refer to Table 6-1 for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV bit in Configuration Words.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Figure 6-2 for more information.

6.2.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Words are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

6.2.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

6.2.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Words are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device start-up is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

BOREN<1:0>	SBOREN	Device Mode	BOR Mode	Instruction Execution upon: Release of POR or Wake-up from Sleep
11	Х	Х	Active	Waits for BOR ready ⁽¹⁾ (BORRDY = 1)
1.0		Awake	Active	Waits for BOR ready
ΤŪ	10 X		Disabled	(BORRDY = 1)
01	1	x	Active	Waits for BOR ready ⁽¹⁾ (BORRDY = 1)
	0	X	Disabled	Begins immediately
00	Х	Х	Disabled	(BORRDY = x)

TABLE 6-1:BOR OPERATING MODES

Note 1: In these specific cases, "release of POR" and "wake-up from Sleep," there is no delay in start-up. The BOR ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR circuit is forced on by the BOREN<1:0> bits.

R/W-0/0	- <u>2.</u> FIEI:	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-0/0	
TMR1GIE	AD1IE	RCIE	TXIE	SSP1IE	SSP2IE	TMR2IE	TMR1IE	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit		mented bit, read			
u = Bit is unch	anged	x = Bit is unki	nown	-n/n = Value	at POR and BO	R/Value at all c	ther Resets	
'1' = Bit is set		'0' = Bit is cle	ared					
bit 7	TMR1GIE: Ti	mer1 Gate Inte	rrupt Enable t	pit				
	1 = Enables t	he Timer1 gate	acquisition in	nterrupt				
	0 = Disables	the Timer1 gate	e acquisition i	nterrupt				
bit 6	AD1IE: Analog-to-Digital Converter (ADC1) Interrupt Enable bit							
	1 = Enables the ADC interrupt							
6:4 <i>C</i>								
DIL 5	RCIE: USART Receive Interrupt Enable bit							
	1 = Disables 1 0 = Disables 1	the USART rec	eive interrupt					
bit 4	TXIE: USART	Transmit Inte	rrupt Enable b	it				
	1 = Enables t	he USART trar	nsmit interrupt					
	0 = Disables	the USART tra	nsmit interrup	t				
bit 3	SSP1IE: Syn	chronous Seria	I Port (MSSP	1) Interrupt En	able bit			
	1 = Enables t 0 = Disables	the MSSP1 inte the MSSP1 inte	errupt errupt					
bit 2	SSP2IE: Syn	chronous Seria	I Port (MSSP	1) Interrupt En	able bit			
	1 = Enables t 0 = Disables	the MSSP2 inte	errupt errupt					
bit 1	TMR2IE: TMI	R2 to PR2 Mat	ch Interrupt Er	nable bit				
	1 = Enables t	he Timer2 to P	R2 match inte	errupt				
	0 = Disables the Timer2 to PR2 match interrupt							
bit 0	TMR1IE: Timer1 Overflow Interrupt Enable bit							
	1 = Enables t	he Timer1 ove	flow interrupt					
	0 = Disables	the Timer1 ove	rflow interrupt					
Note: Bit	PEIE of the IN	TCON register	must be					
set	to enable any	peripheral inter	rupt.					

10.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit RD of the PMCON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

Note:	The two instructions following a program
	memory read are required to be NOPS.
	This prevents the user from executing a
	2-cycle instruction on the next instruction
	after the RD bit is set.

FIGURE 10-1: FLASH PROGRAM MEMORY READ FLOWCHART

11.4 Register Definitions: PORTA

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R-x/x	R/W-x/x	R/W-x/x	R/W-x/x		
RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0		
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown			iown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						

REGISTER 11-2: PORTA: PORTA REGISTER

bit 7-0 RA<7:0>: RA7:RA0 PORTA I/O Value bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 11-3: TRISA: PORTA TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TRISA<7:0>: PORTA Tri-State Control bit

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

15.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADCx interrupt flag is the ADxIF bit in the PIRx register. The ADCx interrupt enable is the ADxIE bit in the PIEx register. The ADxIF bit must be cleared in software.

- **Note 1:** The ADxIF bit is set at the completion of every conversion, regardless of whether or not the ADCx interrupt is enabled.
 - **2:** The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

15.1.6 RESULT FORMATTING

The 10-bit ADC conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1/ADCOMCON register controls the output format.

Figure 15-3 shows the two output formats.

FIGURE 15-3: 10-BIT ADC CONVERSION RESULT FORMAT

FIGURE 16-6: DOUBLE SAMPLE CONVERSION SEQUENCE (ADDSEN = 1 AND ADIPEN = 0)

REGISTER 16-3: AD1CH1: HARDWARE CVD 1 SECONDARY CHANNEL SELECT REGISTER^(1,2,3,4)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
CH35 ⁽⁵⁾	CH34 ⁽⁵⁾	CH33 ⁽⁵⁾	CH32 ⁽⁵⁾	CH31 ⁽⁵⁾	CH30 ⁽⁵⁾	CH19	CH18
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 CHx: Channel x to A/S 1 Connection^(1, 2, 3, 4)

1 = ANx is connected to A/D 1

0 = ANx is not connected to A/D 1

Note 1: This register selects secondary channels which are connected in parallel to the primary channel selected in AD1CON0. Precharge bias is applied to both the primary and secondary channels.

2: If the same channel is selected as both primary and secondary then the selection as primary takes precedence.

3: Enabling these bits automatically overrides the corresponding TRISx bit to tri-state the selected pin.

4: In the same way that the CHS bits in AD1CON0 only close the switch when the ADC is enabled, these connections and the TRISx overrides are only active if the ADC is enabled by setting ADxON.

5: PIC16LF1567 only. Unimplemented/ Read as '0' on PIC16LF1566.

18.8 Register Definitions: Timer1 Control

REGISTER 18-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	U-0	R/W-0/u	U-0	R/W-0/u
TMR1CS<1:0>		T1CKP	S<1:0>		T1SYNC	_	TMR10N
bit 7							bit 0
r							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, reac	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6 bit 5-4	bit 7-6 TMR1CS<1:0>: Timer1 Clock Source Select bits 11 = Timer1 clock source is LFINTOSC 10 = Timer1 clock source is external clock from T1CKI pin (on the rising edge) 01 = Timer1 clock source is system clock (Fosc) 00 = Timer1 clock source is instruction clock (Fosc/4) bit 5-4 T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:4 Prescale value						
bit 3	Unimplemen	ted: Read as '	כ'				
bit 2	T1SYNC: Timer1 Synchronization Control bit 1 = Do not synchronize asynchronous clock input 0 = Synchronize asynchronous clock input with system clock (Fosc)						
bit 1	Unimplemen	ted: Read as '	כ'				
bit 0	TMR1ON: Timer1 On bit 1 = Enables Timer1 0 = Stops Timer1 and clears Timer1 gate flip-flop						

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	84
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	SSP2IE	TMR2IE	TMR1IE	85
PIE2	—	AD2IE	—	—	BCL1IE	BCL2IE	TMR4IE	—	86
PIR1	TMR1GIF	AD1IF	RCIF	TXIF	SSP1IF	SSP2IF	TMR2IF	TMR1IF	87
PIR2	—	AD2IF	—	—	BCL1IF	BCL2IF	TMR4IF	—	88
PR2	Timer2 Module Period Register							194*	
PR4	Timer4 Module Period Register						194*		
T2CON	—		T2OUTPS<3:0> TMR2ON T2CKPS1 T2CKPS0						195
T4CON	—		T4OUTPS<3:0> TMR4ON T4CKPS1 T4CKPS0				195		
TMR2	Holding Register for the 8-bit TMR2 Register						193*		
TMR4	Holding Register for the 8-bit TMR4 Register ⁽¹⁾						193*		

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2/4 module.

* Page provides register information.

© 2015-2016 Microchip Technology Inc.

Preliminary

- -

s'

SSPxIF

В

. . .

SDAx

SCLX

СКР

ACKSTAT

RŇ

D/A

Ъ.

S

© 2015-2016 Microchip Technology Inc.

TABLE 22-4:	SUMMARY OF REGISTERS ASSOCIATED WITH PWM
-------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PR2			Timer	2 module Per	riod Registe	er			193*
PWM1CON	PWM1EN	PWM10E	PWM10UT	PWM1POL	—	—	—		286
PWM1DCH		PWM1DCH<7:0>						287	
PWM1DCL	PWM1D	CL<7:6>	—	—	—	—	_	_	287
PWM2CON	PWM2EN	PWM2OE	PWM2OUT	PWM2POL	—	—	_	_	286
PWM2DCH	PWM2DCH<7:0>						287		
PWM2DCL	PWM2D	CL<7:6>	—	—	—	—	_	_	287
T2CON						195			
TMR2	Timer2 module Register						193*		
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	115
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	123

Legend: – = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the PWM.

* Page provides register information.

24.2 Instruction Descriptions

ADDFSR	Add Literal to FSRn
Syntax:	[label] ADDFSR FSRn, k
Operands:	-32 ≤ k ≤ 31 n ∈ [0, 1]
Operation:	$FSR(n) + k \rightarrow FSR(n)$
Status Affected:	None
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.
	FSRn is limited to the range 0000h -

FSRn is limited to the range 0000h -FFFFh. Moving beyond these bounds will cause the FSR to wrap-around.

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.

ADDLW	Add literal and W				
Syntax:	[<i>label</i>] ADDLW k				
Operands:	$0 \le k \le 255$				
Operation:	$(W) + k \to (W)$				
Status Affected:	C, DC, Z				
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.				

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ADDWF	Add W and f				
Syntax:	[label] ADDWF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(W) + (f) \rightarrow (destination)				
Status Affected:	C, DC, Z				
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

ASRF	Arithmetic Right Shift
Syntax:	[<i>label</i>]ASRF f{,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f<7>)→ dest<7> (f<7:1>) → dest<6:0>, (f<0>) → C,
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in

register 'f'.

►	register f	-	С	

Δ	DD	N	FC

ADD W and CARRY bit to f

Syntax:	[label] ADDWFC f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(W) + (f) + (C) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \leq k \leq 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<6:3> \rightarrow PC<14:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.

IORLW	Inclusive OR literal with W
Syntax:	[label] IORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.

INCF	Increment f
Syntax:	[<i>label</i>] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

IORWF	Inclusive OR W with f
Syntax:	[label] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

© 2015-2016 Microchip Technology Inc.