

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 32MHz                                                                       |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                   |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                       |
| Number of I/O              | 36                                                                          |
| Program Memory Size        | 14KB (8K x 14)                                                              |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | -                                                                           |
| RAM Size                   | 1K x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                                 |
| Data Converters            | A/D 34x10b                                                                  |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 40-UFQFN Exposed Pad                                                        |
| Supplier Device Package    | 40-UQFN (5x5)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1567t-i-mv |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# **PIN DIAGRAMS**

FIGURE 4.

| FIGURE I. | 20-FIN 3FDIF, 3010, 330F DIAU                                                                                          | экаі        | VIFUR FIGTOLF1500                                                                                              |  |
|-----------|------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------|--|
|           | VPP/MCLR/RE3 [ 1<br>RA0 [ 2<br>RA1 [ 3<br>RA2 [ 4                                                                      |             | 28 <b>RB7/ICSPDAT</b><br>27 <b>RB6/ICSPCLK</b><br>26 RB5<br>25 RB4                                             |  |
|           | RA3 [ 5<br>RA4 ] 6<br>RA5 [ 7<br><b>Vss</b> ] 8<br>RA7 ] 9<br>RA6 [ 10<br>RC0 ] 11<br>RC1 [ 12<br>RC2 [ 13<br>RC3 [ 14 | PIC16LF1566 | 24 RB3<br>23 RB2<br>22 RB1<br>21 RB0<br>20 <b>VDD</b><br>19 <b>Vss</b><br>18 RC7<br>17 RC6<br>16 RC5<br>15 RC4 |  |
| Note:     | See Table 2 for the pin allocation tables.                                                                             |             |                                                                                                                |  |

28 DIN SODID SOLC SSOD DIACDAM FOD DICASI F4566

# FIGURE 2: 28-PIN UQFN DIAGRAM FOR PIC16LF1566





# TABLE 3-5:PIC16LF1566/1567 MEMORY MAP, BANKS 8-15

|               | BANK 8                                     |               | BANK 9                                     |              | BANK 10                                    |       | BANK 11                                    |              | BANK 12                              |              | BANK 13                      |               | BANK 14                      |               | BANK 15                      |
|---------------|--------------------------------------------|---------------|--------------------------------------------|--------------|--------------------------------------------|-------|--------------------------------------------|--------------|--------------------------------------|--------------|------------------------------|---------------|------------------------------|---------------|------------------------------|
| 400h          |                                            |               |                                            |              |                                            |       |                                            |              |                                      |              |                              |               |                              |               |                              |
| 401h          |                                            |               |                                            |              |                                            |       |                                            |              |                                      |              |                              |               |                              |               |                              |
| 402h          |                                            |               |                                            |              |                                            |       |                                            |              |                                      |              |                              |               |                              |               |                              |
| 403h          |                                            |               |                                            |              |                                            |       |                                            |              |                                      |              |                              |               |                              |               |                              |
| 404h          |                                            |               |                                            |              |                                            |       |                                            |              |                                      |              |                              |               |                              |               |                              |
| 405h          |                                            |               |                                            |              |                                            |       | CPU Core Registe                           | r. see Ta    | ble 3-2 for specifics                |              |                              |               |                              |               |                              |
| 406h          |                                            |               |                                            |              |                                            |       | <b>- - - - - -</b>                         | ,            |                                      |              |                              |               |                              |               |                              |
| 407h          |                                            |               |                                            |              |                                            |       |                                            |              |                                      |              |                              |               |                              |               |                              |
| 408h          |                                            |               |                                            |              |                                            |       |                                            |              |                                      |              |                              |               |                              |               |                              |
| 409n          |                                            |               |                                            |              |                                            |       |                                            |              |                                      |              |                              |               |                              |               |                              |
| 40An          |                                            |               |                                            |              |                                            |       |                                            |              |                                      |              |                              |               |                              |               |                              |
| 40BN          |                                            | 40.0%         |                                            | FOCH         |                                            | FOCH  |                                            | COCH         |                                      | COCH         |                              | 7005          |                              | 70.01         |                              |
| 40Ch          | _                                          | 48Ch          | _                                          | 50Ch         | _                                          | 58CN  |                                            | 60Ch         |                                      | 68Ch         |                              | 7000          | _                            | 7801          | _                            |
| 40DH          |                                            | 40D11         |                                            | SODI         |                                            | 50DII |                                            | 60DH         |                                      | COLU         |                              |               |                              |               |                              |
| 40EN          |                                            | 40E11         |                                            | 50Eh         |                                            | 50Eh  |                                            | 60Eh         |                                      | 69Eh         |                              | 70EH          |                              | 70E11         |                              |
| 40FII         |                                            | 40FII         |                                            | 510h         |                                            | 500h  |                                            | 610b         |                                      | 600h         |                              | 70FII<br>710b |                              | 70FII<br>700h |                              |
| 410H          | _                                          | 49011<br>401b |                                            | 510H         | _                                          | 501h  |                                            | 611b         |                                      | 601h         |                              | 710H          |                              | 790H          |                              |
| 41111<br>412h |                                            | 49111<br>402h |                                            | 512h         |                                            | 502h  |                                            | 612h         | PWWIDCL<br>PW/M1DCH                  | 602h         |                              | 71111<br>712h |                              | 79111<br>702h | ADZCONU                      |
| 41211<br>/13b |                                            | 402h          |                                            | 513h         |                                            | 503h  |                                            | 613h         | PWM1CON                              | 603h         |                              | 712h          |                              | 703h          |                              |
| 414h          |                                            | 49311<br>494h |                                            | 514h         |                                            | 594h  |                                            | 614h         | PWM2DCI                              | 694h         |                              | 714h          |                              | 794h          |                              |
| 415h          | TMR4                                       | 495h          |                                            | 515h         |                                            | 595h  |                                            | 615h         | PWM2DCH                              | 695h         | AD2TX1                       | 715h          | ADSTAT                       | 795h          |                              |
| 416h          | PR4                                        | 496h          |                                            | 516h         |                                            | 596h  |                                            | 616h         | PWM2CON                              | 696h         | -                            | 716h          |                              | 796h          | AD2PRECON                    |
| 417h          | T4CON                                      | 497h          | _                                          | 517h         |                                            | 597h  |                                            | 617h         | _                                    | 697h         |                              | 717h          | AD1ACQCON                    | 797h          | AD2ACQCON                    |
| 418h          |                                            | 498h          | _                                          | 518h         | _                                          | 598h  |                                            | 618h         | _                                    | 698h         | _                            | 718h          | AD1GRD                       | 798h          | AD2GRD                       |
| 419h          | _                                          | 499h          |                                            | 519h         | _                                          | 599h  | _                                          | 619h         | _                                    | 699h         | _                            | 719h          | AD1CAPCON                    | 799h          | AD2CAPCON                    |
| 41Ah          | _                                          | 49Ah          | _                                          | 51Ah         | _                                          | 59Ah  | _                                          | 61Ah         | _                                    | 69Ah         | _                            | 71Ah          | AAD1RES0L                    | 79Ah          | AAD2RES0L                    |
| 41Bh          | _                                          | 49Bh          | _                                          | 51Bh         | _                                          | 59Bh  | _                                          | 61Bh         | _                                    | 69Bh         | _                            | 71Bh          | AAD1RES0H                    | 79Bh          | AAD2RES0H                    |
| 41Ch          | _                                          | 49Ch          | _                                          | 51Ch         | _                                          | 59Ch  |                                            | 61Ch         | _                                    | 69Ch         |                              | 71Ch          | AAD1RES1L                    | 79Ch          | AAD2RES1L                    |
| 41Dh          | _                                          | 49Dh          |                                            | 51Dh         | _                                          | 59Dh  | _                                          | 61Dh         | PWMTMRS                              | 69Dh         | _                            | 71Dh          | AAD1RES1H                    | 79Dh          | AAD2RES1H                    |
| 41Eh          | —                                          | 49Eh          | _                                          | 51Eh         | _                                          | 59Eh  | —                                          | 61Eh         | PWM1AOE                              | 69Eh         | _                            | 71Eh          | AD1CH0                       | 79Eh          | AD2CH0                       |
| 41Fh          | —                                          | 49Fh          | —                                          | 51Fh         | —                                          | 59Fh  | —                                          | 61Fh         | PWM2AOE                              | 69Fh         | -                            | 71Fh          | AD1CH1                       | 79Fh          | AD2CH1                       |
| 420h          |                                            | 4A0h          |                                            | 520h         |                                            | 5A0h  |                                            | 620h<br>64Fh | General Purpose<br>Register 48 Bytes | 6A0h         |                              | 720h          |                              | 7A0h          |                              |
|               | General<br>Purpose<br>Register<br>80 Bytes |               | General<br>Purpose<br>Register<br>80 Bytes |              | General<br>Purpose<br>Register<br>80 Bytes |       | General<br>Purpose<br>Register<br>80 Bytes | 650h         | Unimplemented<br>Read as '0'         |              | Unimplemented<br>Read as '0' |               | Unimplemented<br>Read as '0' |               | Unimplemented<br>Read as '0' |
| 46Fh          |                                            | 4EFh          |                                            | 56Fh         |                                            | 5EFh  |                                            | 66Fh         |                                      | 6EFh         |                              | 76Fh          |                              | 7EFh          |                              |
| 470h<br>47Fh  | Accesses<br>70h – 7Fh                      | 4F0h<br>4FFh  | Accesses<br>70h – 7Fh                      | 570h<br>57Fh | Accesses<br>70h – 7Fh                      | 5F0h  | Accesses<br>70h – 7Fh                      | 670h         | Accesses<br>70h – 7Fh                | 6F0h<br>6FFh | Accesses<br>70h – 7Fh        | 770h<br>77Fh  | Accesses<br>70h – 7Fh        | 7F0h<br>7FFh  | Accesses<br>70h – 7Fh        |

**Note 1:** These ADC registers are the same as the registers in Bank 1.

| Addr. | Name                  | Bit 7                                        | Bit 6                                                                                                  | Bit 5          | Bit 4           | Bit 3          | Bit 2        | Bit 1           | Bit 0        | Value on:<br>POR, BOR | Value on<br>all other<br>Resets |
|-------|-----------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------|-----------------|----------------|--------------|-----------------|--------------|-----------------------|---------------------------------|
| Bank  | 5                     |                                              |                                                                                                        |                |                 |                |              |                 |              |                       |                                 |
| 280h  | INDF0 <sup>(1)</sup>  | Addressing t                                 | Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register) |                |                 |                |              |                 |              |                       |                                 |
| 281h  | INDF1 <sup>(1)</sup>  | Addressing t                                 | this location us                                                                                       | ses contents o | f FSR1H/FSR     | 1L to addres   | s data memor | y (not a physic | al register) | xxxx xxxx             | uuuu uuuu                       |
| 282h  | PCL <sup>(1)</sup>    |                                              |                                                                                                        | Program (      | Counter (PC)    | Least Signific | ant Byte     |                 |              | 0000 0000             | 0000 0000                       |
| 283h  | STATUS <sup>(1)</sup> | —                                            | —                                                                                                      | —              | TO              | PD             | Z            | DC              | С            | 1 1000                | q quuu                          |
| 284h  | FSR0L <sup>(1)</sup>  |                                              |                                                                                                        | Indirect Da    | ata Memory A    | ddress 0 Lov   | v Pointer    |                 |              | 0000 0000             | uuuu uuuu                       |
| 285h  | FSR0H <sup>(1)</sup>  |                                              |                                                                                                        | Indirect Da    | ata Memory A    | ddress 0 Higl  | h Pointer    |                 |              | 0000 0000             | 0000 0000                       |
| 286h  | FSR1L <sup>(1)</sup>  |                                              |                                                                                                        | Indirect Da    | ata Memory A    | ddress 1 Lov   | v Pointer    |                 |              | 0000 0000             | uuuu uuuu                       |
| 287h  | FSR1H <sup>(1)</sup>  |                                              |                                                                                                        | Indirect Da    | ata Memory A    | ddress 1 Higl  | h Pointer    |                 |              | 0000 0000             | 0000 0000                       |
| 288h  | BSR <sup>(1)</sup>    | —                                            | _                                                                                                      | _              |                 |                | BSR<4:0>     |                 |              | 0 0000                | 0 0000                          |
| 289h  | WREG <sup>(1)</sup>   |                                              |                                                                                                        |                | Working F       | Register       |              |                 |              | 0000 0000             | uuuu uuuu                       |
| 28Ah  | PCLATH <sup>(1)</sup> | —                                            |                                                                                                        | Write B        | uffer for the u | oper 7 bits of | the Program  | Counter         |              | -000 0000             | -000 0000                       |
| 28Bh  | INTCON <sup>(1)</sup> | GIE PEIE TMROIE INTE IOCIE TMROIF INTF IOCIF |                                                                                                        |                |                 |                |              | 0000 0000       | 0000 0000    |                       |                                 |
| 28Ch  | —                     | Unimplemented                                |                                                                                                        |                |                 |                |              |                 |              | _                     | _                               |
| 28Dh  | —                     |                                              | Unimplemented                                                                                          |                |                 |                |              |                 |              |                       | —                               |
| 28Eh  | —                     |                                              | Unimplemented                                                                                          |                |                 |                |              |                 |              |                       | _                               |
| 28Fh  | —                     |                                              | Unimplemented                                                                                          |                |                 |                |              |                 |              |                       | _                               |
| 290h  | —                     |                                              |                                                                                                        |                | Unimpler        | mented         |              |                 |              | _                     | _                               |
| 291h  | —                     |                                              |                                                                                                        |                | Unimpler        | mented         |              |                 |              | _                     | _                               |
| 292h  | —                     |                                              | Unimplemented                                                                                          |                |                 |                |              |                 |              | —                     | —                               |
| 293h  | —                     |                                              |                                                                                                        |                | Unimpler        | mented         |              |                 |              | —                     | —                               |
| 294h  | —                     |                                              |                                                                                                        |                | Unimpler        | mented         |              |                 |              | —                     | —                               |
| 295h  | —                     |                                              |                                                                                                        |                | Unimpler        | mented         |              |                 |              | —                     | —                               |
| 296h  | —                     |                                              |                                                                                                        |                | Unimpler        | mented         |              |                 |              | —                     | —                               |
| 297h  | —                     |                                              |                                                                                                        |                | Unimpler        | mented         |              |                 |              | —                     | —                               |
| 298h  | —                     |                                              |                                                                                                        |                | Unimpler        | mented         |              |                 |              | —                     | —                               |
| 299h  | —                     |                                              | Unimplemented                                                                                          |                |                 |                |              |                 |              | —                     | —                               |
| 29Ah  | —                     |                                              | Unimplemented                                                                                          |                |                 |                |              |                 |              | —                     | —                               |
| 29Bh  | —                     |                                              | Unimplemented                                                                                          |                |                 |                |              |                 |              | —                     | —                               |
| 29Ch  | —                     |                                              |                                                                                                        |                | Unimpler        | mented         |              |                 |              | —                     | —                               |
| 29Dh  | —                     |                                              |                                                                                                        |                | Unimpler        | mented         |              |                 |              | —                     | —                               |
| 29Eh  | —                     |                                              |                                                                                                        |                | Unimpler        | mented         |              |                 |              | —                     | —                               |
| 29Fh  | _                     | Unimplemented                                |                                                                                                        |                |                 |                |              |                 |              | _                     | _                               |

# TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend:x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.Note1:These registers can be accessed from any bank.

2: PIC16LF1567.

3: These registers/bits are available at two address locations, in Bank 1 and Bank 14.

4: PIC16LF1566 only.

5: Unimplemented, read as '1'.

# TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

| Addr.              | Name                  | Bit 7         | Bit 6                                                                                                  | Bit 5          | Bit 4           | Bit 3          | Bit 2        | Bit 1           | Bit 0        | Value on:<br>POR, BOR | Value on<br>all other<br>Resets |
|--------------------|-----------------------|---------------|--------------------------------------------------------------------------------------------------------|----------------|-----------------|----------------|--------------|-----------------|--------------|-----------------------|---------------------------------|
| Bank 8             |                       |               |                                                                                                        |                |                 |                |              |                 |              |                       |                                 |
| 400h               | INDF0 <sup>(1)</sup>  | Addressing t  | Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register) |                |                 |                |              |                 |              |                       | uuuu uuuu                       |
| 401h               | INDF1 <sup>(1)</sup>  | Addressing t  | his location us                                                                                        | ses contents o | f FSR1H/FSR     | 1L to addres   | s data memor | y (not a physic | al register) | XXXX XXXX             | uuuu uuuu                       |
| 402h               | PCL <sup>(1)</sup>    |               |                                                                                                        | Program (      | Counter (PC)    | Least Signific | ant Byte     |                 |              | 0000 0000             | 0000 0000                       |
| 403h               | STATUS <sup>(1)</sup> | _             | _                                                                                                      | _              | TO              | PD             | Z            | DC              | С            | 1 1000                | q quuu                          |
| 404h               | FSR0L <sup>(1)</sup>  |               |                                                                                                        | Indirect Da    | ata Memory A    | ddress 0 Lov   | v Pointer    |                 |              | 0000 0000             | uuuu uuuu                       |
| 405h               | FSR0H <sup>(1)</sup>  |               |                                                                                                        | Indirect Da    | ata Memory A    | ddress 0 Hig   | h Pointer    |                 |              | 0000 0000             | 0000 0000                       |
| 406h               | FSR1L <sup>(1)</sup>  |               | Indirect Data Memory Address 1 Low Pointer                                                             |                |                 |                |              |                 |              | 0000 0000             | uuuu uuuu                       |
| 407h               | FSR1H <sup>(1)</sup>  |               | Indirect Data Memory Address 1 High Pointer                                                            |                |                 |                |              |                 |              | 0000 0000             | 0000 0000                       |
| 408h               | BSR <sup>(1)</sup>    | _             | _                                                                                                      | _              |                 |                | BSR<4:0>     |                 |              | 0 0000                | 0 0000                          |
| 409h               | WREG <sup>(1)</sup>   |               | Working Register                                                                                       |                |                 |                |              |                 |              |                       | uuuu uuuu                       |
| 40Ah               | PCLATH <sup>(1)</sup> | _             |                                                                                                        | Write B        | uffer for the u | oper 7 bits of | the Program  | Counter         |              | -000 0000             | -000 0000                       |
| 40Bh               | INTCON <sup>(1)</sup> | GIE           | PEIE                                                                                                   | TMR0IE         | INTE            | IOCIE          | TMR0IF       | INTF            | IOCIF        | 0000 0000             | 0000 0000                       |
| 40Ch               | _                     |               |                                                                                                        |                |                 |                |              |                 |              | —                     | _                               |
| to<br>414h         |                       |               | Unimplemented                                                                                          |                |                 |                |              |                 |              |                       |                                 |
| 415h               | TMR4                  |               | TMR4                                                                                                   |                |                 |                |              |                 |              | 0000 0000             | 0000 0000                       |
| 416h               | PR4                   |               | PR4                                                                                                    |                |                 |                |              |                 |              | 11111111              | 11111111                        |
| 417h               | T4CON                 | _             |                                                                                                        | T4OU           | ITPS            |                | TMR40N       | T4CH            | (PS          | -000 0000             | -000 0000                       |
| 418h<br>to<br>41Fh | _                     | Unimplemented |                                                                                                        |                |                 |                |              | _               | _            |                       |                                 |

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: These registers can be accessed from any bank.

2: PIC16LF1567.

3: These registers/bits are available at two address locations, in Bank 1 and Bank 14.

4: PIC16LF1566 only.

5: Unimplemented, read as '1'.

# 11.5 PORTB Registers (PIC16LF1567 Only)

### 11.5.1 DATA REGISTER

PORTB is a 4-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 11-7). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., disable the output driver). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 11-1 shows how to initialize an I/O port.

Reading the PORTB register (Register 11-6) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

# 11.5.2 DIRECTION CONTROL

The TRISB register (Register 11-7) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

#### 11.5.3 ANALOG CONTROL

The ANSELB register (Register 11-9) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

| Note: | The ANSELB bits default to the Analog        |
|-------|----------------------------------------------|
|       | mode after Reset. To use any pins as         |
|       | digital general purpose or peripheral        |
|       | inputs, the corresponding ANSELx bits        |
|       | must be initialized to '0' by user software. |

# 11.5.4 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each PORTB pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 11-5.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input functions, such as ADC and comparator inputs, are not shown in the priority lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown below in Table 11-5.

| Pin Name | Function Priority <sup>(1)</sup> |
|----------|----------------------------------|
| RB0      | INT<br>PWM20<br>RB0              |
| RB1      | PWM21<br>RB1                     |
| RB2      | PWM22<br>RB2                     |
| RB3      | PWM23<br>RB3                     |
| RB4      | ADxGRDA<br>RB4                   |
| RB5      | ADxGRDA<br>RB5                   |
| RB6      | ICSPCLK<br>ADxGRDB<br>RB6        |
| RB7      | ICSPDAT<br>ADxGRDB<br>RB7        |

## TABLE 11-5: PORTB OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

# **REGISTER 16-3:** AD1CH1: HARDWARE CVD 1 SECONDARY CHANNEL SELECT REGISTER<sup>(1,2,3,4)</sup>

| R/W-0/0             | R/W-0/0             | R/W-0/0             | R/W-0/0             | R/W-0/0             | R/W-0/0             | R/W-0/0 | R/W-0/0 |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------|---------|
| CH35 <sup>(5)</sup> | CH34 <sup>(5)</sup> | CH33 <sup>(5)</sup> | CH32 <sup>(5)</sup> | CH31 <sup>(5)</sup> | CH30 <sup>(5)</sup> | CH19    | CH18    |
| bit 7               |                     |                     |                     |                     |                     |         | bit 0   |
|                     |                     |                     |                     |                     |                     |         |         |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0 CHx: Channel x to A/S 1 Connection<sup>(1, 2, 3, 4)</sup>

1 = ANx is connected to A/D 1

0 = ANx is not connected to A/D 1

**Note 1:** This register selects secondary channels which are connected in parallel to the primary channel selected in AD1CON0. Precharge bias is applied to both the primary and secondary channels.

**2:** If the same channel is selected as both primary and secondary then the selection as primary takes precedence.

**3:** Enabling these bits automatically overrides the corresponding TRISx bit to tri-state the selected pin.

**4:** In the same way that the CHS bits in AD1CON0 only close the switch when the ADC is enabled, these connections and the TRISx overrides are only active if the ADC is enabled by setting ADxON.

5: PIC16LF1567 only. Unimplemented/ Read as '0' on PIC16LF1566.

#### **REGISTER 16-4:** AD2CH0: HARDWARE CVD 2 SECONDARY CHANNEL SELECT **REGISTER**<sup>(1,2,3,4)</sup>

|         | NEOR    |         |         |         |         |         |         |
|---------|---------|---------|---------|---------|---------|---------|---------|
| R/W-0/0 |
| CH27    | CH26    | CH25    | CH24    | CH23    | CH22    | CH21    | CH20    |
| bit 7   | ·       |         |         |         |         | •       | bit 0   |
|         |         |         |         |         |         |         |         |
|         |         |         |         |         |         |         |         |

| Legena:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

| <b>CHx:</b> Channel x to A/D 2 Connection bit <sup>(1,2,3,4,5)</sup> |
|----------------------------------------------------------------------|
| 1 = ANx is connected to A/D 2                                        |
| 0 = ANx is not connected to A/D 2                                    |
|                                                                      |

**Note 1:** This register selects secondary channels which are connected in parallel to the primary channel selected in ADxCON1. Precharge bias is applied to both the primary and secondary channels.

- **2:** If the same channel is selected as both primary (ADxCON1) and secondary then the selection as primary takes precedence.
- 3: Enabling these bits automatically overrides the corresponding TRISx.x bit to tri-state the selected pin.
- 4: In the same way that the CHSx bits in ADCON0 only close the switch when the A/D is enabled, these connections and the TRIS overrides are only active if the A/D is enabled by setting ADxON.

# REGISTER 16-5: AD2CH1: ANALOG-TO-DIGITAL (A/D) 2 SECONDARY CHANNEL SELECT REGISTER 1

| R/W-0/0             | R/W-0/0             | R/W-0/0             | R/W-0/0             | R/W-0/0             | R/W-0/0 | R/W-0/0 | R/W-0/0 |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------|---------|---------|
| CH45 <sup>(5)</sup> | CH44 <sup>(5)</sup> | CH43 <sup>(5)</sup> | CH42 <sup>(5)</sup> | CH41 <sup>(5)</sup> | CH40    | CH29    | CH28    |
| bit 7               |                     |                     |                     |                     |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0 CHx: Channel x to A/D 2 Connection bit<sup>(1,2,3,4)</sup>

- 1 = ANx is connected to A/D 2
  - 0 = ANx is not connected to A/D 2
- **Note 1:** This register selects secondary channels which are connected in parallel to the primary channel selected in ADxCON1. Precharge bias is applied to both the primary and secondary channels.
  - **2:** If the same channel is selected as both primary (ADxCON1) and secondary then the selection as primary takes precedence.
  - 3: Enabling these bits automatically overrides the corresponding TRISx.x bit to tri-state the selected pin.
  - 4: In the same way that the CHSx bits in ADCON0 only close the switch when the A/D is enabled, these connections and the TRIS overrides are only active if the A/D is enabled by setting ADxON.
  - 5: PIC16LF1567 only. Unimplemented / Read as '0' on PIC16LF1566

| R/W-0/       | 0 R/W-0/0                                                                                                                                                                     | R/W-0/0                                                                                                                                                | U-0                         | U-0                                    | U-0                                | U-0                         | R/W-0/0                          |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------|------------------------------------|-----------------------------|----------------------------------|--|
| GRDxBO       | E <sup>(2)</sup> GRDxAOE <sup>(2)</sup>                                                                                                                                       | GRDxPOL <sup>(1,2)</sup>                                                                                                                               | _                           | _                                      | —                                  | _                           | TXxPOL                           |  |
| bit 7        |                                                                                                                                                                               |                                                                                                                                                        |                             |                                        | •                                  |                             | bit C                            |  |
|              |                                                                                                                                                                               |                                                                                                                                                        |                             |                                        |                                    |                             |                                  |  |
| Legend:      |                                                                                                                                                                               |                                                                                                                                                        |                             |                                        |                                    |                             |                                  |  |
| R = Reada    | ıble bit                                                                                                                                                                      | W = Writable bit                                                                                                                                       |                             | U = Unimplemented bit, read as '0'     |                                    |                             |                                  |  |
| u = Bit is u | nchanged                                                                                                                                                                      | x = Bit is unknow                                                                                                                                      | n                           | -n/n = Value<br>Resets                 | at POR and B                       | OR/Value at                 | all other                        |  |
| '1' = Bit is | set                                                                                                                                                                           | '0' = Bit is cleared                                                                                                                                   | d                           |                                        |                                    |                             |                                  |  |
|              |                                                                                                                                                                               |                                                                                                                                                        |                             |                                        |                                    |                             |                                  |  |
| bit 7        | GRDxBOE: G                                                                                                                                                                    | uard Ring B Output                                                                                                                                     | t Enable bit                | (2,3,5)                                |                                    |                             |                                  |  |
|              | 1 = ADC guar<br>0 = No ADC g                                                                                                                                                  | d ring output is ena<br>uard ring function t                                                                                                           | bled to AD                  | (GRDB <sup>(6)</sup> pin. I<br>enabled | ts correspondi                     | ing TRISx bit               | must be clear.                   |  |
| bit 6        | GRDxAOE: G                                                                                                                                                                    | uard Ring A Output                                                                                                                                     | t Enable bit                | (1,3,5)                                |                                    |                             |                                  |  |
|              | 1 = ADC Guar                                                                                                                                                                  | 1 = ADC Guard Ring Output is enabled to ADxGRDA <sup>(6)</sup> pin. Its corresponding TRISx, x bit mus                                                 |                             |                                        |                                    | , x bit must be             |                                  |  |
|              | 0 = No ADC G                                                                                                                                                                  | uard Ring function                                                                                                                                     | is enabled                  |                                        |                                    |                             |                                  |  |
| bit 5        | GRDxPOL: Gu                                                                                                                                                                   | uard Ring Polarity S                                                                                                                                   | Selection bi                | t(4)                                   |                                    |                             |                                  |  |
|              | <ul> <li>1 = ADCx guard ring outputs start as digital high during precharge stage</li> <li>0 = ADCx guard ring outputs start as digital low during precharge stage</li> </ul> |                                                                                                                                                        |                             |                                        |                                    |                             |                                  |  |
| bit 4-1      | Unimplemente                                                                                                                                                                  | ed: Read as '0'                                                                                                                                        |                             |                                        |                                    |                             |                                  |  |
| bit 0        | <b>TXxPOL:</b> ADC x TX Polarity Select <sup>(3,4,5)</sup> . ADxTXy registers determine location of TX pins.                                                                  |                                                                                                                                                        |                             |                                        | pins.                              |                             |                                  |  |
|              | 1 = TX starts a                                                                                                                                                               | s digital high during                                                                                                                                  | g Precharge                 | e stage                                |                                    |                             |                                  |  |
|              | 0 = TX starts a                                                                                                                                                               | s digital low during                                                                                                                                   | Precharge                   | stage                                  |                                    |                             |                                  |  |
| Note 1:      | If precharge is enabl<br>Charge Share. If pre<br>set.                                                                                                                         | led (ADxPRE! = '00<br>charge is disabled                                                                                                               | 00000'), the<br>, then Guar | en Guard A sw<br>d A switches p        | itches polarity<br>olarity as soor | at the start on as the GO/I | of Acquisition /<br>DONEx bit is |  |
| 2:           | Output function "B" i switch polarity at the                                                                                                                                  | Output function "B" is constant throughout all stages of the conversion cycle. In a dual sample setup it wi switch polarity at the start of precharge. |                             |                                        | ole setup it will                  |                             |                                  |  |
| 3:           | The corresponding 1                                                                                                                                                           | rRISx,x bit must be                                                                                                                                    | e set to '0' to             | o enable outpu                         | t.                                 |                             |                                  |  |
| 4:           | When the ADxDSEN = 1 and ADxIPEN = 1; the polarity of this output is inverted for the second conversion time. The stored bit value does not change.                           |                                                                                                                                                        |                             |                                        | cond conver-                       |                             |                                  |  |
| 5:           | Outputs are maintair                                                                                                                                                          | ned while ADxON =                                                                                                                                      | = 1.                        |                                        |                                    |                             |                                  |  |

# REGISTER 16-12: ADxGRD: HARDWARE CVD GUARD RING CONTROL REGISTER

6: ADxGRD pin locations are selectable in APFCON, Register 3-9.





#### 20.2.1 SPI MODE REGISTERS

The MSSPx module has five registers for SPI mode operation. These are:

- MSSPx STATUS register (SSPxSTAT)
- MSSPx Control register 1 (SSPxCON1)
- MSSPx Control register 3 (SSPxCON3)
- MSSPx Data Buffer register (SSPxBUF)
- MSSPx Address register (SSPxADD)
- MSSPx Shift register (SSPxSR) (Not directly accessible)

SSPxCON1 and SSPxSTAT are the control and STATUS registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower six bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

In one SPI master mode, SSPxADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section 20.7 "Baud Rate Generator"**.

SSPxSR is the shift register used for shifting data in and out. SSPxBUF provides indirect access to the SSPxSR register. SSPxBUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSPxSR and SSPxBUF together create a buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

#### 20.2.2 SPI MODE OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPxCON1<5:0> and SSPxSTAT<7:6>). These control bits allow the following to be specified:

- · Master mode (SCKx is the clock output)
- Slave mode (SCKx is the clock input)
- Clock Polarity (Idle state of SCKx)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCKx)
- Clock Rate (Master mode only)
- · Slave Select mode (Slave mode only)

To enable the serial port, SSPx Enable bit, SSPEN of the SSPxCON1 register, must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPxCONx registers and then set the SSPEN bit. This configures the SDIx, SDOx, SCKx and SSx pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:

- · SDIx must have corresponding TRIS bit set
- SDOx must have corresponding TRIS bit cleared
- SCKx (Master mode) must have corresponding TRIS bit cleared
- SCKx (Slave mode) must have corresponding TRIS bit set
- SSx must have corresponding TRIS bit set

#### 20.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time because it controls the SCKx line. The master determines when the slave (Processor 2, Figure 20-5) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDOx output could be disabled (programmed as an input). The SSPxSR register will continue to shift in the signal present on the SDIx pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and Status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSPxCON1 register and the CKE bit of the SSPxSTAT register. This then, would give waveforms for SPI communication as shown in Figure 20-6, Figure 20-8, Figure 20-9 and Figure 20-10, where the MSb is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- · Fosc/4 (or Tcy)
- Fosc/16 (or 4 \* Tcy)
- Fosc/64 (or 16 \* Tcy)
- · Timer2 output/2
- Fosc/(4 \* (SSPxADD + 1))

Figure 20-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDOx data is valid before there is a clock edge on SCKx. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.



FIGURE 20-6: SPI MODE WAVEFORM (MASTER MODE)

### 20.6.4 I<sup>2</sup>C MASTER MODE START CONDITION TIMING

To initiate a Start condition (Figure 20-26), the user sets the Start Enable bit, SEN bit of the SSPxCON2 register. If the SDAx and SCLx pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and starts its count. If SCLx and SDAx are both sampled high when the Baud Rate Generator times out (TBRG), the SDAx pin is driven low. The action of the SDAx being driven low while SCLx is high is the Start condition and causes the S bit of the SSPxSTAT1 register to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPxCON2 register will be automatically cleared by hardware; the Baud Rate Generator is suspended, leaving the SDAx line held low and the Start condition is complete.

- Note 1: If at the beginning of the Start condition, the SDAx and SCLx pins are already sampled low, or if during the Start condition, the SCLx line is sampled low before the SDAx line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLxIF, is set, the Start condition is aborted and the I<sup>2</sup>C module is reset into its Idle state.
  - **2:** The Philips I<sup>2</sup>C Specification states that a bus collision cannot occur on a Start.



### FIGURE 20-26: FIRST START BIT TIMING

| R/C/HS-0/0       | R/C/HS-0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R/W-0/0                                                                                                                                                       | R/W-0/0                                                                                                                                                   | R/W-0/0                                                                                                                  | R/W-0/0                                                                                                                    | R/W-0/0                                                                                     | R/W-0/0                                                                           |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| WCOL             | SSPxOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SSPEN                                                                                                                                                         | CKP                                                                                                                                                       |                                                                                                                          | SSPM                                                                                                                       | <3:0>                                                                                       |                                                                                   |
| bit 7            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                               |                                                                                                                                                           |                                                                                                                          |                                                                                                                            |                                                                                             | bit 0                                                                             |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                               |                                                                                                                                                           |                                                                                                                          |                                                                                                                            |                                                                                             |                                                                                   |
| Legend:          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                               |                                                                                                                                                           |                                                                                                                          |                                                                                                                            |                                                                                             |                                                                                   |
| R = Readable     | bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W = Writable                                                                                                                                                  | bit                                                                                                                                                       | U = Unimplemented bit, read as '0'                                                                                       |                                                                                                                            |                                                                                             |                                                                                   |
| u = Bit is uncha | anged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x = Bit is unknown                                                                                                                                            |                                                                                                                                                           | -n/n = Value at POR and BOR/Value at all other Resets                                                                    |                                                                                                                            |                                                                                             |                                                                                   |
| '1' = Bit is set |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | '0' = Bit is cleared                                                                                                                                          |                                                                                                                                                           | HS = Bit is set by hardware C = User cleared                                                                             |                                                                                                                            |                                                                                             |                                                                                   |
| bit 7            | WCOL: Write<br>Master mode:<br>1 = A write to<br>mission t<br>0 = No collisi<br>Slave mode:<br>1 = The SSP:<br>ware)<br>0 = No collisi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Collision Dete<br>the SSPxBUF<br>o be started<br>on<br>xBUF register is<br>on                                                                                 | ct bit<br>register was a<br>s written while                                                                                                               | attempted while<br>it is still transmit                                                                                  | e the I <sup>2</sup> C conditions<br>ting the previous                                                                     | ons were not va<br>word (must be                                                            | alid for a trans-<br>cleared in soft-                                             |
| bit 6            | SSPxOV: Red<br>In SPI mode:<br>1 = A new by<br>flow, the c<br>read the S<br>flow bit is<br>register (r<br>0 = No overfil<br>In I <sup>2</sup> C mode:<br>1 = A byte is<br>"don't car<br>0 = No overfil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ceive Overflow<br>te is received w<br>data in SSPxSR<br>SSPxBUF, ever<br>not set since ea<br>must be cleared<br>ow<br>received while<br>re" in Transmit<br>ow | Indicator bit <sup>(1</sup><br>while the SSPx<br>is lost. Overflo<br>if only transm<br>ach new recep<br>I in software).<br>the the SSPxBI<br>mode (must b | BUF register is a<br>bw can only occu<br>itting data, to av<br>otion (and transr<br>JF register is s<br>be cleared in sc | still holding the p<br>ir in Slave mode.<br>oid setting overfl<br>nission) is initiate<br>still holding the p<br>oftware). | revious data. Ir<br>In Slave mode,<br>ow. In Master n<br>ed by writing to<br>previous byte. | a case of over-<br>the user must<br>node, the over-<br>the SSPxBUF<br>SSPxOV is a |
| bit 5            | <b>SSPEN:</b> Sync<br>In both mode:<br>In SPI mode:<br>1 = Enables s<br>0 = Disables<br>In I2C mode:<br>1 = Enables t<br>0 = Disables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | chronous Seria<br>s, when enable<br>serial port and c<br>serial port and<br>he serial port ar<br>serial port and                                              | I Port Enable<br>ed, these pins<br>onfigures SCk<br>configures th<br>nd configures th<br>configures th                                                    | bit<br>must be prope<br>(x, SDOx, SDIx<br>lese pins as I/C<br>he SDAx and Si<br>lese pins as I/C                         | rly configured as<br>and SSx as the s<br>port pins<br>CLx pins as the s<br>port pins                                       | s input or outpo<br>source of the se<br>source of the se                                    | ut<br>rial port pins <sup>(2)</sup><br>rial port pins <sup>(3)</sup>              |
| bit 4            | <b>CKP:</b> Clock F<br>In SPI mode:<br>1 = Idle state<br>0 = Idle state<br>I = Idle state<br>1 = Idle state<br>I = Idle state | Polarity Select b<br>for clock is a h<br>for clock is a lo<br><u>node:</u><br>control<br>ock<br>ck low (clock st<br><u>mode:</u><br>s mode                    | bit<br>igh level<br>ow level<br>tretch). (Used                                                                                                            | to ensure data                                                                                                           | setup time.)                                                                                                               |                                                                                             |                                                                                   |

# REGISTER 20-2: SSPxCON1: SSPx CONTROL REGISTER 1

### REGISTER 20-2: SSPxCON1: SSPx CONTROL REGISTER 1 (CONTINUED)

- bit 3-0 SSPM<3:0>: Synchronous Serial Port Mode Select bits 1111 =  $I^2C$  Slave mode, 10-bit address with Start and Stop bit interrupts enabled  $1110 = I^2C$  Slave mode, 7-bit address with Start and Stop bit interrupts enabled 1101 = Reserved 1100 = Reserved  $1011 = I^2C$  firmware controlled Master mode (Slave idle) 1010 = SPI Master mode, clock = Fosc/(4 \* (SSPxADD+1))<sup>(5)</sup> 1001 = Reserved  $1000 = I^2C$  Master mode, clock = Fosc/(4 \* (SSPxADD+1))<sup>(4)</sup> 0111 = I<sup>2</sup>C Slave mode, 10-bit address  $0110 = I^2C$  Slave mode, 7-bit address 0101 = SPI Slave mode, clock = SCKx pin, SSx pin control disabled, SSx can be used as I/O pin 0100 = SPI Slave mode, clock = SCKx pin, SSx pin control enabled 0011 = SPI Master mode, clock = TMR2 output/2 0010 = SPI Master mode, clock = Fosc/64 0001 = SPI Master mode, clock = Fosc/16
  - 0000 = SPI Master mode, clock = Fosc/4
- **Note 1:** In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPxBUF register.
  - 2: When enabled, these pins must be properly configured as input or output.
  - 3: When enabled, the SDAx and SCLx pins must be configured as inputs.
  - 4: SSPxADD values of 0, 1 or 2 are not supported for I<sup>2</sup>C mode.
  - **5:** SSPxADD value of '0' is not supported. Use SSPM = 0000 instead.

| DECFSZ           | Decrement f, Skip if 0                                                                                                                                                                                                                                                                                                               |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] DECFSZ f,d                                                                                                                                                                                                                                                                                                                   |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$                                                                                                                                                                                                                                                                      |
| Operation:       | (f) - 1 $\rightarrow$ (destination);<br>skip if result = 0                                                                                                                                                                                                                                                                           |
| Status Affected: | None                                                                                                                                                                                                                                                                                                                                 |
| Description:     | The contents of register 'f' are decre-<br>mented. If 'd' is '0', the result is placed<br>in the W register. If 'd' is '1', the result<br>is placed back in register 'f'.<br>If the result is '1', the next instruction is<br>executed. If the result is '0', then a<br>NOP is executed instead, making it a<br>2-cycle instruction. |

| GOTO             | Unconditional Branch                                                                                                                                                                    |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] GOTO k                                                                                                                                                                 |
| Operands:        | $0 \leq k \leq 2047$                                                                                                                                                                    |
| Operation:       | $k \rightarrow PC<10:0>$<br>PCLATH<6:3> $\rightarrow$ PC<14:11>                                                                                                                         |
| Status Affected: | None                                                                                                                                                                                    |
| Description:     | GOTO is an unconditional branch. The<br>11-bit immediate value is loaded into<br>PC bits <10:0>. The upper bits of PC<br>are loaded from PCLATH<4:3>. GOTO<br>is a 2-cycle instruction. |

| INCFSZ           | Increment f, Skip if 0                                                                                                                                                                                                                                                                                                          |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] INCFSZ f,d                                                                                                                                                                                                                                                                                                              |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d \ \in \ [0,1] \end{array}$                                                                                                                                                                                                                                                             |
| Operation:       | (f) + 1 $\rightarrow$ (destination),<br>skip if result = 0                                                                                                                                                                                                                                                                      |
| Status Affected: | None                                                                                                                                                                                                                                                                                                                            |
| Description:     | The contents of register 'f' are incre-<br>mented. If 'd' is '0', the result is placed<br>in the W register. If 'd' is '1', the result<br>is placed back in register 'f'.<br>If the result is '1', the next instruction is<br>executed. If the result is '0', a NOP is<br>executed instead, making it a 2-cycle<br>instruction. |

| IORLW            | Inclusive OR literal with W                                                                                        |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------|--|--|
| Syntax:          | [label] IORLW k                                                                                                    |  |  |
| Operands:        | $0 \leq k \leq 255$                                                                                                |  |  |
| Operation:       | (W) .OR. $k \rightarrow$ (W)                                                                                       |  |  |
| Status Affected: | Z                                                                                                                  |  |  |
| Description:     | The contents of the W register are<br>OR'ed with the 8-bit literal 'k'. The<br>result is placed in the W register. |  |  |

| INCF             | Increment f                                                                                                                                                               |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Syntax:          | [label] INCF f,d                                                                                                                                                          |  |  |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in  [0,1] \end{array}$                                                                                                         |  |  |
| Operation:       | (f) + 1 $\rightarrow$ (destination)                                                                                                                                       |  |  |
| Status Affected: | Z                                                                                                                                                                         |  |  |
| Description:     | The contents of register 'f' are incre-<br>mented. If 'd' is '0', the result is placed<br>in the W register. If 'd' is '1', the result<br>is placed back in register 'f'. |  |  |

| IORWF            | Inclusive OR W with f                                                                                                                                                      |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Syntax:          | [label] IORWF f,d                                                                                                                                                          |  |  |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$                                                                                                            |  |  |
| Operation:       | (W) .OR. (f) $\rightarrow$ (destination)                                                                                                                                   |  |  |
| Status Affected: | Z                                                                                                                                                                          |  |  |
| Description:     | Inclusive OR the W register with regis-<br>ter 'f'. If 'd' is '0', the result is placed in<br>the W register. If 'd' is '1', the result is<br>placed back in register 'f'. |  |  |

| LSLF             | Logical Left Shift                                                                                                                                                                                                                  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ]LSLF f{,d}                                                                                                                                                                                                          |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in \left[0,1\right] \end{array}$                                                                                                                                                         |
| Operation:       | $(f<7>) \rightarrow C$<br>$(f<6:0>) \rightarrow dest<7:1>$<br>$0 \rightarrow dest<0>$                                                                                                                                               |
| Status Affected: | C, Z                                                                                                                                                                                                                                |
| Description:     | The contents of register 'f' are shifted<br>one bit to the left through the Carry flag.<br>A '0' is shifted into the LSb. If 'd' is '0',<br>the result is placed in W. If 'd' is '1', the<br>result is stored back in register 'f'. |
|                  | C ← register f ← 0                                                                                                                                                                                                                  |

| LSRF             | Logical Right Shift                                                                                                                                                                                                                  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ]LSRF f{,d}                                                                                                                                                                                                           |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in  [0,1] \end{array}$                                                                                                                                                                    |
| Operation:       | $\begin{array}{l} 0 \rightarrow dest < 7 > \\ (f < 7:1 >) \rightarrow dest < 6:0 >, \\ (f < 0 >) \rightarrow C, \end{array}$                                                                                                         |
| Status Affected: | C, Z                                                                                                                                                                                                                                 |
| Description:     | The contents of register 'f' are shifted<br>one bit to the right through the Carry<br>flag. A '0' is shifted into the MSb. If 'd' is<br>'0', the result is placed in W. If 'd' is '1',<br>the result is stored back in register 'f'. |
|                  | 0 → register f → C                                                                                                                                                                                                                   |

| MOVF             | Move f                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Syntax:          | [label] MOVF f,d                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Operands:        | $\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Operation:       | $(f) \rightarrow (dest)$                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| Status Affected: | Z                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| Description:     | The contents of register f is moved to<br>a destination dependent upon the<br>status of d. If $d = 0$ , destination is W<br>register. If $d = 1$ , the destination is file<br>register f itself. $d = 1$ is useful to test a<br>file register since status flag Z is<br>affected. |  |  |  |  |  |  |
| Words:           | 1                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| Cycles:          | 1                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| Example:         | MOVF FSR, 0                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|                  | After Instruction<br>W = value in FSR register<br>Z = 1                                                                                                                                                                                                                           |  |  |  |  |  |  |

| MOVIW            | Move INDFn to W                                                                                                                                                                                                                                                                                                                                                                  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] MOVIW ++FSRn<br>[ <i>label</i> ] MOVIWFSRn<br>[ <i>label</i> ] MOVIW FSRn++<br>[ <i>label</i> ] MOVIW FSRn<br>[ <i>label</i> ] MOVIW k[FSRn]                                                                                                                                                                                                                    |
| Operands:        | n ∈ [0,1]<br>mm ∈ [00,01,10,11]<br>-32 ≤ k ≤ 31                                                                                                                                                                                                                                                                                                                                  |
| Operation:       | $\begin{split} &\text{INDFn} \rightarrow W \\ &\text{Effective address is determined by} \\ &\text{• FSR + 1 (preincrement)} \\ &\text{• FSR - 1 (predecrement)} \\ &\text{• FSR + k (relative offset)} \\ &\text{After the Move, the FSR value will be either:} \\ &\text{• FSR + 1 (all increments)} \\ &\text{• FSR - 1 (all decrements)} \\ &\text{• Unchanged} \end{split}$ |
| Status Affected: | Z                                                                                                                                                                                                                                                                                                                                                                                |

| Mode          | Syntax | mm |
|---------------|--------|----|
| Preincrement  | ++FSRn | 00 |
| Predecrement  | FSRn   | 01 |
| Postincrement | FSRn++ | 10 |
| Postdecrement | FSRn   | 11 |

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

**Note:** The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

#### MOVLB Move literal to BSR

| Syntax:          | [ <i>label</i> ]MOVLB k                                                 |  |  |  |
|------------------|-------------------------------------------------------------------------|--|--|--|
| Operands:        | $0 \leq k \leq 31$                                                      |  |  |  |
| Operation:       | $k \rightarrow BSR$                                                     |  |  |  |
| Status Affected: | None                                                                    |  |  |  |
| Description:     | The 5-bit literal 'k' is loaded into the<br>Bank Select Register (BSR). |  |  |  |

| MOVLP            | Move literal to PCLATH                                                                         |  |  |  |  |  |  |
|------------------|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Syntax:          | [ <i>label</i> ]MOVLP k                                                                        |  |  |  |  |  |  |
| Operands:        | $0 \le k \le 127$                                                                              |  |  |  |  |  |  |
| Operation:       | $k \rightarrow PCLATH$                                                                         |  |  |  |  |  |  |
| Status Affected: | None                                                                                           |  |  |  |  |  |  |
| Description:     | The 7-bit literal 'k' is loaded into the PCLATH register.                                      |  |  |  |  |  |  |
| MOVLW            | Move literal to W                                                                              |  |  |  |  |  |  |
| Syntax:          | [ <i>label</i> ] MOVLW k                                                                       |  |  |  |  |  |  |
| Operands:        | $0 \leq k \leq 255$                                                                            |  |  |  |  |  |  |
| Operation:       | $k \rightarrow (W)$                                                                            |  |  |  |  |  |  |
| Status Affected: | None                                                                                           |  |  |  |  |  |  |
| Description:     | The 8-bit literal 'k' is loaded into W reg-<br>ister. The "don't cares" will assemble as '0's. |  |  |  |  |  |  |
| Words:           | 1                                                                                              |  |  |  |  |  |  |
| Cycles:          | 1                                                                                              |  |  |  |  |  |  |
| Example:         | MOVLW 0x5A                                                                                     |  |  |  |  |  |  |
|                  | After Instruction<br>W = 0x5A                                                                  |  |  |  |  |  |  |
| MOVWF            | Move W to f                                                                                    |  |  |  |  |  |  |
| Syntax:          | [ <i>label</i> ] MOVWF f                                                                       |  |  |  |  |  |  |
| Operands:        | 0 < f < 127                                                                                    |  |  |  |  |  |  |

| Oyntax.          |                                                                                                           |  |  |  |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Operands:        | $0 \leq f \leq 127$                                                                                       |  |  |  |  |  |  |  |
| Operation:       | $(W) \to (f)$                                                                                             |  |  |  |  |  |  |  |
| Status Affected: | None                                                                                                      |  |  |  |  |  |  |  |
| Description:     | Move data from W register to register 'f'.                                                                |  |  |  |  |  |  |  |
| Words:           | 1                                                                                                         |  |  |  |  |  |  |  |
| Cycles:          | 1                                                                                                         |  |  |  |  |  |  |  |
| Example:         | MOVWF OPTION_REG                                                                                          |  |  |  |  |  |  |  |
|                  | Before Instruction<br>OPTION_REG = 0xFF<br>W = 0x4F<br>After Instruction<br>OPTION_REG = 0x4F<br>W = 0x4F |  |  |  |  |  |  |  |



#### FIGURE 25-2: POR AND POR REARM WITH SLOW RISING VDD

## TABLE 25-2: SUPPLY CURRENT (IDD)

| PIC16LF1566/1567                       |                 | $\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$ |       |       |            |     |                                         |
|----------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------------|-----|-----------------------------------------|
| Param. Device                          |                 | Typ +                                                                                                                                                                                                                                                        | Mox   | Unite | Conditions |     |                                         |
| No.                                    | Characteristics |                                                                                                                                                                                                                                                              | тур.т |       | Units      | VDD | Note                                    |
| Supply Current (IDD) <sup>(1, 2)</sup> |                 |                                                                                                                                                                                                                                                              |       |       |            |     |                                         |
| D010                                   |                 | _                                                                                                                                                                                                                                                            | 2.5   | 18    | μA         | 1.8 | Fosc = 31 kHz                           |
|                                        |                 |                                                                                                                                                                                                                                                              | 4     | 20    | μA         | 3.0 | LFINTOSC mode                           |
| D011                                   |                 |                                                                                                                                                                                                                                                              | 0.35  | 0.70  | mA         | 1.8 | Fosc = 8 MHz                            |
|                                        |                 |                                                                                                                                                                                                                                                              | 0.55  | 1.10  | mA         | 3.0 | HFINTOSC mode                           |
| D012                                   |                 |                                                                                                                                                                                                                                                              | 0.5   | 1.2   | mA         | 1.8 | Fosc = 16 MHz                           |
|                                        |                 |                                                                                                                                                                                                                                                              | 0.8   | 1.75  | mA         | 3.0 | HFINTOSC mode                           |
| D013                                   |                 | —                                                                                                                                                                                                                                                            | 1.5   | 3.5   | mA         | 3.0 | Fosc = 32 MHz<br>HFINTOSC mode with PLL |
| D014                                   |                 |                                                                                                                                                                                                                                                              | 3     | 17    | μA         | 1.8 | Fosc = 32 kHz                           |
|                                        |                 |                                                                                                                                                                                                                                                              | 5     | 20    | μA         | 3.0 | ECL mode                                |
| D015                                   |                 | _                                                                                                                                                                                                                                                            | 12    | 40    | μA         | 1.8 | Fosc = 500 kHz                          |
|                                        |                 | —                                                                                                                                                                                                                                                            | 18    | 60    | μA         | 3.0 | ECL mode                                |
| D016                                   |                 | —                                                                                                                                                                                                                                                            | 25    | 65    | μA         | 1.8 | Fosc = 1 MHz                            |
|                                        |                 | _                                                                                                                                                                                                                                                            | 40    | 100   | μA         | 3.0 | ECM mode                                |

† Data in "Typ." column is at 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

**Note 1:** The test conditions for all IDD measurements in active operation mode are: CLKIN = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

# 27.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

# 27.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel<sup>®</sup> standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

# 27.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

# 27.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

# 28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging





|                          | MILLIMETERS |           |          |      |  |  |
|--------------------------|-------------|-----------|----------|------|--|--|
| Dimensior                | n Limits    | MIN       | NOM      | MAX  |  |  |
| Number of Pins           | N           | 28        |          |      |  |  |
| Pitch                    | е           |           | 1.27 BSC |      |  |  |
| Overall Height           | A           | -         | -        | 2.65 |  |  |
| Molded Package Thickness | A2          | 2.05      | -        | -    |  |  |
| Standoff §               | A1          | 0.10      | -        | 0.30 |  |  |
| Overall Width            | E           | 10.30 BSC |          |      |  |  |
| Molded Package Width     | E1          | 7.50 BSC  |          |      |  |  |
| Overall Length           | D           | 17.90 BSC |          |      |  |  |
| Chamfer (Optional)       | h           | 0.25      | -        | 0.75 |  |  |
| Foot Length              | L           | 0.40      | -        | 1.27 |  |  |
| Footprint                | L1          | 1.40 REF  |          |      |  |  |
| Lead Angle               | Θ           | 0°        | -        | -    |  |  |
| Foot Angle               | φ           | 0°        | -        | 8°   |  |  |
| Lead Thickness           | С           | 0.18      | -        | 0.33 |  |  |
| Lead Width               | b           | 0.31      | -        | 0.51 |  |  |
| Mold Draft Angle Top     | α           | 5°        | _        | 15°  |  |  |
| Mold Draft Angle Bottom  | β           | 5°        | _        | 15°  |  |  |

#### Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5 Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2