

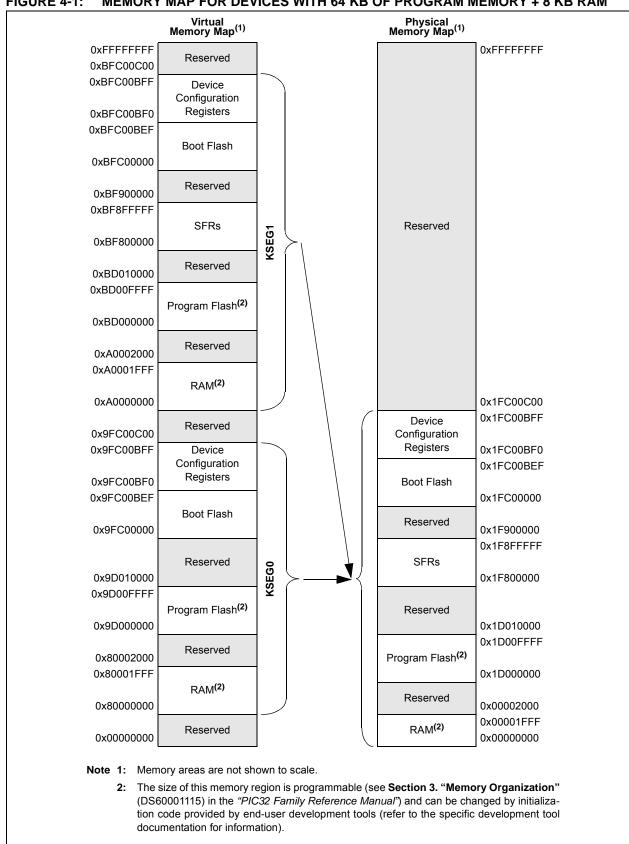
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx120f064ht-v-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

FIGURE 4-1: MEMORY MAP FOR DEVICES WITH 64 KB OF PROGRAM MEMORY + 8 KB RAM

Interrupt Source ⁽¹⁾ IRQ # Vector Interrupt Bit Location								
	IRQ #	#	Flag	Enable	Priority	Sub-priority	Interrupt	
CNA – PORTA Input Change Interrupt	44	33	IFS1<12>	IEC1<12>	IPC8<12:10>	IPC8<9:8>	Yes	
CNB – PORTB Input Change Interrupt	45	33	IFS1<13>	IEC1<13>	IPC8<12:10>	IPC8<9:8>	Yes	
CNC – PORTC Input Change Interrupt	46	33	IFS1<14>	IEC1<14>	IPC8<12:10>	IPC8<9:8>	Yes	
CND – PORTD Input Change Interrupt	47	33	IFS1<15>	IEC1<15>	IPC8<12:10>	IPC8<9:8>	Yes	
CNE – PORTE Input Change Interrupt	48	33	IFS1<16>	IEC1<16>	IPC8<12:10>	IPC8<9:8>	Yes	
CNF – PORTF Input Change Interrupt	49	33	IFS1<17>	IEC1<17>	IPC8<12:10>	IPC8<9:8>	Yes	
CNG – PORTG Input Change Interrupt	50	33	IFS1<18>	IEC1<18>	IPC8<12:10>	IPC8<9:8>	Yes	
PMP – Parallel Master Port	51	34	IFS1<19>	IEC1<19>	IPC8<20:18>	IPC8<17:16>	Yes	
PMPE – Parallel Master Port Error	52	34	IFS1<20>	IEC1<20>	IPC8<20:18>	IPC8<17:16>	Yes	
SPI2E – SPI2 Fault	53	35	IFS1<21>	IEC1<21>	IPC8<28:26>	IPC8<25:24>	Yes	
SPI2RX – SPI2 Receive Done	54	35	IFS1<22>	IEC1<22>	IPC8<28:26>	IPC8<25:24>	Yes	
SPI2TX – SPI2 Transfer Done	55	35	IFS1<23>	IEC1<23>	IPC8<28:26>	IPC8<25:24>	Yes	
U2E – UART2 Error	56	36	IFS1<24>	IEC1<24>	IPC9<4:2>	IPC9<1:0>	Yes	
U2RX – UART2 Receiver	57	36	IFS1<25>	IEC1<25>	IPC9<4:2>	IPC9<1:0>	Yes	
U2TX – UART2 Transmitter	58	36	IFS1<26>	IEC1<26>	IPC9<4:2>	IPC9<1:0>	Yes	
I2C2B – I2C2 Bus Collision Event	59	37	IFS1<27>	IEC1<27>	IPC9<12:10>	IPC9<9:8>	Yes	
I2C2S – I2C2 Slave Event	60	37	IFS1<28>	IEC1<28>	IPC9<12:10>	IPC9<9:8>	Yes	
I2C2M – I2C2 Master Event	61	37	IFS1<29>	IEC1<29>	IPC9<12:10>	IPC9<9:8>	Yes	
U3E – UART3 Error	62	38	IFS1<30>	IEC1<30>	IPC9<20:18>	IPC9<17:16>	Yes	
U3RX – UART3 Receiver	63	38	IFS1<31>	IEC1<31>	IPC9<20:18>	IPC9<17:16>	Yes	
U3TX – UART3 Transmitter	64	38	IFS2<0>	IEC2<0>	IPC9<20:18>	IPC9<17:16>	Yes	
U4E – UART4 Error	65	39	IFS2<1>	IEC2<1>	IPC9<28:26>	IPC9<25:24>	Yes	
U4RX – UART4 Receiver	66	39	IFS2<2>	IEC2<2>	IPC9<28:26>	IPC9<25:24>	Yes	
U4TX – UART4 Transmitter	67	39	IFS2<3>	IEC2<3>	IPC9<28:26>	IPC9<25:24>	Yes	
U5E – UART5 Error ⁽²⁾	68	40	IFS2<4>	IEC2<4>	IPC10<4:2>	IPC10<1:0>	Yes	
U5RX – UART5 Receiver ⁽²⁾	69	40	IFS2<5>	IEC2<5>	IPC10<4:2>	IPC10<1:0>	Yes	
U5TX – UART5 Transmitter ⁽²⁾	70	40	IFS2<6>	IEC2<6>	IPC10<4:2>	IPC10<1:0>	Yes	
CTMU – CTMU Event ⁽²⁾	71	41	IFS2<7>	IEC2<7>	IPC10<12:10>	IPC10<9:8>	Yes	
DMA0 – DMA Channel 0	72	42	IFS2<8>	IEC2<8>	IPC10<20:18>	IPC10<17:16>	No	
DMA1 – DMA Channel 1	73	43	IFS2<9>	IEC2<9>	IPC10<28:26>	IPC10<25:24>	No	
DMA2 – DMA Channel 2	74	44	IFS2<10>	IEC2<10>	IPC11<4:2>	IPC11<1:0>	No	
DMA3 – DMA Channel 3	75	45	IFS2<11>	IEC2<11>	IPC11<12:10>	IPC11<9:8>	No	
CMP3 – Comparator 3 Interrupt	76	46	IFS2<12>	IEC2<12>	IPC11<20:18>	IPC11<17:16>	No	
CAN1 – CAN1 Event	77	47	IFS2<13>	IEC2<13>	IPC11<28:26>	IPC11<25:24>	Yes	
SPI3E – SPI3 Fault	78	48	IFS2<14>	IEC2<14>	IPC12<4:2>	IPC12<1:0>	Yes	
SPI3RX – SPI3 Receive Done	79	48	IFS2<15>	IEC2<15>	IPC12<4:2>	IPC12<1:0>	Yes	
SPI3TX – SPI3 Transfer Done	80	48	IFS2<16>	IEC2<16>	IPC12<4:2>	IPC12<1:0>	Yes	
SPI4E – SPI4 Fault ⁽²⁾	81	49	IFS2<17>	IEC2<17>	IPC12<12:10>	IPC12<9:8>	Yes	
SPI4RX – SPI4 Receive Done ⁽²⁾	82	49	IFS2<18>	IEC2<18>	IPC12<12:10>	IPC12<9:8>	Yes	
SPI4TX – SPI4 Transfer Done ⁽²⁾	83	49	IFS2<19>	IEC2<19>	IPC12<12:10>	IPC12<9:8>	Yes	
	•	Lowe	st Natural Or	der Priority				

TABLE 5-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX1XX/2XX/5XX 64/100-pin Controller Family Features" for the list of available peripherals.

2: This interrupt source is not available on 64-pin devices.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	31:24	_	—	_	—	_	—	_	—
Image: Normal system Image: No	00:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8 WR WREN ⁽¹⁾ WRERR ⁽²⁾ LVDERR ⁽²⁾ LVDSTAT ⁽²⁾ — _ _ _ _ _ _ _ _ _ _ _ _ _ <td>23.10</td> <td>—</td> <td>—</td> <td>—</td> <td>—</td> <td>_</td> <td>—</td> <td>—</td> <td>—</td>	23.10	—	—	—	—	_	—	—	—
WR WREN'' WRER'' LVDERR'' LVDSTAT'' — Image: Main Main Main Main Main Main Main Main	45.0	R/W-0	R/W-0	R-0	R-0	-		U-0	U-0
	15:8	WR	WREN ⁽¹⁾	WRERR ⁽²⁾	LVDERR ⁽²⁾	LVDSTAT ⁽²⁾		_	—
1.0 — — — — NVMOP<3:0>	7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	7:0	_	—	-	—		NVMOF	P<3:0>	

REGISTER 6-1: NVMCON: PROGRAMMING CONTROL REGISTER

Legend:

Logonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16	Unimplemented: Read as '0'
bit 15	WR: Write Control bit
	This bit is writable when WREN = 1 and the unlock sequence is followed.
	1 = Initiate a Flash operation. Hardware clears this bit when the operation completes
	0 = Flash operation complete or inactive
bit 14	WREN: Write Enable bit ⁽¹⁾
	1 = Enable writes to WR bit and enables LVD circuit
	0 = Disable writes to WR bit and disables LVD circuit
	This is the only bit in this register reset by a device Reset.
bit 13	WRERR: Write Error bit ⁽²⁾
	This bit is read-only and is automatically set by hardware.
	1 = Program or erase sequence did not complete successfully
	0 = Program or erase sequence completed normally
bit 12	LVDERR: Low-Voltage Detect Error bit (LVD circuit must be enabled) ⁽²⁾
	This bit is read-only and is automatically set by hardware.
	1 = Low-voltage detected (possible data corruption, if WRERR is set)
	0 = Voltage level is acceptable for programming
bit 11	LVDSTAT: Low-Voltage Detect Status bit (LVD circuit must be enabled) ⁽²⁾
	This bit is read-only and is automatically set, and cleared, by hardware.
	1 = Low-voltage event active
	0 = Low-voltage event NOT active
bit 10-4	Unimplemented: Read as '0'
bit 3-0	NVMOP<3:0>: NVM Operation bits
	These bits are writable when WREN = 0 .
	1111 =Reserved
	•
	•
	•
	0111 = Reserved
	0110 =No operation 0101 =Program Flash (PFM) erase operation: erases PFM, if all pages are not write-protected
	0100 =Page erase operation: erases page selected by NVMADDR, if it is not write-protected
	0011 =Row program operation: programs row selected by NVMADDR, if it is not write-protected
	0010 =No operation
	0001 =Word program operation: programs word selected by NVMADDR, if it is not write-protected
	0000 = No operation
Note 1:	This bit is cleared by any reset (i.e., POR, BOR, WDT, MCLR, SWR).
-	

2: This bit is only cleared by setting NVMOP = 0000, and initiating a Flash WR operation or a POR. Any other kind of reset (i.e., BOR, WDT, MCLR) does not clear this bit.

8.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 6. "Oscillator Configuration" (DS60001112) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The PIC32MX1XX/2XX/5XX 64/100-pin oscillator system has the following modules and features:

- A Total of four external and internal oscillator options as clock sources
- On-Chip PLL with user-selectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-Chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Dedicated On-Chip PLL for USB peripheral

A block diagram of the oscillator system is provided in Figure 8-1.

NOTES:

TABLE 11-8: PORTD REGISTER MAP FOR 64-PIN DEVICES ONLY

ess										В	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6300	ANSELD	31:16	_	_	—	_		—	—		_	—	_	_	—	_	—	—	0000
0000	THOLLD	15:0	—	—	—	—			—	_	_	—	_		ANSELD3	ANSELD2	ANSELD1	—	000E
6310	TRISD	31:16	—	—	—	—	—		—	—	_		—	_		—			0000
0310	TRIOD	15:0	—	—	—	_	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	OFFF
5320	PORTD	31:16	—	_	_	_	_	_	—	_	_	_	_		_	—		_	0000
3320	TORID	15:0	—	—	—	_	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
6330	30 LATD	31:16	—	—	—	_	—	—	_	_	_	—	_	-	—	—	_	_	0000
0330	LAID	15:0	-	_	_	_	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
6340	ODCD	31:16	-	_	_	_		_	_			_			_	_	_	_	0000
0340	0 ODCD	15:0	Ι			-	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000
6350	CNPUD	31:16		_	-		—	—	_	—	—	—	—	—	—	_	_	—	0000
0330	CINFUD	15:0	-	_	_	_	CNPUD11	CNPUD10	CNPUD9	CNPUD8	CNPUD7	CNPUD6	CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUD0	0000
6360	CNPDD	31:16	-	_	_	_		_	_			_			_	_	_	_	0000
0300	CNFDD	15:0		_	-		CNPDD11	CNPDD10	CNPDD9	CNPDD8	CNPDD7	CNPDD6	CNPDD5	CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	0000
6270	CNCOND	31:16		_	-		—	—	_	—	—	—	—	—	—	_	_	—	0000
0370	CINCOIND	15:0	ON	_	SIDL		—	—	_	—	—	—	—	—	—	_	_	—	0000
6380	CNEND	31:16		_	-		—	—	_	—	—	—	—	—	—	_	_	—	0000
0300	CNEND	15:0	Ι	-	-	Ι	CNIED11	CNIED10	CNIED9	CNIED8	CNIED7	CNIED6	CNIED5	CNIED4	CNIED3	CNIED2	CNIED1	CNIED0	0000
		31:16	—	—	—	_	_	_	_	—	_	_	_	_	_	_		_	0000
6390	CNSTATD	15:0	_	_	_	-	CN STATD11	CN STATD10	CN STATD9	CN STATD8	CN STATD7	CN STATD6	CN STATD5	CN STATD4	CN STATD3	CN STATD2	CN STATD1	CN STATD0	0000

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. Legend:

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for Note 1: more information.

PIC32MX170F512H DEVICES ONLY																			
ess										Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6510	TRISF	31:16	—	_	—	_	—	_	_	—	-	—		_	_	_	—	—	0000
0010	INIO	15:0	—	_	_	_	_	_	-	_	_	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	007F
6520	PORTF	31:16	—	—	—		—	_					—		—	—	—	—	0000
0020	1 OKI	15:0	—	—	—		—	_	_			RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6530	LATF	31:16	—	_	_	_	_	_	-	_	_	—	—	-	—	_	—	—	0000
0000	L/(II	15:0	—	—	—		—	_	_			LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6540	ODCF	31:16	—	—	—	_	—	_	—		—		—	_	—	—	—	—	0000
0010	0201	15:0	—	—	—	_	—	_	—		—	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000
6550	CNPUF	31:16	—	_	—	—	—	—	_	—	_		—	—	—	—	—	—	0000
0000		15:0	—	_	—	—	—	—	_	—	_	CNPUF6	CNPUF5	CNPUF4	CNPUF3	CNPUF2	CNPUF1	CNPUF0	
6560	CNPDF	31:16	—	—	—	_	—	_	—		—		—	—	—	—	—	—	0000
	0.11 51	15:0	—	—	—	_	—	—	-	—	-	CNPDF6	CNPDF5	CNPDF4	CNPDF3	CNPDF2	CNPDF1	CNPDF0	0000
6570	CNCONF	31:16	—	—	—	_	—	—	-	—	-	—	—	—	—	—	—	—	0000
	0.10011	15:0	ON	—	SIDL	_	—	—	-	—	-	—	—	—	—	—	—	—	0000
6580	CNENF	31:16	—	—	—	_	—	—	-	—	-		—	—	—	—	—	—	0000
	-	15:0	—	—	—	_	—	—	-	—	-	CNIEF6	CNIEF5	CNIEF4	CNIEF3	CNIEF2	CNIEF1	CNIEF0	0000
		31:16	—	—	—	—	—	—	_	—	_		—	—	—	—	—	—	0000
6590	CNSTATF	15:0	—	—	—	-	—	-	-	—	_	CN STATF6	CN STATF5	CN STATF4	CN STATF3	CN STATF2	CN STATF1	CN STATF0	0000

TABLE 11-13: PORTF REGISTER MAP FOR PIC32MX120F064H, PIC32MX130F128H, PIC32MX150F256H, AND PIC32MX170F512H DEVICES ONLY

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

NOTES:

21.1 Control Registers

TABLE 21-1: RTCC REGISTER MAP

ess		6								l	Bits								s
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0200	RTCCON	31:16	_	_		—	_						CAL<	9:0>					0000
0200	RICCON	15:0	ON	_	SIDL	—	_	_		—	RTSECSEL	RTCCLKON	_	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000
0210	RTCALRM	31:16	—	_	_	—	_	_		—	_	—	_	_	—	—	—	—	0000
0210	RICALKI	15:0	ALRMEN	CHIME	PIV	ALRMSYNC	AMASK<3:0>						ARP1	۲<7:0>				0000	
0220	RTCTIME	31:16	HR10<3:0>				HR01<3:0>					MIN10<	3:0>			MIN01	<3:0>		xxxx
0220		15:0		SEC1	0<3:0>		SEC01<3:0>			_	—	_	_	—	—	—	—	xx00	
0230	RTCDATE	31:16		YEAR	10<3:0>		YEAR01<3:0>			MONTH10<3:0>			MONTH01<3:0>				xxxx		
0230	RIODALE	15:0		DAY1	0<3:0>			DAY01	1<3:0>		_	—	_	_		WDAY0	1<3:0>		xx00
0240	ALRMTIME	31:16		HR10	0<3:0>			HR01	<3:0>			MIN10<	3:0>			MIN01	<3:0>		xxxx
0240		15:0		SEC1	0<3:0>			SEC07	1<3:0>		_	—	_	_	—	—	—	—	xx00
0250	ALRMDATE	31:16	—	—	_	—	—	-	—	—		MONTH10	<3:0>			MONTH	01<3:0>		00xx
0200		15:0		DAY1	0<3:0>			DAY01	1<3:0>		—	—	_	_		WDAY0	1<3:0>		xx0x

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

31:24 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_	-							Bit 24/16/8/0
- - - - - CAL<9:8> 23:16 RW-0 U-0	21.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
23:16 CAL<7:0> 15:8 R/W-0 U-0 R/W-0 U-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0	31.24	—	—	_	—	—	—	CAL<9):8>
CAL<7:0> 15:8 R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 15:8 R/W-0 R-0 SIDL - <td>22.16</td> <td>R/W-0</td> <td>R/W-0</td> <td>R/W-0</td> <td>R/W-0</td> <td>R/W-0</td> <td>R/W-0</td> <td>R/W-0</td> <td>R/W-0</td>	22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8 ON ^(1,2) — SIDL — # # # # # # # #	23.10				CAL<	:7:0>			
ON(1,2) — SIDL — … <th…< td=""><td>15.0</td><td>R/W-0</td><td>U-0</td><td>R/W-0</td><td>U-0</td><td>U-0</td><td>U-0</td><td>U-0</td><td>U-0</td></th…<>	15.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
7.0	10.0	ON ^(1,2)	—	SIDL	—	—	—	—	-
^{7.0} RTSECSEL ⁽³⁾ RTCCLKON — RTCWREN ⁽⁴⁾ RTCSYNC HALFSEC ⁽⁵⁾ RTCOE	7.0		-	U-0		-	R-0	R-0	R/W-0
	7:0	RTSECSEL ⁽³⁾	RTCCLKON	_	_	RTCWREN ⁽⁴⁾	RTCSYNC	HALFSEC ⁽⁵⁾	RTCOE

REGISTER 21-1: RTCCON: RTC CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'	J
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-26 Unimplemented: Read as '0'

bit 25-16 CAL<9:0>: RTC Drift Calibration bits, which contain a signed 10-bit integer value 0111111111 = Maximum positive adjustment, adds 511 RTC clock pulses every one minute 000000001 = Minimum positive adjustment, adds 1 RTC clock pulse every one minute 000000000 = No adjustment 1111111111 = Minimum negative adjustment, subtracts 1 RTC clock pulse every one minute 100000000 = Maximum negative adjustment, subtracts 512 clock pulses every one minute ON: RTCC On bit^(1,2) bit 15 1 = RTCC module is enabled 0 = RTCC module is disabled bit 14 Unimplemented: Read as '0' bit 13 SIDL: Stop in Idle Mode bit 1 = Disables the PBCLK to the RTCC when CPU enters in Idle mode 0 = Continue normal operation in Idle mode Unimplemented: Read as '0' bit 12-8 bit 7 RTSECSEL: RTCC Seconds Clock Output Select bit⁽³⁾ 1 = RTCC Seconds Clock is selected for the RTCC pin 0 = RTCC Alarm Pulse is selected for the RTCC pin bit 6 RTCCLKON: RTCC Clock Enable Status bit 1 = RTCC Clock is actively running 0 = RTCC Clock is not running bit 5-4 Unimplemented: Read as '0' **Note 1:** The ON bit is only writable when RTCWREN = 1. 2: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. 3: Requires RTCOE = 1 (RTCCON<0>) for the output to be active. 4: The RTCWREN bit can be set only when the write sequence is enabled. 5: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>). Note: This register is reset only on a Power-on Reset (POR).

REGISTE	R 23-3:	C1INT: CAN INTERRUPT REGISTER (CONTINUED)
bit 14	1 = A bus	CAN Bus Activity Wake-up Interrupt Flag bit s wake-up activity interrupt has occurred s wake-up activity interrupt has not occurred
bit 13	1 = A CAI	CAN Bus Error Interrupt Flag bit N bus error has occurred N bus error has not occurred
bit 12	SERRIF:	System Error Interrupt Flag bit ⁽¹⁾
		tem error occurred (typically an illegal address was presented to the system bus) tem error has not occurred
bit 11	RBOVIF:	Receive Buffer Overflow Interrupt Flag bit
		eive buffer overflow has occurred eive buffer overflow has not occurred
bit 10-4	Unimpler	mented: Read as '0'
bit 3	MODIF: 0	CAN Mode Change Interrupt Flag bit
		N module mode change has occurred (OPMOD<2:0> has changed to reflect REQOP) N module mode change has not occurred
bit 2	CTMRIF:	CAN Timer Overflow Interrupt Flag bit
		N timer (CANTMR) overflow has occurred N timer (CANTMR) overflow has not occurred
bit 1	RBIF: Re	ceive Buffer Interrupt Flag bit
		eive buffer interrupt is pending eive buffer interrupt is not pending
bit 0	TBIF: Tra	nsmit Buffer Interrupt Flag bit
	1 = A tran	nsmit buffer interrupt is pending

- 0 = A transmit buffer interrupt is not pending
- **Note 1:** This bit can only be cleared by turning the CAN module Off and On by clearing or setting the ON bit (C1CON<15>).

REGISTER 23-11: C1FLTCON1: CAN FILTER CONTROL REGISTER 1 (CONTINUED) bit 20-16 FSEL6<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 FLTEN5: Filter 17 Enable bit bit 15 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL5<1:0>: Filter 5 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL5<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN4: Filter 4 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL4<1:0>: Filter 4 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL4<4:0>: FIFO Selection bits bit 4-0 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
51.24	EDG1MOD	EDG1POL		EDG1S	EDG2STAT	EDG1STAT								
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0						
23.10	EDG2MOD	EDG2POL		EDG2S	_	—								
15.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
15:8	ON	—	CTMUSIDL	TGEN ⁽¹⁾	EDGEN	EDGSEQEN	IDISSEN ⁽²⁾	CTTRIG						
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7.0	ITRIM<5:0>							IRNG<1:0>						

REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER

Legend:

8					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31 EDG1MOD: Edge 1 Edge Sampling Select bit

1 = Input is edge-sensitive

0 = Input is level-sensitive

bit 30 EDG1POL: Edge 1 Polarity Select bit

1 = Edge 1 programmed for a positive edge response

0 = Edge 1 programmed for a negative edge response

bit 29-26 EDG1SEL<3:0>: Edge 1 Source Select bits

- 1111 = IC4 Capture Event is selected
- 1110 = C2OUT pin is selected
- 1101 = C1OUT pin is selected
- 1100 = IC3 Capture Event is selected
- 1011 = IC2 Capture Event is selected
- 1010 = IC1 Capture Event is selected
- 1001 = CTED8 pin is selected
- 1000 = CTED7 pin is selected
- 0111 = CTED6 pin is selected
- 0110 = CTED5 pin is selected
- 0101 = CTED4 pin is selected
- 0100 = CTED3 pin is selected
- 0011 = CTED1 pin is selected
- 0010 = CTED2 pin is selected
- 0001 = OC1 Compare Event is selected

0000 = Timer1 Event is selected

bit 25 EDG2STAT: Edge 2 Status bit

Indicates the status of Edge 2 and can be written to control edge source

- 1 = Edge 2 has occurred
- 0 = Edge 2 has not occurred
- Note 1: When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 31-41) in Section 31.0 "40 MHz Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

bit 15-14 **FCKSM<1:0>:** Clock Switching and Monitor Selection Configuration bits

- 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
- 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
- 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
- bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits
 - 11 = PBCLK is SYSCLK divided by 8
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1
- bit 11 Reserved: Write '1'
- bit 10 OSCIOFNC: CLKO Enable Configuration bit
 - 1 = CLKO output disabled
 - 0 = CLKO output signal active on the OSCO pin; Primary Oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00)

bit 9-8 **POSCMOD<1:0>:** Primary Oscillator Configuration bits

- 11 = Primary Oscillator disabled
- 10 = HS Oscillator mode selected
- 01 = XT Oscillator mode selected
- 00 = External Clock mode selected
- bit 7 IESO: Internal External Switchover bit
 - 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)
 - 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)
- bit 6 **Reserved:** Write '1'
- bit 5 **FSOSCEN:** Secondary Oscillator Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator
- bit 4-3 Reserved: Write '1'
- bit 2-0 **FNOSC<2:0>:** Oscillator Selection bits
 - 111 = Fast RC Oscillator with divide-by-N (FRCDIV)
 - 110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XT+PLL, HS+PLL, EC+PLL)
 - 010 = Primary Oscillator (XT, HS, EC)⁽¹⁾
 - 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)
 - 000 = Fast RC Oscillator (FRC)
- **Note 1:** Do not disable the POSC (POSCMOD = 11) when using this oscillator source.

30.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

30.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

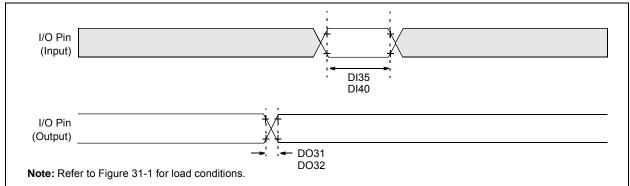
The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

30.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.


30.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

30.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

FIGURE 31-3: I/O TIMING CHARACTERISTICS

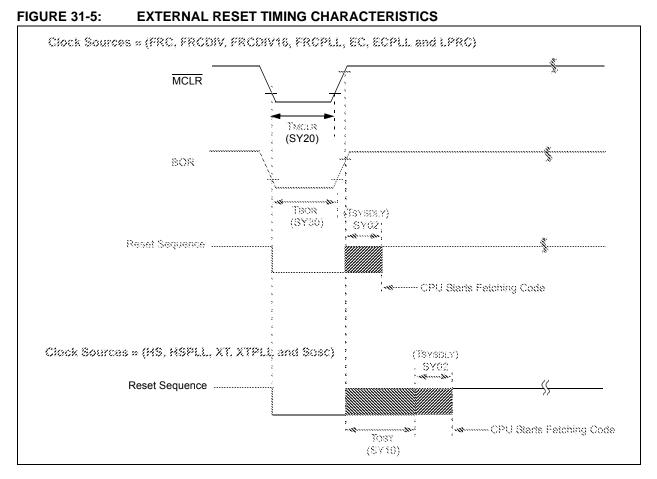


TABLE 31-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No. Symbol Characteristics ⁽²⁾		Min.	Typical ⁽¹⁾	Max.	Units	Conditions		
DO31	TIOR	Port Output Rise Time			5	15	ns	Vdd < 2.5V
					5	10	ns	Vdd > 2.5V
DO32	TIOF	Port Output Fall Time		_	5	15	ns	Vdd < 2.5V
					5	10	ns	VDD > 2.5V
DI35	Tinp	INTx Pin High or Low Time		10	_	_	ns	_
DI40	Trbp	CNx High or Low Tir	me (input)	2	_	_	TSYSCLK	

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

AC CHARACTERISTICS		$\label{eq:standard operating Conditions: 2.3V to 3.6V} \end{tabular} \begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min. Typical ⁽²⁾ Max. Units Conditions				Conditions
SY00	Τρυ	Power-up Period Internal Voltage Regulator Enabled	—	400	600	μS	
SY02	TSYSDLY	System Delay Period: Time Required to Reload Device Configuration Fuses plus SYSCLK Delay before First instruction is Fetched.		1 μs + 8 SYSCLK cycles	_	_	_
SY20	TMCLR	MCLR Pulse Width (low)	2	_		μS	—
SY30	TBOR	BOR Pulse Width (low)		1		μS	_

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Characterized by design but not tested.

TABLE 32-8:SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp				
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Conditions
MSP70	TscL	SCKx Input Low Time (Note 1,2)	Tsck/2	—	_	ns	_
MSP71	TscH	SCKx Input High Time (Note 1,2)	Tsck/2	—		ns	—
MSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 2)	5		25	ns	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The minimum clock period for SCKx is 40 ns.

TABLE 32-9:SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time (Note 1,2)	Tsck/2	_	_	ns	—
SP71	TscH	SCKx Input High Time (Note 1,2)	Tsck/2	_	_	ns	—

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The minimum clock period for SCKx is 40 ns.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820