

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx130f128lt-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input voltage low (VIL) requirements.

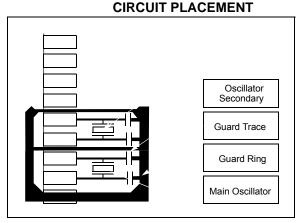
Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICE[™].

For more information on MPLAB ICD 3 and MPLAB REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- *"Using MPLAB[®] ICD 3"* (poster) DS50001765
- "MPLAB[®] ICD 3 Design Advisory" DS50001764
- *"MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide"* DS50001616
- *"Using MPLAB[®] REAL ICE™ Emulator"* (poster) DS50001749

2.6 JTAG

The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.


Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer or debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input voltage low (VIL) requirements

2.7 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is illustrated in Figure 2-3.

FIGURE 2-3: SUGGESTED OSCILLATOR

^{© 2014-2016} Microchip Technology Inc.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R	R	R	R	R	R	R	R			
31:24	BMXPFMSZ<31:24>										
00.40	R	R	R	R	R	R	R	R			
23:16	BMXPFMSZ<23:16>										
45.0	R	R	R	R	R	R	R	R			
15:8	BMXPFMSZ<15:8>										
7.0	R	R	R	R	R	R	R	R			
7:0				BMXPF	MSZ<7:0>						

REGISTER 4-7: BMXPFMSZ: PROGRAM FLASH (PFM) SIZE REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BMXPFMSZ<31:0>: Program Flash Memory (PFM) Size bits

Static value that indicates the size of the PFM in bytes: 0x00010000 = Device has 64 KB Flash 0x00020000 = Device has 128 KB Flash 0x00040000 = Device has 256 KB Flash 0x00080000 = Device has 512 KB Flash

REGISTER 4-8: BMXBOOTSZ: BOOT FLASH (IFM) SIZE REGISTER

				. ,						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R	R	R	R	R	R	R	R		
31:24				BMXBOO	TSZ<31:24>					
00.40	R	R	R	R	R	R	R	R		
23:16	BMXBOOTSZ<23:16>									
45.0	R	R	R	R	R	R	R	R		
15:8	BMXBOOTSZ<15:8>									
7.0	R	R	R	R	R	R	R	R		
7:0				BMXBO	OTSZ<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **BMXBOOTSZ<31:0>:** Boot Flash Memory (BFM) Size bits Static value that indicates the size of the Boot PFM in bytes: 0x00000C00 = Device has 3 KB Boot Flash

© 2014-2016 Microchip Technology Inc.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—	—	_	—	_	_	_			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—	—	-	—	—	_	—			
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
15:8	CHBUSY	_	_	_	_	_	_	CHCHNS ⁽¹⁾			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R/W-0			
7:0	CHEN ⁽²⁾	CHAED	CHCHN	CHAEN	—	CHEDET	CHPF	RI<1:0>			

REGISTER 9-7: DCHxCON: DMA CHANNEL 'x' CONTROL REGISTER

Legend:

0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

- bit 15 CHBUSY: Channel Busy bit
 - 1 = Channel is active or has been enabled
 - 0 = Channel is inactive or has been disabled
- bit 14-9 Unimplemented: Read as '0'
- bit 8 CHCHNS: Chain Channel Selection bit⁽¹⁾
 - 1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)
 - 0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)

bit 7 CHEN: Channel Enable bit⁽²⁾

- 1 = Channel is enabled
- 0 = Channel is disabled

bit 6 CHAED: Channel Allow Events If Disabled bit

- 1 = Channel start/abort events will be registered, even if the channel is disabled
- 0 = Channel start/abort events will be ignored if the channel is disabled

bit CHCHN: Channel Chain Enable bit

- 1 = Allow channel to be chained
- 0 = Do not allow channel to be chained
- bit 4 CHAEN: Channel Automatic Enable bit
 - 1 = Channel is continuously enabled, and not automatically disabled after a block transfer is complete
 0 = Channel is disabled on block transfer complete

bit 3 Unimplemented: Read as '0'

- bit 2 CHEDET: Channel Event Detected bit
 - 1 = An event has been detected
 - 0 = No events have been detected
- bit 1-0 CHPRI<1:0>: Channel Priority bits
 - 11 = Channel has priority 3 (highest)
 - 10 = Channel has priority 2
 - 01 = Channel has priority 1
 - 00 = Channel has priority 0
- Note 1: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).
 - 2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

TABLE 10-1: USB REGISTER MAP (CONTINUED)

ess											Bit	s							(0
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5390	U1EP9	31:16	_	—		—	_	_	—	_		_	—	—	-	-	—		0000
5390	UIEF9	15:0					_	_	—	_	-		—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53A0 U1EP10 31:	31:16	_	_		_			_		_		_	—	-		—		0000	
53A0	UIEFIU	15:0	Ι	Ι		_	-	-	_	_			—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53B0	U1EP11	31:16	_	_	_		_	_	—	_	_	_	—	—	_	_	—	_	0000
53BU	UIEPII	15:0	_	_	_		_	_	—	_	_	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53C0	U1EP12	31:16	_	_	_		_	_	—	_	_	_	—	—	_	_	—	_	0000
5500	UIEF 12	15:0	Ι	—	—	_	—	—	_	—	—	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53D0	U1EP13	31:16	Ι	_	—	_	—	—	_	—	—	_	_	—	—	—	—	—	0000
55D0	UIEF 13	15:0	Ι	_	—	_	—	—	_	—	—	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16		_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	0000
53E0	U1EP14	15:0	_	_			_	_	_	_			_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	_	_	_	_	_	_	_			_	_		_	_	_	_	0000
53F0	U1EP15	15:0	_	_	_	_	_	_	_			_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—						_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—			-			_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	-	—	-	-	_	-	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	LSPDEN			D	EVADDR<6:0	>		

REGISTER 10-12: U1ADDR: USB ADDRESS REGISTER

Legend:

0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

bit 7 LSPDEN: Low Speed Enable Indicator bit

1 = Next token command to be executed at Low Speed

0 = Next token command to be executed at Full Speed

bit 6-0 **DEVADDR<6:0>:** 7-bit USB Device Address bits

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	_	—	-	-	-	_	-	-			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	_	—	_	_	_	—	-	—			
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15.0	-	—				—		—			
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0				FRML	.<7:0>						

REGISTER 10-13: U1FRML: USB FRAME NUMBER LOW REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **FRML<7:0>:** The 11-bit Frame Number Lower bits

The register bits are updated with the current frame number whenever a SOF TOKEN is received.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	—		_			
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_		-			
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	_	_		-			
7:0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
7.0				_			FRMH<2:0>	

REGISTER 10-14: U1FRMH: USB FRAME NUMBER HIGH REGISTER

Legend:

J			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-3 Unimplemented: Read as '0'

bit 2-0 **FRMH<2:0>:** The Upper 3 bits of the Frame Numbers bits The register bits are updated with the current frame number whenever a SOF TOKEN is received.

Bit Bit Bit Bit Bit Bit Bit Bit Bit 30/22/14/6 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 Range 31/23/15/7 29/21/13/5 28/20/12/4 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 ___ ___ ____ ____ ___ _ ____ ____ U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 _ ___ ____ ____ ____ ____ ____ ___ U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 _ ___ ____ ____ ____ ___ ____ ____ R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 PID < 3:0 > (1)EP<3:0>

REGISTER 10-15: U1TOK: USB TOKEN REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-4 **PID<3:0>:** Token Type Indicator bits⁽¹⁾

- 0001 = OUT (TX) token type transaction
- 1001 = IN (RX) token type transaction
- 1101 = SETUP (TX) token type transaction
- Note: All other values are reserved and must not be used.
- bit 3-0 **EP<3:0>:** Token Command Endpoint Address bits The four bit value must specify a valid endpoint.

Note 1: All other values are reserved and must not be used.

11.3 Peripheral Pin Select

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only options.

Peripheral pin select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to these I/O pins. Peripheral pin select is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.3.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable port number.

11.3.2 AVAILABLE PERIPHERALS

The peripherals managed by the peripheral pin select are all digital-only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

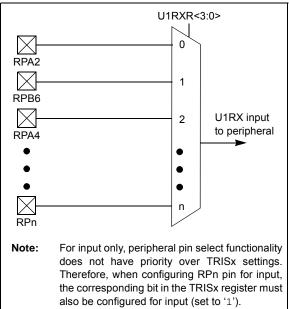
In comparison, some digital-only peripheral modules are never included in the peripheral pin select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C among others. A similar requirement excludes all modules with analog inputs, such as the Analog-to-Digital Converter (ADC).

A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral. When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.3.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of SFRs: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.


11.3.4 INPUT MAPPING

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The [*pin name*]R registers, where [*pin name*] refers to the peripheral pins listed in Table 11-1, are used to configure peripheral input mapping (see Register 11-1). Each register contains sets of 4 bit fields. Programming these bit fields with an appropriate value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field is shown in Table 11-1.

For example, Figure 11-2 illustrates the remappable pin selection for the U1RX input.

FIGURE 11-2: REI

REMAPPABLE INPUT EXAMPLE FOR U1RX

TABLE 11-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP

SSS										Bi	ts								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FB38	RPA14R	31:16	_	—	_	_	—	_	_	_	_	_	—	_	—	— RPA1	-	_	0000
		15:0			—		_	—				—				RPA14	4<3:0>		0000
FB3C	RPA15R	31:16			—			—				—				-	-	_	0000
		15:0	_		_			_				_		_		RPA1:	5<3:0>		0000
FB40	RPB0R	31:16	_		_	_	_	_	_	_	_	_	_	_	_		—	—	0000
		15:0	_		_			_				_		_		RPBC	r		0000
FB44	RPB1R	31:16	_		_			_				_		_					0000
		15:0	_	_	—		_	—	_	—	_	_	—	_		RPB1	r		0000
FB48	RPB2R	31:16	_		_			_		_		_		_			—		0000
		15:0	_		_			_		_		_		_		RPB2			0000
FB4C	RPB3R	31:16	_	_	_	_	—	_	_	—	_	_	—	_	_		—	_	0000
		15:0	_	_	—		—	—		—		_	—	_		RPB3	3<3:0>		0000
FB54	RPB5R	31:16	_	_	—		—	—		—		_	—	_			—	—	0000
		15:0	_	_	_	_	_	_	_	—	—	_	_	_		RPB5			0000
FB58	RPB6R	31:16	_	_	—		_	—		—		_	_	_			—	_	0000
		15:0	_	_	_	_	_	_	_	—	_	_	—	_		RPB6			0000
FB5C	RPB7R	31:16	_	_		_	—	_	_	_	_	_	—	_	_		—	—	0000
		15:0	_	_	_		_	—		—		_	_	_		RPB7	<3:0>		0000
FB60	RPB8R	31:16	_	_	_	_	_	—		—	_	_	—	_	_		—	—	0000
		15:0	_	_	_	_	_	_	_	—	_	_	_	_		RPB8	<3:0>		0000
FB64	RPB9R	31:16	_		_	_	_	_	_	_	_	_	_	_	_		—		0000
		15:0	_	_	_	_	_	_	_	_	_	_	—	_		RPB9	<3:0>		0000
FB68	RPB10R	31:16	_	_	_	_	—	_	_	—	_	_	—	_	_	—		—	0000
		15:0	_	_	_		_	—				_	_	_		RPB1			0000
FB78	RPB14R	31:16	_									_		_			<u> </u>		0000
		15:0	_			_	—		_	_	_	_	_	_		RPB1	4<3:0>		0000
FB7C	RPB15R	31:16	_		_	_	—		_	_	_	_	_	_	—			—	0000
		15:0	_			_	—	_	—	_	_	_	_	_		RPB1	5<3:0>		0000
FB84	RPC1R	31:16	_		—	_	—	—	—	_	_	—	—	—	_		—	—	0000
	-	15:0	—	—	—	-	—	—	—	_	_	—	—	—		RPC1	<3:0>		0000

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

DS60001290D-page 153

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available if the associated RPx function is not present on the device. Refer to the pin table for the specific device to determine availability.

ss										В	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	-	_	_	_	-	_	_	-	_	_	_	_	_	_	_	_	0000
FBFC	RPD15R	15:0	_			_						_	_			RPD1	5<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
FC0C	RPE3R	15:0	_	_		_	_	_	_	_		—	_	_		RPE	3<3:0>		0000
50.1.1		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
FC14	RPE5R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPE	5<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
FC20	RPE8R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPE	3<3:0>		0000
5001	00540	31:16	_	_	_	_	—	_	_	_	_	_	_	_	_	—	_	—	0000
FC24	RPE9R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPES)<3:0>		0000
		31:16	_	_	_	_	—	_	_	—	_	_	_	_	_	—	_	_	0000
FC40	RPF0R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPFC)<3:0>	•	0000
	00540	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
FC44	RPF1R	15:0	_	_	_	_	—	_	_	—	_	_	_	_		RPF1	<3:0>	•	0000
50.00		31:16	_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	—	0000
FC48	RPF2R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPF2	<3:0>		0000
		31:16	_	_	_	_	—	_	_	—	_	_	_	_	_	—	_	_	0000
FC4C	RPF3R	15:0	_	_	_	_	—	_	_	_	_	_	_	_		RPF3	8<3:0>	•	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
FC50	RPF4R	15:0	_	_	_	_	—	_	_	—	_	_	_	_		RPF4	<3:0>	•	0000
	00550	31:16	_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	—	0000
FC54	RPF5R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPF5	<3:0>		0000
5050	DDCAD	31:16	_	_	_	—	—	—	—	—	_	—	—	—	_	—	—	—	0000
FC58	RPF6R	15:0	_	_	_	_	—	_	_	_	_	_	_	_		RPF6	6<3:0>	•	0000
		31:16	_	_	_	_	—	_	_	—	_	_	_	_	_	—	_	_	0000
FC5C	RPF7R	15:0	_	_	_	_	—	_	_	_	_	_	_	_		RPF6	6<3:0>	•	0000
5000	DDEAD	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	—	—	_	0000
FC60	RPF8R	15:0	_	_	_	—	_	_	_	_	_	—	_	_		RPF7	/<3:0>		0000
F0-0	005/00	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
FC70	RPF12R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPF1	2<3:0>		0000
507/	005405	31:16	_	_	_	_	_	_	_	_		—	_	—	—	—	—	_	0000
FC74	RPF13R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPF1	3<3:0>		0000
	RPG0R	31:16	_			_		_	_	_	_	_	_		_				0000
FC80																			

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

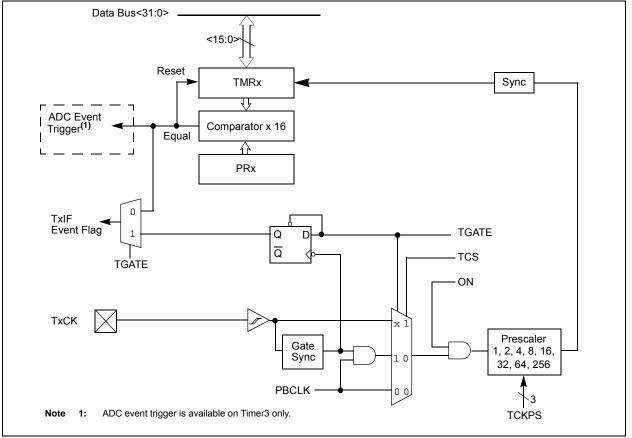
Note 1: This register is not available if the associated RPx function is not present on the device. Refer to the pin table for the specific device to determine availability.

13.0 TIMER2/3, TIMER4/5

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105) of the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).

This family of PIC32 devices features four synchronous 16-bit timers (default) that can operate as a freerunning interval timer for various timing applications and counting external events. The following modes are supported:

- · Synchronous internal 16-bit timer
- Synchronous internal 16-bit gated timer
- Synchronous external 16-bit timer


Two 32-bit synchronous timers are available by combining Timer2 with Timer3 and Timer4 with Timer5. The 32-bit timers can operate in three modes:

- · Synchronous internal 32-bit timer
- Synchronous internal 32-bit gated timer
- · Synchronous external 32-bit timer
- Note: In this chapter, references to registers, TxCON, TMRx and PRx, use 'x' to represent Timer2 through 5 in 16-bit modes. In 32-bit modes, 'x' represents Timer2 or 4; 'y' represents Timer3 or 5.

13.1 Additional Supported Features

- Selectable clock prescaler
- Timers operational during CPU idle
- Time base for Input Capture and Output Compare modules (Timer2 and Timer3 only)
- ADC event trigger (Timer3 in 16-bit mode, Timer2/ 3 in 32-bit mode)
- Fast bit manipulation using CLR, SET and INV registers

FIGURE 13-1: TIMER2, 3, 4, 5 BLOCK DIAGRAM (16-BIT)

REGISTER 20-2: PMMODE: PARALLEL PORT MODE REGISTER (CONTINUED)

- bit 5-2 WAITM<3:0>: Data Read/Write Strobe Wait States bits⁽¹⁾
 - 1111 = Wait of 16 Трв •
 - • 0001 = Wait of 2 Трв
 - 0000 = Wait of 1 TPB (default)
- bit 1-0 WAITE<1:0>: Data Hold After Read/Write Strobe Wait States bits⁽¹⁾
 - 11 = Wait of 4 TPB 10 = Wait of 3 TPB 01 = Wait of 2 TPB
 - 00 = Wait of 1 TPB (default)

For Read operations: 11 = Wait of 3 TPB 10 = Wait of 2 TPB 01 = Wait of 1 TPB 00 = Wait of 0 TPB (default)

- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
 - 2: Address bits, A15 and A14, are not subject to automatic increment/decrement if configured as Chip Select CS2 and CS1.
 - **3:** These pins are active when MODE16 = 1 (16-bit mode).

31:24 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_	-							Bit 24/16/8/0
- - - - - CAL<9:8> 23:16 RW-0 U-0	21.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
23:16 CAL<7:0> 15:8 R/W-0 U-0 R/W-0 U-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0	31.24	—	—	_	—	—	—	CAL<9):8>
CAL<7:0> 15:8 R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 15:8 R/W-0 R-0 SIDL - <td>22.16</td> <td>R/W-0</td> <td>R/W-0</td> <td>R/W-0</td> <td>R/W-0</td> <td>R/W-0</td> <td>R/W-0</td> <td>R/W-0</td> <td>R/W-0</td>	22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8 ON ^(1,2) — SIDL — # # # # # # # #	23.10				CAL<	:7:0>			
ON(1,2) — SIDL — … <th…< td=""><td>15.0</td><td>R/W-0</td><td>U-0</td><td>R/W-0</td><td>U-0</td><td>U-0</td><td>U-0</td><td>U-0</td><td>U-0</td></th…<>	15.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
7.0	10.0	ON ^(1,2)	—	SIDL	—	—	—	—	-
^{7.0} RTSECSEL ⁽³⁾ RTCCLKON — RTCWREN ⁽⁴⁾ RTCSYNC HALFSEC ⁽⁵⁾ RTCOE	7.0		-	U-0		-	R-0	R-0	R/W-0
	7:0	RTSECSEL ⁽³⁾	RTCCLKON	_	_	RTCWREN ⁽⁴⁾	RTCSYNC	HALFSEC ⁽⁵⁾	RTCOE

REGISTER 21-1: RTCCON: RTC CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'	l
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-26 Unimplemented: Read as '0'

bit 25-16 CAL<9:0>: RTC Drift Calibration bits, which contain a signed 10-bit integer value 0111111111 = Maximum positive adjustment, adds 511 RTC clock pulses every one minute 000000001 = Minimum positive adjustment, adds 1 RTC clock pulse every one minute 000000000 = No adjustment 1111111111 = Minimum negative adjustment, subtracts 1 RTC clock pulse every one minute 100000000 = Maximum negative adjustment, subtracts 512 clock pulses every one minute ON: RTCC On bit^(1,2) bit 15 1 = RTCC module is enabled 0 = RTCC module is disabled bit 14 Unimplemented: Read as '0' bit 13 SIDL: Stop in Idle Mode bit 1 = Disables the PBCLK to the RTCC when CPU enters in Idle mode 0 = Continue normal operation in Idle mode Unimplemented: Read as '0' bit 12-8 bit 7 RTSECSEL: RTCC Seconds Clock Output Select bit⁽³⁾ 1 = RTCC Seconds Clock is selected for the RTCC pin 0 = RTCC Alarm Pulse is selected for the RTCC pin bit 6 RTCCLKON: RTCC Clock Enable Status bit 1 = RTCC Clock is actively running 0 = RTCC Clock is not running bit 5-4 Unimplemented: Read as '0' **Note 1:** The ON bit is only writable when RTCWREN = 1. 2: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. 3: Requires RTCOE = 1 (RTCCON<0>) for the output to be active. 4: The RTCWREN bit can be set only when the write sequence is enabled. 5: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>). Note: This register is reset only on a Power-on Reset (POR).

REGISTER 22-3: AD1CON3: ADC CONTROL REGISTER 3

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	_	_		—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	—	—	—	_
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ADRC	—	_			SAMC<4:0>(1)		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W	R/W-0
7:0				ADCS<	7:0> (2)			

Legend:

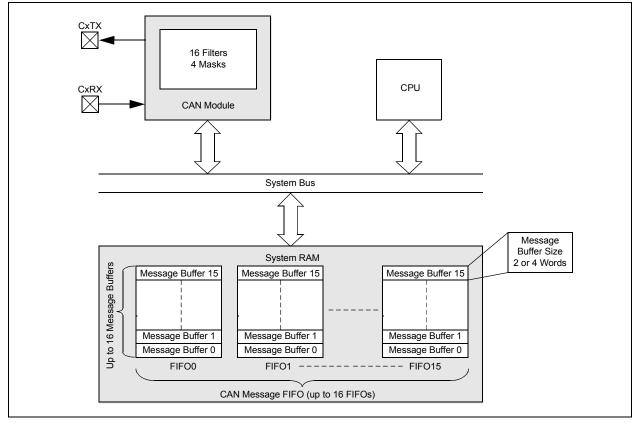
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ADRC: ADC Conversion Clock Source bit
 - 1 = Clock derived from FRC
 - 0 = Clock derived from Peripheral Bus Clock (PBCLK)
- bit 14-13 Unimplemented: Read as '0'
- - 00000001 =TPB 2 (ADCS<7:0> + 1) = 4 TPB = TAD 00000000 =TPB • 2 • (ADCS<7:0> + 1) = 2 • TPB = TAD
- **Note 1:** This bit is only used if the SSRC<2:0> bits (AD1CON1<7:5>) = 111.
 - 2: This bit is not used if the ADRC bit (AD1CON3<15>) = 1.

23.0 CONTROLLER AREA NETWORK (CAN)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 34. "Controller Area Network (CAN)" (DS60001154) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).


The Controller Area Network (CAN) module supports the following key features:

- · Standards Compliance:
 - Full CAN 2.0B compliance
 - Programmable bit rate up to 1 Mbps
- Message Reception and Transmission:
 - 16 message FIFOs
 - Each FIFO can have up to 16 messages for a total of 256 messages

- FIFO can be a transmit message FIFO or a receive message FIFO
- User-defined priority levels for message FIFOs used for transmission
- 16 acceptance filters for message filtering
- Four acceptance filter mask registers for message filtering
- Automatic response to remote transmit request
- DeviceNet[™] addressing support
- Additional Features:
 - Loopback, Listen All Messages, and Listen Only modes for self-test, system diagnostics and bus monitoring
 - Low-power operating modes
 - CAN module is a bus master on the PIC32 system bus
 - Use of DMA is not required
 - Dedicated time-stamp timer
 - Dedicated DMA channels
- Data-only Message Reception mode

Figure 23-1 illustrates the general structure of the CAN module.

FIGURE 23-1: PIC32 CAN MODULE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
31.24	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE	_	—	_
23:16	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	_	_	_	_	MODIE	CTMRIE	RBIE	TBIE
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
15:8	IVRIF	WAKIF	CERRIF	SERRIF ⁽¹⁾	RBOVIF	—	_	_
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0					MODIF	CTMRIF	RBIF	TBIF

REGISTER 23-3: C1INT: CAN INTERRUPT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	IVRIE: Invalid Message Received Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 30	WAKIE: CAN Bus Activity Wake-up Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 29	CERRIE: CAN Bus Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 28	SERRIE: System Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 27	RBOVIE: Receive Buffer Overflow Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 26-20	Unimplemented: Read as '0'
bit 19	MODIE: Mode Change Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 18	CTMRIE: CAN Timestamp Timer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 17	RBIE: Receive Buffer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 16	TBIE: Transmit Buffer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 15	IVRIF: Invalid Message Received Interrupt Flag bit 1 = An invalid messages interrupt has occurred 0 = An invalid message interrupt has not occurred
Note 1:	This bit can only be cleared by turning the CAN module Off and On by cl

learing or setting the ON bit N (C1CON<15>).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
31:24	SID<10:3>								
02:16	R/W-x	R/W-x	R/W-x	U-0	R/W-0	U-0	R/W-x	R/W-x	
23:16	SID<2:0>			_	EXID	_	EID<17:16>		
15.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
15:8	EID<15:8>								
7:0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
	EID<7:0>								

REGISTER 23-14: C1RXFn: CAN ACCEPTANCE FILTER 'n' REGISTER ('n' = 0 THROUGH 15)

Legend:

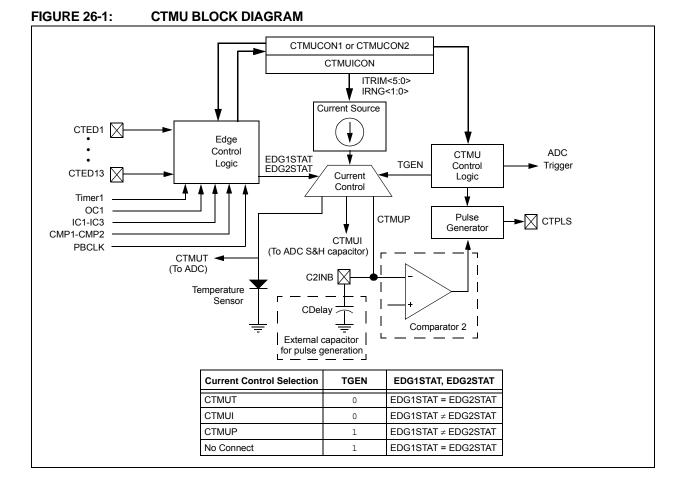
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-21 SID<10:0>: Standard Identifier bits

- 1 = Message address bit SIDx must be '1' to match filter
- 0 = Message address bit SIDx must be '0' to match filter
- bit 20 Unimplemented: Read as '0'
- bit 19 **EXID:** Extended Identifier Enable bits
 - 1 = Match only messages with extended identifier addresses
 - 0 = Match only messages with standard identifier addresses
- bit 18 Unimplemented: Read as '0'
- bit 17-0 EID<17:0>: Extended Identifier bits
 - 1 = Message address bit EIDx must be '1' to match filter
 - 0 = Message address bit EIDx must be '0' to match filter

Note: This register can only be modified when the filter is disabled (FLTENn = 0).

26.0 CHARGE TIME MEASUREMENT UNIT (CTMU)


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 37. "Charge Time Measurement Unit (CTMU)" (DS60001167) in the "PIC32 Family Reference Manual", which is available the site from Microchip web (www.microchip.com).

The Charge Time Measurement Unit (CTMU) is a flexible analog module that has a configurable current source with a digital configuration circuit built around it. The CTMU can be used for differential time measurement between pulse sources and can be used for generating an asynchronous pulse. By working with other on-chip analog modules, the CTMU can be used for high resolution time measurement, measure capacitance, measure relative changes in capacitance or generate output pulses with a specific time delay. The CTMU is ideal for interfacing with capacitive-based sensors.

The CTMU module includes the following key features:

- Up to 13 channels available for capacitive or time measurement input
- · On-chip precision current source
- 16-edge input trigger sources
- · Selection of edge or level-sensitive inputs
- Polarity control for each edge source
- Control of edge sequence
- Control of response to edges
- · High precision time measurement
- Time delay of external or internal signal asynchronous to system clock
- · Integrated temperature sensing diode
- · Control of current source during auto-sampling
- Four current source ranges
- · Time measurement resolution of one nanosecond

A block diagram of the CTMU is shown in Figure 26-1.

© 2014-2016 Microchip Technology Inc.

NOTES:

			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)					
			$\begin{array}{ll} Operating \ temperature & -40^{\circ}C \leq TA \leq +85^{\circ}C \ for \ Industrial \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \ for \ V\text{-temp} \end{array}$					
Param. No.	Symbol Characteristics		Min.	Typical ⁽¹⁾	Max.	Units	Conditions	
	VIL	Input Low Voltage						
DI10		I/O Pins with PMP	Vss	—	0.15 Vdd	V		
		I/O Pins	Vss	—	0.2 Vdd	V		
DI18		SDAx, SCLx	Vss	—	0.3 VDD	V	SMBus disabled (Note 4)	
DI19		SDAx, SCLx	Vss	—	0.8	V	SMBus enabled (Note 4)	
	VIH	Input High Voltage						
DI20		I/O Pins not 5V-tolerant ⁽⁵⁾	0.65 VDD	_	Vdd	V	(Note 4,6)	
		I/O Pins 5V-tolerant with PMP ⁽⁵⁾	0.25 VDD + 0.8V	—	5.5	V	(Note 4,6)	
		I/O Pins 5V-tolerant ⁽⁵⁾	0.65 VDD	—	5.5	V		
DI28		SDAx, SCLx	0.65 VDD	—	5.5	V	SMBus disabled (Note 4,6)	
DI29		SDAx, SCLx	2.1	_	5.5	V	SMBus enabled, 2.3V ≤ VPIN ≤ 5.5 (Note 4,6)	
DI30	ICNPU	Change Notification Pull-up Current	_	-200	-50	μA	VDD = 3.3V, VPIN = VSS (Note 3,6)	
DI31	ICNPD	Change Notification Pull-down Current ⁽⁴⁾	50	200	—	μA	VDD = 3.3V, VPIN = VDD	
	lı∟	Input Leakage Current (Note 3)						
DI50		I/O Ports	_	—	<u>+</u> 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance	
DI51		Analog Input Pins	-	_	<u>+</u> 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance	
DI55		MCLR ⁽²⁾	_	_	<u>+</u> 1	μA	$VSS \le VPIN \le VDD$	
DI56		OSC1	-	—	<u>+</u> 1	μΑ	$VSS \le VPIN \le VDD,$ XT and HS modes	

TABLE 31-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the "Device Pin Tables" section for the 5V-tolerant pins.
- **6:** The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of ICNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.

TABLE 31-34: ADC MODULE SPECIFICATIONS

		ACTERISTICS	Standard Operating Conditions (see Note 5): 2.5V to 3.6V (unless otherwise stated)					
		ACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions	
Device	Supply							
AD01	AVdd	Module VDD Supply	Greater of VDD – 0.3 or 2.5	—	Lesser of VDD + 0.3 or 3.6	V	_	
AD02	AVss	Module Vss Supply	Vss	_	AVdd	V	(Note 1)	
Referen	ce Inputs							
AD05 AD05a	Vrefh	Reference Voltage High	AVss + 2.0 2.5	_	AVDD 3.6	V V	(Note 1) VREFH = AVDD (Note 3)	
AD06	Vrefl	Reference Voltage Low	AVss	—	Vrefh – 2.0	V	(Note 1)	
AD07	Vref	Absolute Reference Voltage (VREFH – VREFL)	2.0	—	AVDD	V	(Note 3)	
AD08 AD08a	IREF	Current Drain		250 —	400 3	μΑ μΑ	ADC operating ADC off	
Analog	Input	·					·	
AD12	VINH-VINL	Full-Scale Input Span	VREFL	—	Vrefh	V	—	
AD13	VINL	Absolute VINL Input Voltage	AVss – 0.3	—	AVDD/2	V	_	
AD14	Vin	Absolute Input Voltage	AVss - 0.3	_	AVDD + 0.3	V	—	
AD15	_	Leakage Current	—	±0.001	±0.610	μA	VINL = AVSS = VREFL = 0V, AVDD = VREFH = $3.3V$ Source Impedance = $10 \text{ k}\Omega$	
AD17	RIN	Recommended Impedance of Analog Voltage Source	—	_	5k	Ω	(Note 1)	
ADC Ac	curacy – N	leasurements with Exte	rnal VREF+/V	REF-				
AD20c	Nr	Resolution		10 data bit	S	bits	_	
AD21c	INL	Integral Non-linearity	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V	
AD22c	DNL	Differential Non-linearity	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V (Note 2)	
AD23c	Gerr	Gain Error	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V	
AD24c	Eoff	Offset Error	> -1	_	< 1	Lsb	VINL = AVSS = 0V, AVDD = 3.3V	
AD25c	_	Monotonicity	_	_	_	_	Guaranteed	

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.