

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

2000	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx130f128lt-v-pf

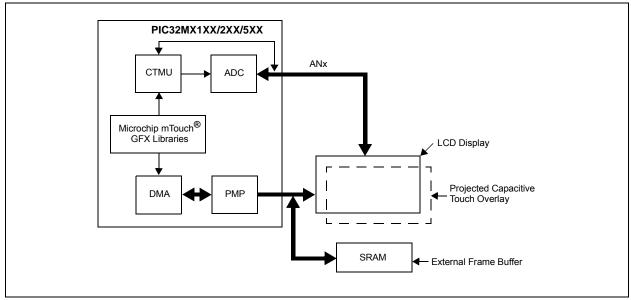
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

	Pin N	umber							
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	Pin Type	Buffer Type	Description				
MCLR	7	13	I	ST	Master Clear (Reset) input. This pin is an active-low Reset the device.				
AVDD	19	30	Ρ	Р	Positive supply for analog modules. This pin must be connected at all times.				
AVss	20	31	Р	Р	Ground reference for analog modules				
Vdd	10, 26, 38, 57	2, 16, 37, 46, 62, 86	Ρ	—	Positive supply for peripheral logic and I/O pins				
VCAP	56	85	Р	_	Capacitor for Internal Voltage Regulator				
Vss	9, 25, 41	15, 36, 45, 65, 75	Ρ	_	Ground reference for logic and I/O pins				
VREF+	16	29	Р	Analog	Analog Voltage Reference (High) Input				
VREF-	15	28	Р	Analog	Analog Voltage Reference (Low) Input				
Legend:	CMOS = CN	IOS compati	ble inpu	it or output	Analog = Analog input I = Input O = Output				

Legend: CMOS = CMOS compatible input or output Analog = Analog input I = Input ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer P = Power


Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module.

4: This pin is only available on 100-pin devices without a USB module.

FIGURE 2-10: LOW-COST CONTROLLERLESS (LCC) GRAPHICS APPLICATION WITH PROJECTED CAPACITIVE TOUCH

4.2 Special Function Register Maps

TABLE 4-2: BUS MATRIX REGISTER MAP

ress	_	Ð				-						Bits		-			-		
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000	BMXCON ⁽¹⁾	31:16	_			_		BMXCHEDMA		_		_		BMXERRIXI	BMXERRICD	BMXERRDMA	BMXERRDS	BMXERRIS	041F
2000	BWXCON	15:0	D BMXWSDRM BMXARB<2:0>						0047										
2010	BMXDKPBA ⁽¹⁾	31:16	_		_	_	-	_	_	_	-	_	_	_	_	_		_	0000
2010	DIVINDREDA	15:0									BM	XDKPBA<15:0>							0000
2020	BMXDUDBA ⁽¹⁾	31:16	_	_	_		_	—	_	—	_	—	_	—	—	_	_	—	0000
2020		15:0									BM	XDUDBA<15:0>							0000
2030	BMXDUPBA ⁽¹⁾	31:16	—	—	—		—	—	—	—	—	—	—	—	—	—	—	—	0000
2000		15:0									BM	XDUPBA<15:0>							0000
2040	BMXDRMSZ	31:16									BM	XDRMSZ<31:0>							xxxx
		15:0																	xxxx
2050	BMXPUPBA ⁽¹⁾	31:16	—	_	—		-	—	_	-	_	—	-	—		BMXPUPBA	<19:16>		0000
		15:0									BM	XPUPBA<15:0>							0000
2060	BMXPFMSZ	31:16									BM	XPFMSZ<31:0>							xxxx
		15:0																	
2070	BMXBOOTSZ	31:16									BMX	(BOOTSZ<31:0)	>						0000
		15:0																	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R	R	R	R	R	R	R	R				
31:24	BMXDRMSZ<31:24>											
00.40	R	R	R	R	R	R	R	R				
23:16	BMXDRMSZ<23:16>											
45.0	R	R	R	R	R	R	R	R				
15:8	BMXDRMSZ<15:8>											
7.0	R	R	R	R	R	R	R	R				
7:0	BMXDRMSZ<7:0>											

BMXDRMSZ: DATA RAM SIZE REGISTER REGISTER 4-5:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BMXDRMSZ<31:0>: Data RAM Memory (DRM) Size bits

Static value that indicates the size of the Data RAM in bytes: 0x00002000 = Device has 8 KB RAM 0x00004000 = Device has 16 KB RAM 0x00008000 = Device has 32 KB RAM 0x00010000 = Device has 64 KB RAM

REGISTER 4-6: BMXPUPBA: PROGRAM FLASH (PFM) USER PROGRAM BASE ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	—	—	_	_	—	—	—				
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	_	_	_	_	BMXPUPBA<19:16>							
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0				
15:8		BMXPUPBA<15:8>										
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0		BMXPUPBA<7:0>										

Legend:				
R = Readable bit	= Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-20 Unimplemented: Read as '0'

bit 19-11 BMXPUPBA<19:11>: Program Flash (PFM) User Program Base Address bits

bit 10-0 BMXPUPBA<10:0>: Read-Only bits Value is always '0', which forces 2 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXPFMSZ.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.94	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	CHSSA<31:24>										
00.10	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	CHSSA<23:16>										
45-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8		CHSSA<15:8>					R/W-0 R/W-0				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0		CHSSA<7:0>									

REGISTER 9-10: DCHxSSA: DMA CHANNEL 'x' SOURCE START ADDRESS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 31-0
 CHSSA<31:0> Channel Source Start Address bits

 Channel source start address.

 Note: This must be the physical address of the source.

REGISTER 9-11: DCHxDSA: DMA CHANNEL 'x' DESTINATION START ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24				CHDSA<	31:24>						
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	CHDSA<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	CHDSA<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				CHDSA	<7:0>						

Legend:				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 **CHDSA<31:0>:** Channel Destination Start Address bits Channel destination start address.

 $\ensuremath{\text{Note:}}$ This must be the physical address of the destination.

KE013TE	.K 3-12. D							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	_	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	_	—	_	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				CHSSIZ	<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CHSSIZ	<7:0>			

REGISTER 9-12: DCHxSSIZ: DMA CHANNEL 'x' SOURCE SIZE REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSSIZ<15:0>: Channel Source Size bits

111111111111111 = 65,535 byte source size

REGISTER 9-13: DCHxDSIZ: DMA CHANNEL 'x' DESTINATION SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	—	_	_	—	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	_	—	_	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8		CHDSIZ<15:8>						
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CHDSIZ	<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

KE013TE	.K 3-10. D	CHACOLL. D						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
01.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	_	—	—	-	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	_	—	_	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8		CHCSIZ<15:8>						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CHCSIZ	<7:0>			

REGISTER 9-16: DCHxCSIZ: DMA CHANNEL 'x' CELL-SIZE REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHCSIZ<15:0>: Channel Cell-Size bits

1111111111111111 = 65,535 bytes transferred on an event

REGISTER 9-17: DCHxCPTR: DMA CHANNEL 'x' CELL POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	-	_			—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	_	—
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
15:8		CHCPTR<15:8>						
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7.0				CHCPTF	R<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

		• • • • • • • • • •						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	_		—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	_		—	_	_	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	—	_		—	—	—	—
	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R-0	R/WC-0, HS
7:0	STALLIF	ATTACHIF ⁽¹⁾	RESUMEIF ⁽²⁾	IDLEIF	TRNIF ⁽³⁾	SOFIF	UERRIF ⁽⁴⁾	URSTIF ⁽⁵⁾
	UIALLII			IULLII		00111		DETACHIF ⁽⁶⁾
	•	•						

REGISTER 10-6: U1IR: USB INTERRUPT REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settal	ble bit
R = Readable bit	W = Writable bit	U = Unimplemented b	vit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7		STALLIF: STALL Handshake Interrupt bit
		1 = In Host mode, a STALL handshake was received during the handshake phase of the transaction
		In Device mode, a STALL handshake was transmitted during the handshake phase of the transaction
		0 = STALL handshake has not been sent
bit 6		ATTACHIF: Peripheral Attach Interrupt bit ⁽¹⁾
		1 = Peripheral attachment was detected by the USB module
		0 = Peripheral attachment was not detected
bit 5		RESUMEIF: Resume Interrupt bit ⁽²⁾
		1 = K-State is observed on the D+ or D- pin for 2.5 μ s
		0 = K-State is not observed
bit 4		IDLEIF: Idle Detect Interrupt bit
		1 = Idle condition detected (constant Idle state of 3 ms or more)
		0 = No Idle condition detected
bit 3		TRNIF: Token Processing Complete Interrupt bit ⁽³⁾
		 1 = Processing of current token is complete; a read of the U1STAT register will provide endpoint information 0 = Processing of current token not complete
h:+ 0		
bit 2		SOFIF: SOF Token Interrupt bit 1 = SOF token received by the peripheral or the SOF threshold reached by the host
		0 = SOF token was not received nor threshold reached
bit 1		UERRIF: USB Error Condition Interrupt bit ⁽⁴⁾
DICT		1 = Unmasked error condition has occurred
		0 = Unmasked error condition has not occurred
bit 0		URSTIF: USB Reset Interrupt bit (Device mode) ⁽⁵⁾
2.00		1 = Valid USB Reset has occurred
		0 = No USB Reset has occurred
bit 0		DETACHIF: USB Detach Interrupt bit (Host mode) ⁽⁶⁾
		1 = Peripheral detachment was detected by the USB module
		0 = Peripheral detachment was not detected
Note	1.	This bit is valid only if the HOSTEN bit is set (see Register 10-11), there is no activity on the USB for
noto	••	2.5μ s, and the current bus state is not SE0.
	2:	When not in Suspend mode, this interrupt should be disabled.
	3:	Clearing this bit will cause the STAT FIFO to advance.
	4:	Only error conditions enabled through the U1EIE register will set this bit.
	5:	Device mode.
	6:	Host mode.

REGISTER 10-10: U1STAT: USB STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_			—		_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		_			—			_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	_	_			—		_	—
7:0	R-x	R-x	R-x	R-x	R-x	R-x	U-0	U-0
7.0		ENDP	T<3:0>		DIR	PPBI		—

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7-4 **ENDPT<3:0>:** Encoded Number of Last Endpoint Activity bits (Represents the number of the BDT, updated by the last USB transfer.)
 - 1111 = Endpoint 15 1110 = Endpoint 14 . . 0001 = Endpoint 1 0000 = Endpoint 0
- bit 3 **DIR:** Last BD Direction Indicator bit
 - 1 = Last transaction was a transmit transfer (TX)
 - 0 = Last transaction was a receive transfer (RX)
- bit 2 PPBI: Ping-Pong BD Pointer Indicator bit
 - 1 = The last transaction was to the ODD BD bank
 - 0 = The last transaction was to the EVEN BD bank
- bit 1-0 Unimplemented: Read as '0'

Note: The U1STAT register is a window into a 4-byte FIFO maintained by the USB module. U1STAT value is only valid when the TRNIF bit (U1IR<3>) is active. Clearing the TRNIF bit advances the FIFO. Data in register is invalid when the TRNIF bit = 0.

TABLE 11-2:	OUTPUT PIN SELECTION
-------------	----------------------

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPD2	RPD2R	RPD2R<3:0>	0000 = No Connect
RPG8	RPG8R	RPG8R<3:0>	0001 = U3TX
RPF4	RPF4R	RPF4R<3:0>	0010 = U4RTS 0011 = Reserved
RPD10	RPD10R	RPD10R<3:0>	0100 = Reserved
RPF1	RPF1R	RPF1R<3:0>	0101 = Reserved
RPB9	RPB9R	RPB9R<3:0>	0110 = SDO2
RPB10	RPB10R	RPB10R<3:0>	0111 = Reserved
RPC14	RPC14R	RPC14R<3:0>	1000 - Reserved
RPB5 ⁽⁷⁾	RPB5R	RPB5R<3:0>	1010 = Reserved
RPC1 ⁽³⁾	RPC1R	RPC1R<3:0>	1011 = OC3
RPD14 ⁽³⁾	RPD14R	RPD14R<3:0>	
RPG1 ⁽³⁾	RPG1R	RPG1R<3:0>	1110 = SDO3
RPA14 ⁽³⁾	RPA14R	RPA14R<3:0>	1111 = SDO4 ⁽³⁾
RPD3	RPD3R	RPD3R<3:0>	0000 = No Connect
RPG7	RPG7R	RPG7R<3:0>	0001 = U2TX
RPF5	RPF5R	RPF5R<3:0>	0010 = Reserved
RPD11	RPD11R	RPD11R<3:0>	
RPF0	RPF0R	RPF0R<3:0>	0101 = Reserved
RPB1	RPB1R	RPB1R<3:0>	0110 = SDO2
RPE5	RPE5R	RPE5R<3:0>	0111 = Reserved
RPC13	RPC13R	RPC13R<3:0>	1000 = SDO1
RPB3	RPB3R	RPB3R<3:0>	1001 = Reserved
RPF3 ⁽⁴⁾	RPF3R	RPF3R<3:0>	1010 = Reserved 1011 = OC4
RPC4 ⁽³⁾	RPC4R	RPC4R<3:0>	1100 = Reserved
RPD15 ⁽³⁾	RPD15R	RPD15R<3:0>	1101 = C3OUT
RPG0 ⁽³⁾	RPG0R	RPG0R<3:0>	1110 = SDO3
RPA15 ⁽³⁾	RPA15R	RPA15R<3:0>	1111 = SDO4 ⁽³⁾

Note 1: This selection is not available on 64-pin USB devices.

2: This selection is only available on 100-pin General Purpose devices.

3: This selection is not available on 64-pin devices.

4: This selection is not available when USBID functionality is used on USB devices.

5: This selection is not available on devices without a CAN module.

6: This selection is not available on USB devices.

7: This selection is not available when VBUSON functionality is used on USB devices.

TABLE 11-9: PORTE REGISTER MAP FOR 100-PIN DEVICES ONLY

ess		0								E	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6400	ANSELE	31:16	_	_	—	_	_	_	—	-		_	—	_	—	—	—	—	0000
0400	ANGLEE	15:0	_	_	_	_	_	_	ANSELE9	ANSELE8	ANSELE7	ANSELE6	ANSELE5	ANSELE4	—	ANSELE2	ANSELE1	ANSELE0	03F7
6410	TRISE	31:16	_	_	_	_	—	-	-		—		—		—	_	_	—	0000
0410	INICE	15:0	—	—	—	—	_	_	TRISE9	TRISE8	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	03FF
6420	PORTE	31:16	—	—	—	—	_	_	—	_	_				—		—		0000
0420	TORIL	15:0	—	—	—	—	_	_	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
6440	LATE	31:16	—	—	—	—	_		—	_							—		0000
0440	L/ (1 L	15:0	—	—	—	—	_		LATE9	LATE8	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx
6440	ODCE	31:16	—	—	—	—	_		—	_							—		0000
0440	ODOL	15:0	—	—	—	—	_		ODCE9	ODCE8	ODCE7	ODCE6	ODCE5	ODCE4	ODCE3	ODCE2	ODCE1	ODCE0	0000
6450	CNPUE	31:16	—	—	—	—	_		—	_							—		0000
0100		15:0	—	—	—	—	—	—	CNPUE9	CNPUE8	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPDE3	CNPUE2	CNPUE1	CNPUE0	0000
6460	CNPDE	31:16	—	—	—	—	—	—	—	—	—	—		—	—	—	—	—	0000
0100		15:0	—	—	—	—	—	—	CNPDE9	CNPDE8	CNPDE7	CNPDE6	CNPDE5	CNPDE4	CNPDE3	CNPDE2	CNPDE1	CNPDE0	0000
6470	CNCONE	31:16	—	—	—	—	—	—	—	—	—	_		_	—	—	—	—	0000
0110	ONCOME	15:0	ON	—	SIDL	—	—	—	—	—	—	_		_	—	—	—	—	0000
6480	CNENE	31:16	—	—	—	—	—	—	—	—	—	—		—	—	—	—	—	0000
0100	ONLINE	15:0	—	—	—	—	—	—	CNIEE9	CNIEE8	CNIEE7	CNIEE6	CNIEE5	CNIEE4	CNIEE3	CNIEE2	CNIEE1	CNIEE0	0000
		31:16	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	0000
6490	CNSTATE	15:0	—	_	_	—	_		CN STATE9	CN STATE8	CN STATE7	CN STATE6	CN STATE5	CN STATE4	CN STATE3	CN STATE2	CN STATE1	CN STATE0	0000

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

TABLE 11-15: PORTG REGISTER MAP FOR 100-PIN DEVICES ONLY

ess										Bits	5								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6600	ANSELG	31:16		-	—	—	_	_	—	_		—	—			—			0000
0000	JUIGEEO	15:0	ANSELG15	_		—	—	—	ANSELG9	ANSELG8	ANSELG7	ANSELG6	—	_		_	_		83C0
6610	TRISG	31:16	—	_	_	—	—	_	—	_	_	—	_	_	_	_	_	_	0000
0010	TRISO	15:0	TRISG15	TRISG14	TRISG13	TRISG12	—	_	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
6620	PORTG	31:16		-	—	_	-	—	-			—	—	-	_	—	-	—	0000
0020	FURIG	15:0	RG15	RG14	RG13	RG12		_	RG9	RG8	RG7	RG6	_	_	RG3 ⁽²⁾	RG2 ⁽²⁾	RG1	RG0	xxxx
6620	LATG	31:16	_	—	—	_	_	_	—	—	_	—	_	_	_	—	_	—	0000
6630	LAIG	15:0	LATG15	LATG14	LATG13	LATG12	_	_	LATG9	LATG8	LATG7	LATG6	_	_	LATG3	LATG2	LATG1	LATG0	xxxx
0040	ODCG	31:16	_	_		—	_	_	_	_	_	—	_	_	_	—	-	—	0000
6640	ODCG	15:0	ODCG15	ODCG14	ODCG13	ODCG12	_	_	ODCG9	ODCG8	ODCG7	ODCG6	_	_	ODCG3	ODCG2	ODCG1	ODCG0	0000
CCEO	CNPUG	31:16	_	—	—	_	_	_	—	—	_	—	_	_	_	—	_	_	0000
6650	CNPUG	15:0	CNPUG15	CNPUG14	CNPUG13	CNPUG12	_	_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	_	_	CNPUG3	CNPUG2	CNPUG1	CNPUG0	0000
0000	CNPDG	31:16	_	_	_	_	_	_	_	_	_		_	_		_	_	_	0000
6660	CNPDG	15:0	CNPDG15	CNPDG14	CNPDG13	CNPDG12	_	_	CNPDG9	CNPDG8	CNPDG7	CNPDG6	_	_	CNPDG3	CNPDG2	CNPDG1	CNPDG0	0000
0070		31:16	_	_	_	_	_	_	_	_	_		_	_		_	_	_	0000
6670	CNCONG	15:0	ON	_	SIDL	_	_	_	_	_	_	—	_	_	_	_		_	0000
0000		31:16	_	_	_	_	_	_	_	_	_	—	_	_	_	—		_	0000
6680	CNENG	15:0	CNIEG15	CNIEG14	CNIEG13	CNIEG12	_	—	CNIEG9	CNIEG8	CNIEG7	CNIEG6	_	_	CNIEG3	CNIEG2	CNIEG1	CNIEG0	0000
		31:16	_	_	—	_	_	_	_	_	-	—	_	_	—	—	_	—	0000
6690	CNSTATG	15:0	CN STATG15	CN STATG14	CN STATG13	CN STATG12	—	_	CN STATG9	CN STATG8	CN STATG7	CN STATG6	_		CN STATG3	CN STATG2	CN STATG1	CN STATG0	0000

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

2: This bit is only available on devices without a USB module.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	—	—	—	—	—	
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16		_	—	—	_	_	-	—	
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15:8	_	_	_	—	_	—	_	—	
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	_	_	_	_		[pin name	/]R<3:0>		

REGISTER 11-1: [pin name]R: PERIPHERAL PIN SELECT INPUT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-4 Unimplemented: Read as '0'

bit 3-0 **[pin name]R<3:0>:** Peripheral Pin Select Input bits Where [pin name] refers to the pins that are used to configure peripheral input mapping. See Table 11-1 for input pin selection values.

Note: Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.

REGISTER 11-2: RPnR: PERIPHERAL PIN SELECT OUTPUT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	_	_	—	_			_		
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	_	_	—	_	_	-	—		
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15:8	_	—	_	—	_	—	_	—		
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0					RPnR<3:0>					

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 **RPnR<3:0>:** Peripheral Pin Select Output bits See Table 11-2 for output pin selection values.

Note: Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.

REGISTER 23-12: C1FLTCON2: CAN FILTER CONTROL REGISTER 2 (CONTINUED) bit 20-16 FSEL10<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 FLTEN9: Filter 9 Enable bit bit 15 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL9<1:0>: Filter 9 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL9<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN8: Filter 8 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL8<1:0>: Filter 8 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 4-0 FSEL8<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'. Note:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-0	R/W-0									
31.24	C1FIFOBA<31:24>										
23:16	R/W-0	R/W-0									
23.10	C1FIFOBA<23:16>										
15:8	R/W-0	R/W-0									
10.0	C1FIFOBA<15:8>										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0 ⁽¹⁾	R-0 ⁽¹⁾			
7.0	C1FIFOBA<7:0>										

REGISTER 23-15: C1FIFOBA: CAN MESSAGE BUFFER BASE ADDRESS REGISTER

Legend:

Logonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 C1FIFOBA<31:0>: CAN FIFO Base Address bits

These bits define the base address of all message buffers. Individual message buffers are located based on the size of the previous message buffers. This address is a physical address. Bits <1:0> are read-only and read as '0', forcing the messages to be 32-bit word-aligned in device RAM.

Note 1: This bit is unimplemented and will always read '0', which forces word-alignment of messages.

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (C1CON<23:21>) = 100).

REGISTER 28-3: DEVCFG2: DEVICE CONFIGURATION WORD 2 (CONTINUED)

- bit 2-0 **FPLLIDIV<2:0>:** PLL Input Divider bits
 - 111 = 12x divider
 - 110 = 10x divider
 - 101 = 6x divider
 - 100 = 5x divider
 - 011 = 4x divider
 - 010 = 3x divider
 - 001 = 2x divider
 - 000 = 1x divider
- Note 1: This bit is available on PIC32MX2XX/5XX devices only.

АС СНА	RACTERIS	STICS		Standard Op (unless other Operating te	rwise st	ated) re -40'	ons: 2.3V to 3.6V $^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $^{\circ}C \le TA \le +105^{\circ}C$ for V-temp	
Param. No.	Symbol	Charact	eristics	Min.	Max.	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	PBCLK must operate at a minimum of 800 kHz	
			400 kHz mode	1.3	—	μs	PBCLK must operate at a minimum of 3.2 MHz	
			1 MHz mode (Note 1)	0.5	—	μS	_	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	PBCLK must operate at a minimum of 800 kHz	
			400 kHz mode	0.6	—	μS	PBCLK must operate at a minimum of 3.2 MHz	
			1 MHz mode (Note 1)	0.5	—	μS	_	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode (Note 1)	—	100	ns		
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode (Note 1)	_	300	ns		
IS25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	—	
		Setup Time	400 kHz mode	100	_	ns		
			1 MHz mode (Note 1)	100	-	ns		
IS26	THD:DAT	Data Input	100 kHz mode	0	_	ns	—	
		Hold Time	400 kHz mode	0	0.9	μS		
			1 MHz mode (Note 1)	0	0.3	μS		
IS30	TSU:STA	Start Condition	100 kHz mode	4700	—	ns	Only relevant for Repeated	
		Setup Time	400 kHz mode	600	—	ns	Start condition	
			1 MHz mode (Note 1)	250	—	ns		
IS31	THD:STA	Start Condition	100 kHz mode	4000	_	ns	After this period, the first	
		Hold Time	400 kHz mode	600	_	ns	clock pulse is generated	
			1 MHz mode (Note 1)	250	_	ns		
IS33	Tsu:sto	Stop Condition	100 kHz mode	4000	_	ns		
		Setup Time	400 kHz mode	600	_	ns]	
			1 MHz mode (Note 1)	600	_	ns		

TABLE 31-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

TABLE 31-34: ADC MODULE SPECIFICATIONS

		ACTERISTICS	(unless oth	erwise sta	ted)		e 5): 2.5V to 3.6V
		ACTERISTICS	Operating te	emperature			C for Industrial °C for V-temp
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
Device	Supply						
AD01	AVdd	Module VDD Supply	Greater of VDD – 0.3 or 2.5	—	Lesser of VDD + 0.3 or 3.6	V	_
AD02	AVss	Module Vss Supply	Vss	_	AVdd	V	(Note 1)
Referen	ce Inputs						
AD05 AD05a	Vrefh	Reference Voltage High	AVss + 2.0 2.5	_	AVDD 3.6	V V	(Note 1) VREFH = AVDD (Note 3)
AD06	Vrefl	Reference Voltage Low	AVss	—	Vrefh – 2.0	V	(Note 1)
AD07	Vref	Absolute Reference Voltage (VREFH – VREFL)	2.0	—	AVDD	V	(Note 3)
AD08 AD08a	IREF	Current Drain		250 —	400 3	μA μA	ADC operating ADC off
Analog	Input						·
AD12	VINH-VINL	Full-Scale Input Span	VREFL	—	Vrefh	V	—
AD13	VINL	Absolute VINL Input Voltage	AVss – 0.3	—	AVDD/2	V	_
AD14	Vin	Absolute Input Voltage	AVss - 0.3	_	AVDD + 0.3	V	—
AD15	_	Leakage Current	—	±0.001	±0.610	μA	VINL = AVSS = VREFL = 0V, AVDD = VREFH = $3.3V$ Source Impedance = $10 \text{ k}\Omega$
AD17	RIN	Recommended Impedance of Analog Voltage Source	—	_	5k	Ω	(Note 1)
ADC Ac	curacy – N	leasurements with Exte	rnal VREF+/V	REF-			
AD20c	Nr	Resolution		10 data bit	S	bits	_
AD21c	INL	Integral Non-linearity	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V
AD22c	DNL	Differential Non-linearity	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V (Note 2)
AD23c	Gerr	Gain Error	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V
AD24c	Eoff	Offset Error	> -1	—	< 1	Lsb	VINL = AVSS = 0V, AVDD = 3.3V
AD25c	—	Monotonicity	_	_	—	_	Guaranteed

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

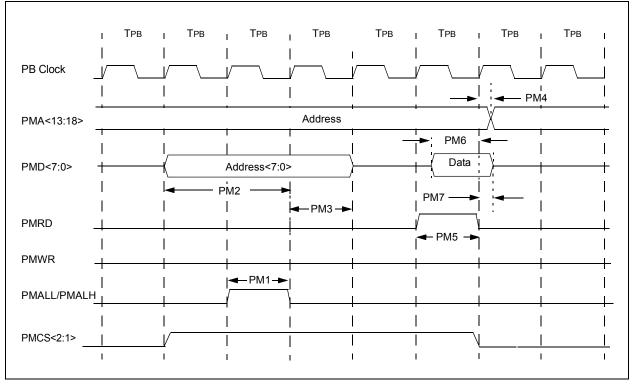

5: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

TABLE 31-37: PARALLEL SLAVE PORT REQUIREMENTS

AC CH	ARACTE	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Para m.No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions			
PS1	TdtV2wr H	Data In Valid before \overline{WR} or \overline{CS} Inactive (setup time)	20			ns	_			
PS2	TwrH2dt I	WR or CS Inactive to Data-In Invalid (hold time)	40	—	—	ns	_			
PS3	TrdL2dt V	RD and CS Active to Data-Out Valid	_	—	60	ns	_			
PS4	TrdH2dtl	RD Active or CS Inactive to Data-Out Invalid	0	—	10	ns	_			
PS5	Tcs	CS Active Time	Трв + 40	_	_	ns	—			
PS6	Twr	WR Active Time	Трв + 25	_	_	ns	—			
PS7	Trd	RD Active Time	Трв + 25		_	ns	—			

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 31-21: PARALLEL MASTER PORT READ TIMING DIAGRAM

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support