

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx150f256h-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4: PIN NAMES FOR 100-PIN GENERAL PURPOSE DEVICES

100-PIN TQFP (TOP VIEW)

PIC32MX130F128L PIC32MX150F256L PIC32MX170F512L

100

Pin #	Full Pin Name	Pin #	Full Pin Name
1	AN28/RG15	36	Vss
2	Vdd	37	VDD
3	AN22/RPE5/PMD5/RE5	38	TCK/CTED2/RA1
4	AN23/PMD6/RE6	39	AN34/RPF13/SCK3/RF13
5	AN27/PMD7/RE7	40	AN35/RPF12/RF12
6	AN29/RPC1/RC1	41	AN12/PMA11/RB12
7	AN30/RPC2/RC2	42	AN13/PMA10/RB13
8	AN31/RPC3/RC3	43	AN14/RPB14/CTED5/PMA1/RB14
9	RPC4/CTED7/RC4	44	AN15/RPB15/OCFB/CTED6/PMA0/RB15
10	AN16/C1IND/RPG6/SCK2/PMA5/RG6	45	Vss
11	AN17/C1INC/RPG7/PMA4/RG7	46	VDD
12	AN18/C2IND/RPG8/PMA3/RG8	47	AN36/RPD14/RD14
13	MCLR	48	AN37/RPD15/SCK4/RD15
14	AN19/C2INC/RPG9/PMA2/RG9	49	RPF4/PMA9/RF4
15	Vss	50	RPF5/PMA8/RF5
16	Vdd	51	RPF3/RF3
17	TMS/CTED1/RA0	52	AN38/RPF2/RF2
18	AN32/RPE8/RE8	53	AN39/RPF8/RF8
19	AN33/RPE9/RE9	54	RPF7/RF7
20	AN5/C1INA/RPB5/RB5	55	RPF6/SCK1/INT0/RF6
21	AN4/C1INB/RB4	56	SDA1/RG3
22	PGED3/AN3/C2INA/RPB3/RB3	57	SCL1/RG2
23	PGEC3/AN2/CTCMP/C2INB/RPB2/CTED13/RB2	58	SCL2/RA2
24	PGEC1/AN1/RPB1/CTED12/RB1	59	SDA2/RA3
25	PGED1/AN0/RPB0/RB0	60	TDI/CTED9/RA4
26	PGEC2/AN6/RPB6/RB6	61	TDO/RA5
27	PGED2/AN7/RPB7/CTED3/RB7	62	VDD
28	VREF-/PMA7/RA9	63	OSC1/CLKI/RC12
29	VREF+/PMA6/RA10	64	OSC2/CLKO/RC15
30	AVdd	65	Vss
31	AVss	66	RPA14/RA14
32	AN8/RPB8/CTED10/RB8	67	RPA15/RA15
33	AN9/RPB9/CTED4/RB9	68	RPD8/RTCC/RD8
34	CVREFOUT/AN10/RPB10/CTED11/PMA13/RB10	69	RPD9/RD9
35	AN11/PMA12/RB11	70	RPD10/PMA15/RD10

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

TABLE 1-1:	PINOUT I/O DESCRIPTIONS	
IADLE I-I.	FINUUT I/U DESCRIFTIONS	CONTINUED)

	04-0111										
Pin Name			Pin Type	Buffer Type	Description						
INT0	35 ⁽¹⁾ , 46 ⁽²⁾	55 ⁽¹⁾ , 72 ⁽²⁾	I	ST	External Interrupt 0						
INT1	PPS	PPS	Ι	ST	External Interrupt 1						
INT2	PPS	PPS	Ι	ST	External Interrupt 2						
INT3	PPS	PPS	Ι	ST	External Interrupt 3						
INT4	PPS	PPS	Ι	ST	External Interrupt 4						
RA0	_	17	I/O	ST							
RA1	_	38	I/O	ST							
RA2	—	58	I/O	ST							
RA3	—	59	I/O	ST	1						
RA4	_	60	I/O	ST	1						
RA5	_	61	I/O	ST							
RA6	_	91	I/O	ST	PORTA is a bidirectional I/O port						
RA7	_	92	I/O	ST							
RA9	_	28	I/O	ST	1						
RA10	_	29	I/O	ST							
RA14	_	66	I/O	ST							
RA15		67	I/O	ST							
RB0	16	25	I/O	ST							
RB1	15	24	I/O	ST							
RB2	14	23	I/O	ST							
RB3	13	22	I/O	ST							
RB4	12	21	I/O	ST							
RB5	11	20	I/O	ST							
RB6	17	26	I/O	ST	1						
RB7	18	27	I/O	ST							
RB8	21	32	I/O	ST	PORTB is a bidirectional I/O port						
RB9	22	33	I/O	ST	1						
RB10	23	34	I/O	ST	1						
RB11	24	35	I/O	ST	1						
RB12	27	41	I/O	ST	1						
RB13	28	42	I/O	ST	1						
RB14	29	43	I/O	ST	1						
RB15	30	44	I/O	ST	1						
Legend: (CMOS = CN	IOS compati t Trigger inpl	ble inpu	it or output	Analog = Analog input I = Input O = Output Is TTL = TTL input buffer P = Power						

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module.

4: This pin is only available on 100-pin devices without a USB module.

TABLE 1-1:	PINOUT I/O DESCRIPTIONS ((CONTINUED)

	Pin Number									
Pin Name	64-pin QFN/ TQFP	QFN/ TOEP		Buffer Type	Description					
RTCC	42	68	0		Real-Time Clock Alarm Output					
CVREFOUT	23	34	0	Analog	Comparator Voltage Reference (Output)					
C1INA	11	20	Ι	Analog						
C1INB	12	21	Ι	Analog	Comparator 1 Inputa					
C1INC	5	11	Ι	Analog	Comparator 1 Inputs					
C1IND	4	10	Ι	Analog						
C2INA	13	22	Ι	Analog						
C2INB	14	23	Ι	Analog	Comporator 2 Inputa					
C2INC	8	14	Ι	Analog	Comparator 2 Inputs					
C2IND	6	12	Ι	Analog	7					
C3INA	58	87	Ι	Analog						
C3INB	55	84	Ι	Analog	Comporator 2 Inputa					
C3INC	54	83	Ι	Analog	Comparator 3 Inputs					
C3IND	51	78	Ι	Analog						
C1OUT	PPS	PPS	0	_	Comparator 1 Output					
C2OUT	PPS	PPS	0	_	Comparator 2 Output					
C3OUT	PPS	PPS	0	_	Comparator 3 Output					
PMALL	30	44	0	TTL/ST	Parallel Master Port Address Latch Enable Low Byte					
PMALH	29	43	0	TTL/ST	Parallel Master Port Address Latch Enable High Byte					
PMA0	30	44	0	TTL/ST	Parallel Master Port Address bit 0 Input (Buffered Slave modes) and Output (Master modes)					
PMA1	29	43	0	TTL/ST	Parallel Master Port Address bit 0 Input (Buffered Slave modes) and Output (Master modes)					
Legend:	egend: CMOS = CMOS compatible input or output Analog = Analog input I = Input O = Out									

Legend: CMOS = CMOS compatible input or output Analog = Analog input I = Input ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer P = Power

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module.

4: This pin is only available on 100-pin devices without a USB module.

Interment Course (1)		Vector #		Persistent			
Interrupt Source ⁽¹⁾	IRQ #		Flag	Enable	Priority	Sub-priority	Interrupt
CNA – PORTA Input Change Interrupt	44	33	IFS1<12>	IEC1<12>	IPC8<12:10>	IPC8<9:8>	Yes
CNB – PORTB Input Change Interrupt	45	33	IFS1<13>	IEC1<13>	IPC8<12:10>	IPC8<9:8>	Yes
CNC – PORTC Input Change Interrupt	46	33	IFS1<14>	IEC1<14>	IPC8<12:10>	IPC8<9:8>	Yes
CND – PORTD Input Change Interrupt	47	33	IFS1<15>	IEC1<15>	IPC8<12:10>	IPC8<9:8>	Yes
CNE – PORTE Input Change Interrupt	48	33	IFS1<16>	IEC1<16>	IPC8<12:10>	IPC8<9:8>	Yes
CNF – PORTF Input Change Interrupt	49	33	IFS1<17>	IEC1<17>	IPC8<12:10>	IPC8<9:8>	Yes
CNG – PORTG Input Change Interrupt	50	33	IFS1<18>	IEC1<18>	IPC8<12:10>	IPC8<9:8>	Yes
PMP – Parallel Master Port	51	34	IFS1<19>	IEC1<19>	IPC8<20:18>	IPC8<17:16>	Yes
PMPE – Parallel Master Port Error	52	34	IFS1<20>	IEC1<20>	IPC8<20:18>	IPC8<17:16>	Yes
SPI2E – SPI2 Fault	53	35	IFS1<21>	IEC1<21>	IPC8<28:26>	IPC8<25:24>	Yes
SPI2RX – SPI2 Receive Done	54	35	IFS1<22>	IEC1<22>	IPC8<28:26>	IPC8<25:24>	Yes
SPI2TX – SPI2 Transfer Done	55	35	IFS1<23>	IEC1<23>	IPC8<28:26>	IPC8<25:24>	Yes
U2E – UART2 Error	56	36	IFS1<24>	IEC1<24>	IPC9<4:2>	IPC9<1:0>	Yes
U2RX – UART2 Receiver	57	36	IFS1<25>	IEC1<25>	IPC9<4:2>	IPC9<1:0>	Yes
U2TX – UART2 Transmitter	58	36	IFS1<26>	IEC1<26>	IPC9<4:2>	IPC9<1:0>	Yes
I2C2B – I2C2 Bus Collision Event	59	37	IFS1<27>	IEC1<27>	IPC9<12:10>	IPC9<9:8>	Yes
I2C2S – I2C2 Slave Event	60	37	IFS1<28>	IEC1<28>	IPC9<12:10>	IPC9<9:8>	Yes
I2C2M – I2C2 Master Event	61	37	IFS1<29>	IEC1<29>	IPC9<12:10>	IPC9<9:8>	Yes
U3E – UART3 Error	62	38	IFS1<30>	IEC1<30>	IPC9<20:18>	IPC9<17:16>	Yes
U3RX – UART3 Receiver	63	38	IFS1<31>	IEC1<31>	IPC9<20:18>	IPC9<17:16>	Yes
U3TX – UART3 Transmitter	64	38	IFS2<0>	IEC2<0>	IPC9<20:18>	IPC9<17:16>	Yes
U4E – UART4 Error	65	39	IFS2<1>	IEC2<1>	IPC9<28:26>	IPC9<25:24>	Yes
U4RX – UART4 Receiver	66	39	IFS2<2>	IEC2<2>	IPC9<28:26>	IPC9<25:24>	Yes
U4TX – UART4 Transmitter	67	39	IFS2<3>	IEC2<3>	IPC9<28:26>	IPC9<25:24>	Yes
U5E – UART5 Error ⁽²⁾	68	40	IFS2<4>	IEC2<4>	IPC10<4:2>	IPC10<1:0>	Yes
U5RX – UART5 Receiver ⁽²⁾	69	40	IFS2<5>	IEC2<5>	IPC10<4:2>	IPC10<1:0>	Yes
U5TX – UART5 Transmitter ⁽²⁾	70	40	IFS2<6>	IEC2<6>	IPC10<4:2>	IPC10<1:0>	Yes
CTMU – CTMU Event ⁽²⁾	71	41	IFS2<7>	IEC2<7>	IPC10<12:10>	IPC10<9:8>	Yes
DMA0 – DMA Channel 0	72	42	IFS2<8>	IEC2<8>	IPC10<20:18>	IPC10<17:16>	No
DMA1 – DMA Channel 1	73	43	IFS2<9>	IEC2<9>	IPC10<28:26>	IPC10<25:24>	No
DMA2 – DMA Channel 2	74	44	IFS2<10>	IEC2<10>	IPC11<4:2>	IPC11<1:0>	No
DMA3 – DMA Channel 3	75	45	IFS2<11>	IEC2<11>	IPC11<12:10>	IPC11<9:8>	No
CMP3 – Comparator 3 Interrupt	76	46	IFS2<12>	IEC2<12>	IPC11<20:18>	IPC11<17:16>	No
CAN1 – CAN1 Event	77	47	IFS2<13>	IEC2<13>	IPC11<28:26>	IPC11<25:24>	Yes
SPI3E – SPI3 Fault	78	48	IFS2<14>	IEC2<14>	IPC12<4:2>	IPC12<1:0>	Yes
SPI3RX – SPI3 Receive Done	79	48	IFS2<15>	IEC2<15>	IPC12<4:2>	IPC12<1:0>	Yes
SPI3TX – SPI3 Transfer Done	80	48	IFS2<16>	IEC2<16>	IPC12<4:2>	IPC12<1:0>	Yes
SPI4E – SPI4 Fault ⁽²⁾	81	49	IFS2<17>	IEC2<17>	IPC12<12:10>	IPC12<9:8>	Yes
SPI4RX – SPI4 Receive Done ⁽²⁾	82	49	IFS2<18>	IEC2<18>	IPC12<12:10>	IPC12<9:8>	Yes
SPI4TX – SPI4 Transfer Done ⁽²⁾	83	49	IFS2<19>	IEC2<19>	IPC12<12:10>	IPC12<9:8>	Yes
	•	Lowe	st Natural Or	der Priority		1	

TABLE 5-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX1XX/2XX/5XX 64/100-pin Controller Family Features" for the list of available peripherals.

2: This interrupt source is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.04	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	_	—	_	IP3<2:0>			IS3<1:0>		
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	—	—	_	IP2<2:0>			IS2<	1:0>	
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.0	—	—	—		IP1<2:0>		IS1<1:0>		
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	_	_	_	IP0<2:0>			IS0<	:1:0>	

REGISTER 5-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

000 = Interrupt is disabled

bit 25-24 **IS3<1:0>:** Interrupt Subpriority bits

- 11 = Interrupt subpriority is 3
- 10 = Interrupt subpriority is 2
- 01 = Interrupt subpriority is 1
- 00 = Interrupt subpriority is 0
- bit 23-21 Unimplemented: Read as '0'

bit 20-18 IP2<2:0>: Interrupt Priority bits

```
111 = Interrupt priority is 7
```

```
•
•
• • • •
```

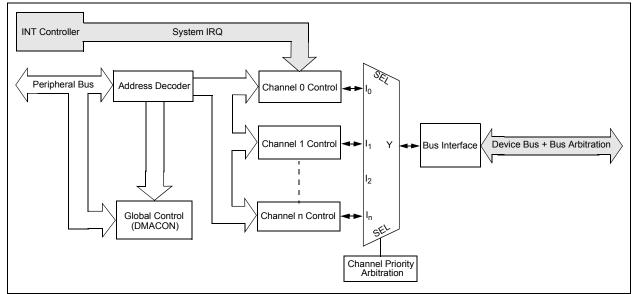
- 010 = Interrupt priority is 2
- 001 = Interrupt priority is 1 000 = Interrupt is disabled
- bit 17-16 **IS2<1:0>:** Interrupt Subpriority bits
 - 11 = Interrupt subpriority is 3
 - 10 = Interrupt subpriority is 2
 - 01 = Interrupt subpriority is 1
 - 00 = Interrupt subpriority is 0
- bit 15-13 Unimplemented: Read as '0'
- bit 12-10 IP1<2:0>: Interrupt Priority bits

111 = Interrupt priority is 7

- 010 = Interrupt priority is 2 001 = Interrupt priority is 1
- 000 = Interrupt is disabled

Note: This register represents a generic definition of the IPCx register. Refer to Table 5-1 for the exact bit definitions.

9.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS60001117) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The PIC32 Direct Memory Access (DMA) controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the PIC32 (such as Peripheral Bus (PBUS) devices: SPI, UART, PMP, etc.) or memory itself.

The following are some of the key features of the DMA controller module:

- Four identical channels, each featuring:
 - Auto-increment source and destination address registers
 - Source and destination pointers
 - Memory to memory and memory to peripheral transfers
- Automatic word-size detection:
 - Transfer granularity, down to byte level
 - Bytes need not be word-aligned at source and destination

- Fixed priority channel arbitration
- · Flexible DMA channel operating modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- Flexible DMA requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 - Pattern (data) match transfer termination
- Multiple DMA channel status interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Destination full or half full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- DMA debug support features:
 - Most recent address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- · CRC Generation module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable

FIGURE 9-1: DMA BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	_	—	_	_	—	_	
22.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	_	_		—	-	
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15:8	—	—	_	—	_	_	—	_	
7.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
7:0	_	—	_	_	RDWR	[DMACH<2:0>		

REGISTER 9-2: DMASTAT: DMA STATUS REGISTER

Legend:

0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-4 Unimplemented: Read as '0'

- bit 3 RDWR: Read/Write Status bit
 - 1 = Last DMA bus access was a read
 - 0 = Last DMA bus access was a write
- bit 2-0 **DMACH<2:0>:** DMA Channel bits These bits contain the value of the most recent active DMA channel.

REGISTER 9-3: DMAADDR: DMA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
31:24	DMAADDR<31:24>									
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
23:16	DMAADDR<23:16>									
15:8	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
0.61	DMAADDR<15:8>									
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0				DMAADD	R<7:0>					

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 DMAADDR<31:0>: DMA Module Address bits

These bits contain the address of the most recent DMA access.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—						_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—			-			_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	-	—	-	-	_	-	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	LSPDEN			D	EVADDR<6:0	>		

REGISTER 10-12: U1ADDR: USB ADDRESS REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7 **LSPDEN:** Low Speed Enable Indicator bit

1 = Next token command to be executed at Low Speed

0 = Next token command to be executed at Full Speed

bit 6-0 **DEVADDR<6:0>:** 7-bit USB Device Address bits

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	-	-	-	_	-	-
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	—	_	_	_	—	-	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	-	—	-	-	-	—		—
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0				FRML	.<7:0>			

REGISTER 10-13: U1FRML: USB FRAME NUMBER LOW REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **FRML<7:0>:** The 11-bit Frame Number Lower bits

The register bits are updated with the current frame number whenever a SOF TOKEN is received.

11.1 Parallel I/O (PIO) Ports

All port pins have ten registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx, and TRISx registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin, regardless of the output function including PPS remapped output functions to act as an open-drain output. The only exception is the l^2C pins that are open drain by default.

The open-drain feature allows the presence of outputs higher than V_{DD} (e.g., 5V) on any desired 5V-tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the **"Device Pin Tables"** section for the available pins and their functionality.

11.1.2 CONFIGURING ANALOG AND DIGITAL PORT PINS

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSEL and TRIS bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default. The ANSELx register bit, when cleared, disables the corresponding digital input buffer pin(s).

If the TRIS bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or Comparator module. The TRISx bits only control the corresponding digital output buffer pin(s).

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level; i.e., when ANSELx = 1; TRISx = x).

Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.1.3 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be an NOP.

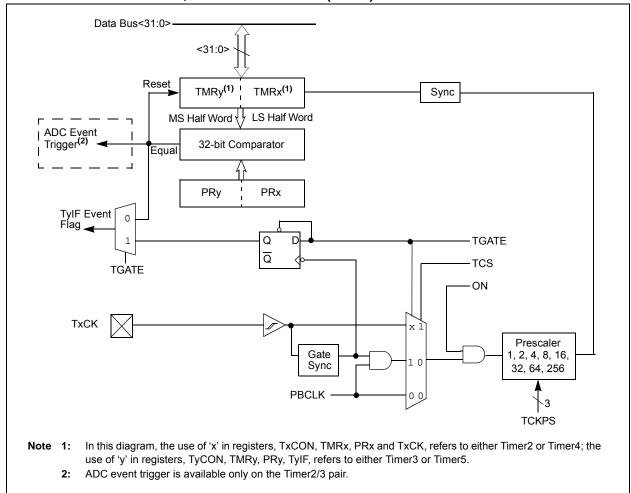
11.1.4 INPUT CHANGE NOTIFICATION

The input Change Notification (CN) function of the I/O ports allows the PIC32MX1XX/2XX/5XX 64/100-pin devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a change-of-state.

Five control registers are associated with the CN functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit.

11.1.5 INTERNALLY SELECTABLE PULL-UPS AND PULL-DOWNS


Each I/O pin also has a weak pull-up and every I/O pin has a weak pull-down connected to it, which are independent of any other I/O pin functionality (i.e., PPS, Open Drain, or CN). The pull-ups act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

An additional control register (CNCONx) is shown in Register 11-3.

11.2 CLR, SET, and INV Registers

Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read.

FIGURE 13-2: TIMER2/3, 4/5 BLOCK DIAGRAM (32-BIT)⁽¹⁾

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22.16	R/W-0, HC	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
23:16	RDSTART	—	_	_	_	_	DUALBUF	_
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾	—	SIDL	ADRMU	JX<1:0>	PMPTTL	PTWREN	PTRDEN
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
7:0	CSF<	1:0> (2)	ALP ⁽²⁾	CS2P ⁽²⁾	CS1P ⁽²⁾	_	WRSP	RDSP

REGISTER 20-1: PMCON: PARALLEL PORT CONTROL REGISTER

Legend:	HC = Hardware cleared	HC = Hardware cleared		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-24 Unimplemented: Read as '0'

- bit 23 RDSTART: Start a Read on the PMP Bus bit⁽³⁾
 - 1 = Start a read cycle on the PMP bus
 - 0 = No effect

This bit is cleared by hardware at the end of the read cycle when the BUSY bit (PMMODE<15>) = 0.

bit 22-18 Unimplemented: Read as '0'

bit 17 **DUALBUF:** Parallel Master Port Dual Read/Write Buffer Enable bit

- This bit is only valid in Master mode.
- PMP uses separate registers for reads and writes Reads: PMRADDR and PMRDIN Writes: PMRWADDR and PMDOUT
- 0 = PMP uses legacy registers for reads and writes Reads/Writes: PMADDR and PMRDIN
- bit 16 Unimplemented: Read as '0'
- bit 15 **ON:** Parallel Master Port Enable bit⁽¹⁾
 - 1 = PMP enabled
 - 0 = PMP disabled, no off-chip access performed
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit

bit 10

- 1 = Discontinue module operation when device enters Idle mode
- 0 = Continue module operation in Idle mode

bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits

- 11 = Lower 8 bits of address are multiplexed on PMD<15:0> pins
- 10 = All 16 bits of address are multiplexed on PMD<7:0> pins
- 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<15:8>
- 00 = Address and data appear on separate pins
- PMPTTL: PMP Module TTL Input Buffer Select bit
 - 1 = PMP module uses TTL input buffers
 - 0 = PMP module uses Schmitt Trigger input buffer
- bit 9 PTWREN: Write Enable Strobe Port Enable bit
 - 1 = PMWR/PMENB port enabled
 - 0 = PMWR/PMENB port disabled
 - **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
 - **2:** These bits have no effect when their corresponding pins are used as address lines.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24		-	_	_	_	_	_	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	_	_		_	_		_	—	
45.0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	BUSY	IRQM	<1:0>	INCM	<1:0>	MODE16	MODE	=<1:0>	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	WAITB	<1:0> (1)		WAITM<3:0> ⁽¹⁾			WAITE<1:0>(1)		

REGISTER 20-2: PMMODE: PARALLEL PORT MODE REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

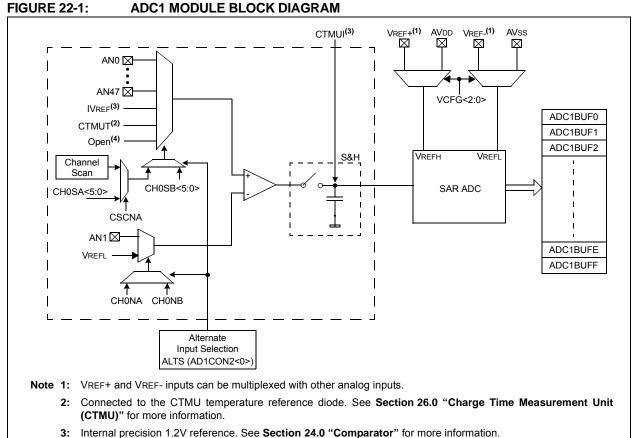
- bit 15 **BUSY:** Busy bit (Master mode only)
 - 1 = Port is busy
 - 0 = Port is not busy

bit 14-13 **IRQM<1:0>:** Interrupt Request Mode bits

- 11 = Reserved, do not use
- 10 = Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> =11 (Addressable Slave mode only)
- 01 = Interrupt generated at the end of the read/write cycle
- 00 = No Interrupt generated
- bit 12-11 INCM<1:0>: Increment Mode bits
 - 11 = Slave mode read and write buffers auto-increment (MODE<1:0> = 00 only)
 - 10 = Decrement ADDR<15:0> by 1 every read/write cycle⁽²⁾
 - 01 = Increment ADDR<15:0> by 1 every read/write cycle⁽²⁾
 - 00 = No increment or decrement of address
- bit 10 **MODE16:** 8/16-bit Mode bit
 - 1 = 16-bit mode: a read or write to the data register invokes a single 16-bit transfer
 - 0 = 8-bit mode: a read or write to the data register invokes a single 8-bit transfer
- bit 9-8 MODE<1:0>: Parallel Port Mode Select bits
 - 11 = Master mode 1 (PMCSx, PMRD/PMWR, PMENB, PMA<x:0>, PMD<7:0> and PMD<8:15>⁽³⁾)
 - 10 = Master mode 2 (PMCSx, PMRD, PMWR, PMA<x:0>, PMD<7:0> and PMD<8:15>⁽³⁾)
 - 01 = Enhanced Slave mode, control signals (PMRD, PMWR, PMCS, PMD<7:0> and PMA<1:0>)
 - 00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS and PMD<7:0>)

bit 7-6 WAITB<1:0>: Data Setup to Read/Write Strobe Wait States bits⁽¹⁾

- 11 = Data wait of 4 TPB; multiplexed address phase of 4 TPB
- 10 = Data wait of 3 TPB; multiplexed address phase of 3 TPB
- 01 = Data wait of 2 TPB; multiplexed address phase of 2 TPB
- 00 = Data wait of 1 TPB; multiplexed address phase of 1 TPB (default)
- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
 - 2: Address bits, A15 and A14, are not subject to automatic increment/decrement if configured as Chip Select CS2 and CS1.
 - 3: These pins are active when MODE16 = 1 (16-bit mode).


22.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104) in the "PIC32 Family Reference Manual", which is available the Microchip from web site (www.microchip.com/PIC32).

The 10-bit Analog-to-Digital Converter (ADC) includes the following features:

- Successive Approximation Register (SAR) conversion
- · Up to 1 Msps conversion speed
- Up to 48 analog input pins
- External voltage reference input pins
- One unipolar, differential Sample and Hold Amplifier (SHA)
- · Automatic Channel Scan mode
- Selectable conversion trigger source
- · 16-word conversion result buffer
- · Selectable buffer fill modes
- · Eight conversion result format options
- · Operation during CPU Sleep and Idle modes

A block diagram of the 10-bit ADC is illustrated in Figure 22-1. The 10-bit ADC has up to 28 analog input pins, designated AN0-AN27. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins and may be common to other analog module references.

4: This selection is only used with CTMU capacitive and time measurement.

REGISTER 23-2: C1CFG: CAN BAUD RATE CONFIGURATION REGISTER (CONTINUED)

- bit 10-8 **PRSEG<2:0>:** Propagation Time Segment bits⁽⁴⁾ 111 = Length is $8 \times TQ$ $000 = \text{Length is } 1 \times TQ$ SJW<1:0>: Synchronization Jump Width bits⁽³⁾ bit 7-6 11 = Length is $4 \times TQ$ $10 = \text{Length is } 3 \times TQ$ 01 = Length is 2 x TQ $00 = \text{Length is } 1 \times TQ$ bit 5-0 BRP<5:0>: Baud Rate Prescaler bits 111111 = Tq = (2 x 64)/SYSCLK 111110 = TQ = (2 x 63)/SYSCLK • 000001 = TQ = (2 x 2)/SYSCLK $000000 = TQ = (2 \times 1)/SYSCLK$ Note 1: SEG2PH \leq SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically. 2: 3 Time bit sampling is not allowed for BRP < 2.
 - **3:** SJW \leq SEG2PH.
 - **4:** The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (C1CON<23:21>) = 100).

31.1 DC Characteristics

TABLE 31-1: OPERATING MIPS VS. VOLTAGE

	Voo Bango	Temp. Range	Max. Frequency
Characteristic	VDD Range (in Volts) ⁽¹⁾	(in °C)	PIC32MX1XX/2XX/5XX 64/100-pin Family
DC5	VBOR-3.6V	-40°C to +105°C	40 MHz

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 31-10 for BOR values.

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Typical	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
V-temp Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+105	°C
Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD – S IOH)	PD	PINT + PI/O		W	
I/O Pin Power Dissipation: I/O = S (({VDD – VOH} x IOH) + S (VOL x IOL))					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	A	W

TABLE 31-3: THERMAL PACKAGING CHARACTERISTICS

Characteristics	Symbol	Typical	Max.	Unit	Notes
Package Thermal Resistance, 64-pin QFN	θJA	28	_	°C/W	1
Package Thermal Resistance, 64-pin TQFP, 10 mm x 10 mm	θJA	55	_	°C/W	1
Package Thermal Resistance, 100-pin TQFP, 12 mm x 12 mm	θJA	52	_	°C/W	1
Package Thermal Resistance, 100-pin TQFP, 14 mm x 14 mm	θJA	50		°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)					
			$\begin{array}{ll} \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$					
Param. No.		Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions	
	VIL	Input Low Voltage						
DI10		I/O Pins with PMP	Vss	—	0.15 Vdd	V		
		I/O Pins	Vss	—	0.2 Vdd	V		
DI18		SDAx, SCLx	Vss	—	0.3 VDD	V	SMBus disabled (Note 4)	
DI19		SDAx, SCLx	Vss	—	0.8	V	SMBus enabled (Note 4)	
	VIH	Input High Voltage						
DI20		I/O Pins not 5V-tolerant ⁽⁵⁾	0.65 VDD	_	Vdd	V	(Note 4,6)	
		I/O Pins 5V-tolerant with PMP ⁽⁵⁾	0.25 VDD + 0.8V	—	5.5	V	(Note 4,6)	
		I/O Pins 5V-tolerant ⁽⁵⁾	0.65 VDD	—	5.5	V		
DI28		SDAx, SCLx	0.65 VDD	—	5.5	V	SMBus disabled (Note 4,6)	
DI29		SDAx, SCLx	2.1	_	5.5	V	SMBus enabled, 2.3V ≤ VPIN ≤ 5.5 (Note 4,6)	
DI30	ICNPU	Change Notification Pull-up Current	_	-200	-50	μA	VDD = 3.3V, VPIN = VSS (Note 3,6)	
DI31	ICNPD	Change Notification Pull-down Current ⁽⁴⁾	50	200	—	μA	VDD = 3.3V, VPIN = VDD	
	lı∟	Input Leakage Current (Note 3)						
DI50		I/O Ports	_	—	<u>+</u> 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance	
DI51		Analog Input Pins	_	_	<u>+</u> 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance	
DI55		MCLR ⁽²⁾	_	_	<u>+</u> 1	μA	$VSS \le VPIN \le VDD$	
DI56		OSC1	-	—	<u>+</u> 1	μΑ	$VSS \le VPIN \le VDD,$ XT and HS modes	

TABLE 31-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the "Device Pin Tables" section for the 5V-tolerant pins.
- **6:** The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of ICNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.

32.1 DC Characteristics

TABLE 32-1: OPERATING MIPS VS. VOLTAGE

	VDD Range Temp. Range		Max. Frequency		
	VDD Range (in Volts) ⁽¹⁾	(in °C)	PIC32MX1XX/2XX/5XX 64/100-pin Family		
MDC5	VBOR-3.6V	-40°C to +85°C	50 MHz		

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 31-10 for BOR values.

TABLE 32-2: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARA	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			rwise stated)			
Parameter No.	Typical ⁽³⁾	Max.	Units Conditions				
Operating Current (IDD) (Note 1, 2)							
MDC24	25	40	mA 50 MHz				

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

2: The test conditions for IDD measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU, Program Flash, and SRAM data memory are operational, SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- CPU executing while(1) statement from Flash
- **3:** RTCC and JTAG are disabled
- **4:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 32-3: DC CHARACTERISTICS: IDLE CURRENT (lidle)

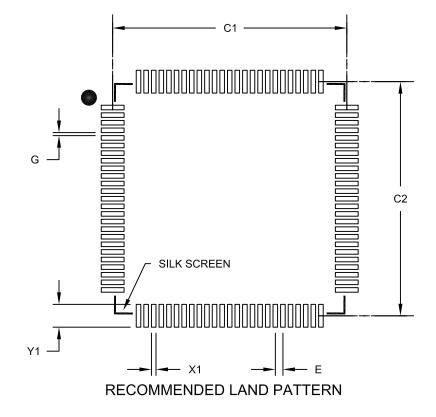
DC CHARACT	C CHARACTERISTICS		Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial			
Parameter No.	Typical ⁽²⁾	Max.	Units Conditions			
Idle Current (IIDLE): Core Off, Clock on Base Current (Note 1)						
MDC34a	9.5	24	mA 50 MHz			

Note 1: The test conditions for IIDLE current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- + CPU is in Idle mode (CPU core Halted), and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No.	Typical ⁽²⁾	Max.	Units	Conditions			
Power-Do	own Curren	t (IPD) (Not	e 1)				
MDC40k	50	150	μA	-40°C	Base Power-Down Current		
MDC40n	250	650	μA	+85°C	Base Power-Down Current		
Module D	ifferential C	Current					
MDC41e	15	55	μA	3.6V	Watchdog Timer Current: AIWDT (Note 3)		
MDC42e	34	55	μA	3.6V	RTCC + Timer1 w/32 kHz Crystal: AIRTCC (Note		
MDC43d	1100	1800	μA	3.6V	ADC: Aladc (Notes 3,4)		

TABLE 32-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)


Note 1: The test conditions for IPD current measurements are as follows:

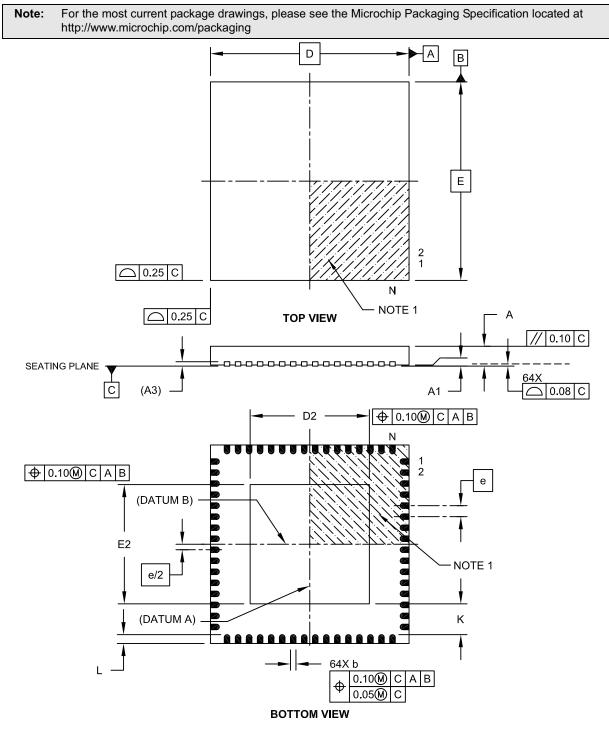
• Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

- · OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Sleep mode, and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- **3:** The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch	0.50 BSC			
Contact Pad Spacing	C1		15.40	
Contact Pad Spacing	C2		15.40	
Contact Pad Width (X100)	X1			0.30
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		


Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Microchip Technology Drawing C04-154A Sheet 1 of 2