

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx150f256h-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

2.10 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-8, Figure 2-9, and Figure 2-10.

FIGURE 2-9: AUDIO PLAYBACK APPLICATION

3.2 Architecture Overview

The MIPS32[®] M4K[®] processor core contains several logic blocks working together in parallel, providing an efficient high-performance computing engine. The following blocks are included with the core:

- Execution Unit
- Multiply/Divide Unit (MDU)
- System Control Coprocessor (CP0)
- Fixed Mapping Translation (FMT)
- Dual Internal Bus interfaces
- Power Management
- MIPS16e[®] Support
- · Enhanced JTAG (EJTAG) Controller

3.2.1 EXECUTION UNIT

The MIPS32[®] M4K[®] processor core execution unit implements a load/store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit General Purpose Registers (GPRs) used for integer operations and address calculation.

The execution unit includes:

- · 32-bit adder used for calculating the data address
- Address unit for calculating the next instruction address
- Logic for branch determination and branch target address calculation
- · Load aligner
- Bypass multiplexers used to avoid stalls when executing instruction streams where data producing instructions are followed closely by consumers of their results
- Leading Zero/One detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing bitwise logical operations
- Shifter and store aligner

3.2.2 MULTIPLY/DIVIDE UNIT (MDU)

The MIPS32[®] M4K[®] processor core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline for multiply and divide operations. This pipeline operates in parallel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions.

The high-performance MDU consists of a 32x16 booth recoded multiplier, result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown ('32' of 32x16) represents the *rs* operand. The second number ('16' of 32x16) represents the *rt* operand. The PIC32 core only checks the value of the latter (*rt*) operand to determine how many times the operation must pass through the multiplier. The 16x16 and 32x16 operations pass through the multiplier once. A 32x32 operation passes through the multiplier twice.

The MDU supports execution of one 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issuance of back-to-back 32x32 multiply operations. The multiply operand size is automatically determined by logic built into the MDU.

Divide operations are implemented with a simple 1 bit per clock iterative algorithm. An early-in detection checks the sign extension of the dividend (*rs*) operand. If *rs* is 8 bits wide, 23 iterations are skipped. For a 16-bit wide *rs*, 15 iterations are skipped and for a 24-bit wide *rs*, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation is completed.

Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the PIC32 core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks.

TABLE 3-1:MIPS32[®] M4K[®] PROCESSOR CORE HIGH-PERFORMANCE INTEGER MULTIPLY/
DIVIDE UNIT LATENCIES AND REPEAT RATES

Op code	Operand Size (mul rt) (div rs)	Latency	Repeat Rate
MULT/MULTU, MADD/MADDU,	16 bits	1	1
MSUB/MSUBU	32 bits	2	2
MUL	16 bits	2	1
	32 bits	3	2
DIV/DIVU	8 bits	12	11
	16 bits	19	18
	24 bits	26	25
	32 bits	33	32

NOTES:

TABLE 9-3: DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP (CONTINUED)

ess		6								Bi	its								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000		31:16	—	_	-	—	—	—	—	—	-	-	-	-	-	-	—	—	0000
3280	DCH2CPTR	15:0								CHCPT	R<15:0>								0000
	DOUGDAT	31:16	_	_	_	_		_		_	_	_	_	_	_	_	_	_	0000
3290	DCH2DAI	15:0			_			_		_		•	•	CHPDA	T<7:0>	•	•		0000
2240	DOUDOON	31:16	_		_			_		_	_	_	_	_	_	—	_		0000
32A0	DCH3CON	15:0	CHBUSY		—	—		_		CHCHNS	CHEN	CHAED	CHCHN	CHAEN	_	CHEDET	CHPR	l<1:0>	0000
32B0		31:16	—	_	_	—	_	_	—	_			-	CHAIR	Q<7:0>				00FF
5200	DONISLOON	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN		—	—	FFF8
3200	DCH3INT	31:16	—	—	—	—	—	—	—		CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
0200	Donointi	15:0	_	—	—	_		—		—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
32D0	DCH3SSA	31:16								CHSSA	\<31:0>								0000
		15:0																	0000
32E0	DCH3DSA	31:16 15:0								CHDSA	\<31:0>								0000
		31:16	_		_	_		_		_	_	_	_	_	_	_	_		0000
32F0	DCH3SSIZ	15:0								CHSSIZ	Z<15:0>								0000
2200	DOUDDOIZ	31:16	—	_	_	_		_	_	_	_	_	—	—	—	—	_	—	0000
3300	DCH3DSIZ	15:0			•			•		CHDSIZ	Z<15:0>	•							0000
2210	ПСЦЗЕПТВ	31:16	—	_	_	_	_	—	_	—	_	_	_	—	_	—	_	_	0000
3310	DOI133FTR	15:0								CHSPT	R<15:0>								0000
3320		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
3320		15:0								CHDPT	R<15:0>								0000
3330	DCH3CSIZ	31:16	—	—	—	—		—	—	—	—	—	—	—	—	—	—	—	0000
	DONOCOL	15:0								CHCSIZ	Z<15:0>								0000
3340	DCH3CPTR	31:16		—	—	—		—	—	—	—	—	—	—	—	—	_	—	0000
		15:0								CHCPT	R<15:0>								0000
3350	DCH3DAT	31:16	—	_	—	—	_		—	—	—	—	—	-	— T :7 0:	—	—		0000
	3350 DCH3DAI	15:0	—	_	_	_	_	_	_	_				CHPDA	AT<7:0>				0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

REGISTE	:R 9-8: D	CHXECON:	DMA CHAN	NEL X EVI	ENTCONTI	KOL REGIS	IER	
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	_	—	—	—	—
23:16	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	CHAIRQ<7:0> ⁽¹⁾							
15.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
15.0				CHSIRQ	<7:0> ⁽¹⁾			
7:0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
7.0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN			_

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 **-** -· ~ '

bit 31-24	Unimplemented: Read as 10
bit 23-16	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag
	•
	•
	•
	00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag 00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag
bit 15-8	CHSIRQ<7:0>: Channel Transfer Start IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will initiate a DMA transfer
	•
	•
	•
	00000001 = Interrupt 1 will initiate a DMA transfer
	0000000 = Interrupt 0 will initiate a DMA transfer
bit 7	CFORCE: DMA Forced Transfer bit
	 1 = A DMA transfer is forced to begin when this bit is written to a '1' 0 = This bit always reads '0'
bit 6	CABORT: DMA Abort Transfer bit
	1 = A DMA transfer is aborted when this bit is written to a '1'
	0 = This bit always reads '0'
bit 5	PATEN: Channel Pattern Match Abort Enable bit
	1 = Abort transfer and clear CHEN on pattern match

- 0 = Pattern match is disabled
- bit 4 SIRQEN: Channel Start IRQ Enable bit
 - 1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs
 - 0 = Interrupt number CHSIRQ is ignored and does not start a transfer
- bit 3 AIRQEN: Channel Abort IRQ Enable bit
 - 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs
 - 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
- bit 2-0 Unimplemented: Read as '0'
- Note 1: See Table 5-1: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	_	—	—	—
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
23:16 15:8				CHSPTR	<15:8>			
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7.0				CHSPTF	R<7:0>			

REGISTER 9-14: DCHxSPTR: DMA CHANNEL 'x' SOURCE POINTER REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSPTR<15:0>: Channel Source Pointer bits

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

REGISTER 9-15: DCHxDPTR: DMA CHANNEL 'x' DESTINATION POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24		—	—	—	—	—	—	_				
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16		—	—	—	—	—	—	_				
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
31:24 23:16 15:8 7:0		CHDPTR<15:8>										
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0				CHDPTF	R<7:0>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16	Unimplemented: Read as '0'
-----------	----------------------------

bit 15-0 CHDPTR<15:0>: Channel Destination Pointer bits

1111111111111111 = Points to byte 65,535 of the destination

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—		—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	-	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	_	_	_	_	_		—
	R-x	R-x	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		SEO	PKTDIS ⁽⁴⁾			RESUME ⁽³⁾	DDDDCT	USBEN ⁽⁴⁾
	JUNE	JSTATE SEU	TOKBUSY ^(1,5)	USBROI			PPBR51	SOFEN ⁽⁵⁾

REGISTER 10-11: U1CON: USB CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **JSTATE:** Live Differential Receiver JSTATE flag bit 1 = JSTATE detected on the USB
 - 0 = No JSTATE detected
- bit 6 SE0: Live Single-Ended Zero flag bit
 1 = Single Ended Zero detected on the USB
 0 = No Single Ended Zero detected
- bit 5 **PKTDIS:** Packet Transfer Disable bit⁽⁴⁾
 - 1 = Token and packet processing disabled (set upon SETUP token received)
 - 0 = Token and packet processing enabled
 - TOKBUSY: Token Busy Indicator bit^(1,5)
 - 1 = Token being executed by the USB module
 - 0 = No token being executed

bit 4 USBRST: Module Reset bit⁽⁵⁾

- 1 = USB reset generated
- 0 = USB reset terminated

bit 3 HOSTEN: Host Mode Enable bit⁽²⁾

- 1 = USB host capability enabled
- 0 = USB host capability disabled

bit 2 **RESUME:** RESUME Signaling Enable bit⁽³⁾

- 1 = RESUME signaling activated
- 0 = RESUME signaling disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 10-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - **3:** Software must set the RESUME bit for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

12.0 TIMER1

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX/5XX 64/100-pin family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32). This family of PIC32 devices features one synchronous/ asynchronous 16-bit timer that can operate as a freerunning interval timer for various timing applications and counting external events. This timer can also be used with the Low-Power Secondary Oscillator (Sosc) for Real-Time Clock (RTC) applications. The following modes are supported:

- Synchronous Internal Timer
- Synchronous Internal Gated Timer
- Synchronous External Timer
- Asynchronous External Timer

12.1 Additional Supported Features

- · Selectable clock prescaler
- Timer operation during CPU Idle and Sleep mode
- Fast bit manipulation using CLR, SET and INV registers
- Asynchronous mode can be used with the Sosc to function as a Real-Time Clock (RTC)

FIGURE 12-1: TIMER1 BLOCK DIAGRAM

20.1 Control Registers

TABLE 20-1: PARALLEL MASTER PORT REGISTER MAP

ess			Bits																
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
7000	PMCON	31:16	_		—	_	—	—	_	—	RDSTART		—	_	—		DUALBUF	—	0000
1000	TWOON	15:0	ON	_	SIDL	ADRMU	JX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF	<1:0>	ALP	CS2P	CS1P	—	WRSP	RDSP	0000
7010	PMMODE	31:16	—	—	—	—	—	—	—		—	—	—	—	—	—	—	—	0000
1010	TIMMODE	15:0	BUSY	IRQM	<1:0>	INCM	l<1:0>	MODE16	MODE	<1:0>	WAITE	3<1:0>		WAITM	Л<3:0>		WAITE	<1:0>	0000
		31:16	—	_	—	—	—	—	—		—	—	—	—	—	—	_	—	0000
7020	PMADDR	15:0	CS2	CS1							ADDR	<13:0>							0000
			ADDR15	ADDR14															0000
7030	PMDOUT	31:16	_	—	_	_	—	_	_		—		_	_	_			—	0000
		15:0					-	-		DATAOL	JT<15:0>		-						0000
7040	PMDIN	31:16	_	_	_	_	—	—	_	_	_	_	_	_	_	_		_	0000
		15:0								DATAIN	N<15:0>								0000
7050	PMAEN	31:16		—			—	—		—	—		—					—	0000
		15:0								PTEN	<15:0>								0000
7060	PMSTAT	31:16	_	—	_	_	-	—	_		—	—		_	—		—		0000
	_	15:0	IBF	IBOV	_	—	IB3F	IB2F	IB1F	IB0F	OBE	OBUF		—	OB3E	OB2E	OB1E	OB0E	BFBF
		31:16	_	—	—	—	_	—	—	—	—	—		—	—	_	—	_	0000
7070	PMWADDR	15:0	WCS2	WCS1	_	_	—	_	_	_	_	_	_	_	_	_	_	_	0000
			WADDR15	WADDR14							WADDF	R<13:0>							0000
		31:16	_	—	—	—	—	—	—	—	—	—		—	—				0000
7080	PMRADDR	15:0	RCS2	RCS1		—	—	—	—	—	—		—	—				—	0000
		RADDR15 RADDR14 RADDR<13:0>							0000										
7090	PMRDIN	31:16	31:16	—	—	—	-	—	—	—	—	—	-	—	—	—	—	_	0000
		15:0	15:0 RDATAIN<15:0> 0000																

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

REGISTER 22-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED)

- bit 4 **CLRASAM:** Stop Conversion Sequence bit (when the first ADC interrupt is generated)
 - 1 = Stop conversions when the first ADC interrupt is generated. Hardware clears the ASAM bit when the ADC interrupt is generated.
 - 0 = Normal operation, buffer contents will be overwritten by the next conversion sequence
- bit 3 Unimplemented: Read as '0'
- bit 2 ASAM: ADC Sample Auto-Start bit
 - 1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set.
 0 = Sampling begins when SAMP bit is set
- bit 1 SAMP: ADC Sample Enable bit⁽²⁾
 - 1 = The ADC sample and hold amplifier is sampling
 - 0 = The ADC sample/hold amplifier is holding
 - When ASAM = 0, writing '1' to this bit starts sampling.
 - When SSRC = 000, writing '0' to this bit will end sampling and start conversion.
- bit 0 **DONE:** Analog-to-Digital Conversion Status bit⁽³⁾
 - 1 = Analog-to-digital conversion is done
 - 0 = Analog-to-digital conversion is not done or has not started

Clearing this bit will not affect any operation in progress.

- **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC = 0, software can write a '0' to end sampling and start conversion. If SSRC ≠ 0, this bit is automatically cleared by hardware to end sampling and start conversion.
 - **3:** This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

REGISTER 22-4: AD1CHS: ADC INPUT SELECT REGISTER (CONTINUED)

```
bit 21-16 CH0SA<5:0>: Positive Input Select bits for Sample A Multiplexer Setting
            For 64-pin devices:
            011110 = Channel 0 positive input is Open<sup>(1)</sup>
            011101 = Channel 0 positive input is CTMU temperature sensor (CTMUT)<sup>(2)</sup>
            011100 = Channel 0 positive input is IVREF<sup>(3)</sup>
            011011 = Channel 0 positive input is AN27
            000001 = Channel 0 positive input is AN1
            000000 = Channel 0 positive input is AN0
            For 100-pin devices:
            110010 = Channel 0 positive input is Open<sup>(1)</sup>
            110001 = Channel 0 positive input is CTMU temperature sensor (CTMUT)<sup>(2)</sup>
            110000 = Channel 0 positive input is IVREF<sup>(3)</sup>
            101111 = Channel 0 positive input is AN47
            0000001 = Channel 0 positive input is AN1
            0000000 = Channel 0 positive input is AN0
bit 15-0
            Unimplemented: Read as '0'
```

- Note 1: This selection is only used with CTMU capacitive and time measurement.
 - 2: See Section 26.0 "Charge Time Measurement Unit (CTMU)" for more information.
 - 3: Internal precision 1.2V reference. See Section 24.0 "Comparator" for more information.

REGISTER 23-13: C1FLTCON3: CAN FILTER CONTROL REGISTER 3 (CONTINUED) bit 20-16 FSEL14<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 FLTEN13: Filter 13 Enable bit bit 15 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL13<1:0>: Filter 13 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL13<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN12: Filter 12 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL12<1:0>: Filter 12 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL12<4:0>: FIFO Selection bits bit 4-0 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

26.1 Control Registers

TABLE 26-1: CTMU REGISTER MAP

ess		•		Bits															
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
1200		31:16	EDG1MOD	EDG1POL		EDG15	SEL<3:0>		EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL		EDG28	SEL<3:0>		_	_	0000
A200	CTWOCON	15:0	ON	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG			ITRIM	<5:0>			IRNG	<1:0>	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

27.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid. To disable a peripheral, the associated PMDx bit must be set to '1'. To enable a peripheral, the associated PMDx bit must be cleared (default). See Table 27-1 for more information.

Note: Disabling a peripheral module while it's ON bit is set, may result in undefined behavior. The ON bit for the associated peripheral module must be cleared prior to disable a module via the PMDx bits.

TABLE 27-1:	PERIPHERAL MODULE DISABLE BITS AND LOCATIONS

Peripheral ⁽¹⁾	PMDx bit Name ⁽¹⁾	Register Name and Bit Location
ADC1	AD1MD	PMD1<0>
CTMU	CTMUMD	PMD1<8>
Comparator Voltage Reference	CVRMD	PMD1<12>
Comparator 1	CMP1MD	PMD2<0>
Comparator 2	CMP2MD	PMD2<1>
Comparator 3	CMP3MD	PMD2<2>
Input Capture 1	IC1MD	PMD3<0>
Input Capture 2	IC2MD	PMD3<1>
Input Capture 3	IC3MD	PMD3<2>
Input Capture 4	IC4MD	PMD3<3>
Input Capture 5	IC5MD	PMD3<4>
Output Compare 1	OC1MD	PMD3<16>
Output Compare 2	OC2MD	PMD3<17>
Output Compare 3	OC3MD	PMD3<18>
Output Compare 4	OC4MD	PMD3<19>
Output Compare 5	OC5MD	PMD3<20>
Timer1	T1MD	PMD4<0>
Timer2	T2MD	PMD4<1>
Timer3	T3MD	PMD4<2>
Timer4	T4MD	PMD4<3>
Timer5	T5MD	PMD4<4>
UART1	U1MD	PMD5<0>
UART2	U2MD	PMD5<1>
UART3	U3MD	PMD5<2>
UART4	U4MD	PMD5<3>
UART5	U5MD	PMD5<4>
SPI1	SPI1MD	PMD5<8>
SPI2	SPI2MD	PMD5<9>
SPI3	SPI3MD	PMD5<10>
SPI4	SPI4MD	PMD5<11>
I2C1	I2C1MD	PMD5<16>
12C2	I2C2MD	PMD5<17>
USB ⁽²⁾	USBMD	PMD5<24>
CAN	CAN1MD	PMD5<28>
RTCC	RTCCMD	PMD6<0>
Reference Clock Output	REFOMD	PMD6<1>
PMP	PMPMD	PMD6<16>

 Note 1:
 Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MX1XX/2XX/5XX 64/100-pin Controller Family Features" for the list of available peripherals.

2: Module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

31.1 DC Characteristics

TABLE 31-1: OPERATING MIPS VS. VOLTAGE

	Voo Bango	Tomp Bango	Max. Frequency				
Characteristic	(in Volts) ⁽¹⁾	(in °C)	PIC32MX1XX/2XX/5XX 64/100-pin Family				
DC5	VBOR-3.6V	-40°C to +105°C	40 MHz				

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 31-10 for BOR values.

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Typical	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
V-temp Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+105	°C
Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD – S IOH)	PD	Pint + Pi/o			W
I/O Pin Power Dissipation: I/O = S (({VDD – VOH} x IOH) + S (VOL x IOL))					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	A	W

TABLE 31-3: THERMAL PACKAGING CHARACTERISTICS

Characteristics	Symbol	Typical	Max.	Unit	Notes
Package Thermal Resistance, 64-pin QFN	θJA	28	_	°C/W	1
Package Thermal Resistance, 64-pin TQFP, 10 mm x 10 mm	θJA	55	-	°C/W	1
Package Thermal Resistance, 100-pin TQFP, 12 mm x 12 mm	θJA	52	_	°C/W	1
Package Thermal Resistance, 100-pin TQFP, 14 mm x 14 mm	θJA	50		°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

FIGURE 31-23: EJTAG TIMING CHARACTERISTICS

TABLE 31-42: EJTAG TIMING REQUIREMENTS

AC CHA	RACTERISTI	cs	Standa (unles Operat	ard Oper s otherw ing temp	ating Co vise state erature	prditions: 2.3V to 3.6V ed) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp		
Param. No.	Symbol	Description ⁽¹⁾	Min.	Max.	Units	Conditions		
EJ1	Ттсксус	TCK Cycle Time	25		ns	—		
EJ2	Ттскнідн	TCK High Time	10	—	ns	—		
EJ3	TTCKLOW	TCK Low Time	10	—	ns	—		
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5	-	ns	_		
EJ5	TTHOLD	TAP Signals Hold Time After Rising TCK	3	_	ns	_		
EJ6	TTDOOUT	TDO Output Delay Time from Falling TCK	-	5	ns	_		
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	_	5	ns	_		
EJ8	TTRSTLOW	TRST Low Time	25		ns			
EJ9	TRF	TAP Signals Rise/Fall Time, All Input and Output	_		ns	_		

Note 1: These parameters are characterized, but not tested in manufacturing.

32.1 DC Characteristics

TABLE 32-1: OPERATING MIPS VS. VOLTAGE

	Voo Bango	Tomp Bango	Max. Frequency				
Characteristic	(in Volts) ⁽¹⁾	(in °C)	PIC32MX1XX/2XX/5XX 64/100-pin Family				
MDC5	VBOR-3.6V	-40°C to +85°C	50 MHz				

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 31-10 for BOR values.

TABLE 32-2: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARA	CTERISTICS	5	Standard Ope (unless other Operating tem	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Parameter No.	Typical ⁽³⁾	Max.	Units Conditions						
Operating (Operating Current (IDD) (Note 1, 2)								
MDC24	25	40	mA	50 MHz					

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

2: The test conditions for IDD measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU, Program Flash, and SRAM data memory are operational, SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- CPU executing while(1) statement from Flash
- **3:** RTCC and JTAG are disabled
- **4:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.

34.2 Package Details

The following sections give the technical details of the packages.

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.

Overall Width

Overall Length

Lead Thickness

Lead Width

Molded Package Width

Mold Draft Angle Top

Mold Draft Angle Bottom

Molded Package Length

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

Е

D

E1

D1

с

b

α

β

0.09

0.17

11°

11°

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

0.20

0.27

13°

13

12.00 BSC

12.00 BSC

10.00 BSC

10.00 BSC

0.22

12°

12°