

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx150f256ht-50i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

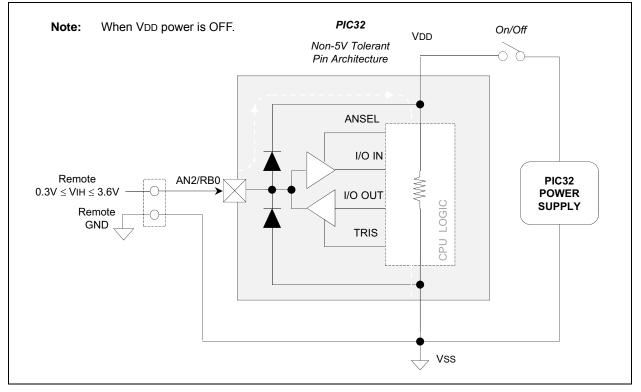
	Pin N	umber									
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	Pin Type	Buffer Type	Description						
MCLR	7	13	I	ST	Master Clear (Reset) input. This pin is an active-low Rese the device.						
AVDD	19	30	Ρ	Р	Positive supply for analog modules. This pin must be connected at all times.						
AVss	20	31	Р	Р	Ground reference for analog modules						
Vdd	10, 26, 38, 57	2, 16, 37, 46, 62, 86	Ρ	—	Positive supply for peripheral logic and I/O pins						
VCAP	56	85	Р	_	Capacitor for Internal Voltage Regulator						
Vss	9, 25, 41	15, 36, 45, 65, 75	Ρ	_	Ground reference for logic and I/O pins						
VREF+	16	29	Р	Analog	Analog Voltage Reference (High) Input						
VREF-	15	28	Р	Analog	Analog Voltage Reference (Low) Input						
Legend:	CMOS = CN	IOS compati	ble inpu	it or output	Analog = Analog input I = Input O = Output						

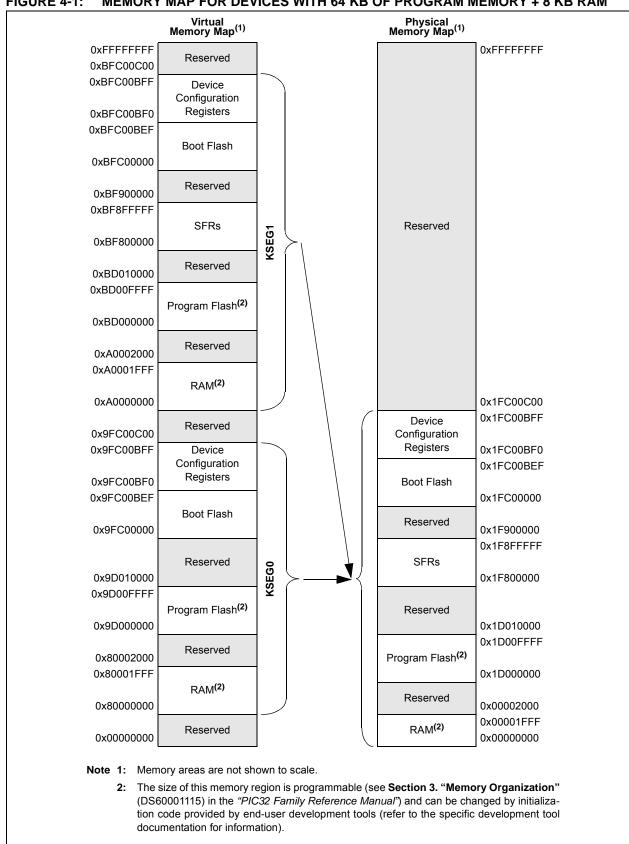
Legend: CMOS = CMOS compatible input or output Analog = Analog input I = Input ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer P = Power

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices with a USB module.


4: This pin is only available on 100-pin devices without a USB module.


2.9 Considerations When Interfacing to Remotely Powered Circuits

2.9.1 NON-5V TOLERANT INPUT PINS

A quick review of the absolute maximum rating section in **31.0** "**40 MHz Electrical Characteristics**" will indicate that the voltage on any non-5v tolerant pin may not exceed AVDD/VDD + 0.3V. Figure 2-5 shows an example of a remote circuit using an independent power source, which is powered while connected to a PIC32 non-5V tolerant circuit that is not powered.

FIGURE 2-5: PIC32 NON-5V TOLERANT CIRCUIT EXAMPLE

FIGURE 4-1: MEMORY MAP FOR DEVICES WITH 64 KB OF PROGRAM MEMORY + 8 KB RAM

6.1 Control Registers

TABLE 6-1: FLASH CONTROLLER REGISTER MAP

ess		a								Bi	ts								6
Virtual Address (BF80_#)			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E400		31:16	_	—	—	—	_		—		—	—	—	—			—	—	0000
1400		15:0	WR	WREN WRERR LVDERR LVDSTAT — — — — — — NVMOP<3:0>											0000				
F410	NVMKEY	31:16								NVMKE	/<31.0>								0000
		15:0									1501.02								0000
E420	NVMADDR ⁽¹⁾	31:16								NVMADE	P<31.05								0000
1 420	NVINADDR	15:0								INVIVIADE	K~51.02								0000
F430	NVMDATA	31:16									A-31.0>								0000
1430	NVINDAIA	15:0		NVMDATA<31:0>											0000				
F440	NVMSRC	31:16		NUMERCADDR-21105 0000										0000					
F440	ADDR	15:0		NVMSRCADDR<31:0>															

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

NOTES:

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 18-16 PLLMULT<2:0>: Phase-Locked Loop (PLL) Multiplier bits

- 111 = Clock is multiplied by 24
- 110 = Clock is multiplied by 21
- 101 = Clock is multiplied by 20
- 100 = Clock is multiplied by 19
- 011 = Clock is multiplied by 18
- 010 =Clock is multiplied by 17
- 001 =Clock is multiplied by 16
- 000 = Clock is multiplied by 15
- bit 15 Unimplemented: Read as '0'
- bit 14-12 COSC<2:0>: Current Oscillator Selection bits
 - 111 = Internal Fast RC (FRC) Oscillator divided by OSCCON<FRCDIV> bits
 - 110 = Internal Fast RC (FRC) Oscillator divided by 16
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XTPLL, HSPLL or ECPLL)
 - 010 = Primary Oscillator (Posc) (XT, HS or EC)
 - 001 = Internal Fast RC Oscillator with PLL module via Postscaler (FRCPLL)
 - 000 = Internal Fast RC (FRC) Oscillator
- bit 11 Unimplemented: Read as '0'
- bit 10-8 NOSC<2:0>: New Oscillator Selection bits
 - 111 = Internal Fast RC Oscillator (FRC) divided by OSCCON<FRCDIV> bits
 - 110 = Internal Fast RC Oscillator (FRC) divided by 16
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator with PLL module (XTPLL, HSPLL or ECPLL)
 - 010 = Primary Oscillator (XT, HS or EC)
 - 001 = Internal Fast Internal RC Oscillator with PLL module via Postscaler (FRCPLL)
 - 000 = Internal Fast Internal RC Oscillator (FRC)

On Reset, these bits are set to the value of the FNOSC Configuration bits (DEVCFG1<2:0>).

- bit 7 CLKLOCK: Clock Selection Lock Enable bit
 - If clock switching and monitoring is disabled (FCKSM<1:0> = 1x):
 - 1 = Clock and PLL selections are locked
 - 0 = Clock and PLL selections are not locked and may be modified

If clock switching and monitoring is enabled (FCKSM<1:0> = 0x): Clock and PLL selections are never locked and may be modified.

- bit 6 ULOCK: USB PLL Lock Status bit⁽¹⁾
 - 1 = Indicates that the USB PLL module is in lock or USB PLL module start-up timer is satisfied
 - 0 = Indicates that the USB PLL module is out of lock or USB PLL module start-up timer is in progress or USB PLL is disabled
- bit 5 SLOCK: PLL Lock Status bit
 - 1 = PLL module is in lock or PLL module start-up timer is satisfied
 - 0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
- bit 4 SLPEN: Sleep Mode Enable bit
 - 1 = Device will enter Sleep mode when a WAIT instruction is executed
 - 0 = Device will enter Idle mode when a WAIT instruction is executed
- bit 3 **CF:** Clock Fail Detect bit
 - 1 = FSCM has detected a clock failure
 - 0 = No clock failure has been detected
- Note 1: This bit is available on PIC32MX2XX/5XX devices only.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	—	_	_	—	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	_	_		—	-
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	_	—	_	_	—	_
7.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
7:0	_	—	_	_	RDWR	[DMACH<2:0>	•

REGISTER 9-2: DMASTAT: DMA STATUS REGISTER

Legend:

0								
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31-4 Unimplemented: Read as '0'

- bit 3 RDWR: Read/Write Status bit
 - 1 = Last DMA bus access was a read
 - 0 = Last DMA bus access was a write
- bit 2-0 **DMACH<2:0>:** DMA Channel bits These bits contain the value of the most recent active DMA channel.

REGISTER 9-3: DMAADDR: DMA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
31:24	DMAADDR<31:24>												
23:16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
23:10	DMAADDR<23:16>												
15:8	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
0.61				DMAADDI	R<15:8>								
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
7:0	DMAADDR<7:0>												

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMAADDR<31:0>: DMA Module Address bits

These bits contain the address of the most recent DMA access.

TABLE 11-2:	OUTPUT PIN SELECTION
-------------	----------------------

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection		
RPD2	RPD2R	RPD2R<3:0>	0000 = No Connect		
RPG8	RPG8R	RPG8R<3:0>	0001 = U3TX		
RPF4	RPF4R	RPF4R<3:0>	0010 = U4RTS 0011 = Reserved		
RPD10	RPD10R	RPD10R<3:0>	0100 = Reserved		
RPF1	RPF1R	RPF1R<3:0>	0101 = Reserved		
RPB9	RPB9R	RPB9R<3:0>	0110 = SDO2		
RPB10	RPB10R	RPB10R<3:0>	0111 = Reserved		
RPC14	RPC14R	RPC14R<3:0>	1000 - Reserved		
RPB5 ⁽⁷⁾	RPB5R	RPB5R<3:0>	1010 = Reserved		
RPC1 ⁽³⁾	RPC1R	RPC1R<3:0>	1011 = OC3		
RPD14 ⁽³⁾	RPD14R	RPD14R<3:0>	- 1100 = C1TX ⁽⁵⁾ 1101 = C2OUT		
RPG1 ⁽³⁾	RPG1R	RPG1R<3:0>	1110 = SDO3		
RPA14 ⁽³⁾	RPA14R	RPA14R<3:0>	1111 = SDO4 ⁽³⁾		
RPD3	RPD3R	RPD3R<3:0>	0000 = No Connect		
RPG7	RPG7R	RPG7R<3:0>	0001 = U2TX		
RPF5	RPF5R	RPF5R<3:0>	0010 = Reserved		
RPD11	RPD11R	RPD11R<3:0>			
RPF0	RPF0R	RPF0R<3:0>	0101 = Reserved		
RPB1	RPB1R	RPB1R<3:0>	0110 = SDO2		
RPE5	RPE5R	RPE5R<3:0>	0111 = Reserved		
RPC13	RPC13R	RPC13R<3:0>	1000 = SDO1		
RPB3	RPB3R	RPB3R<3:0>	1001 = Reserved		
RPF3 ⁽⁴⁾	RPF3R	RPF3R<3:0>	1010 = Reserved 1011 = OC4		
RPC4 ⁽³⁾	RPC4R	RPC4R<3:0>	1100 = Reserved		
RPD15 ⁽³⁾	RPD15R	RPD15R<3:0>	1101 = C3OUT		
RPG0 ⁽³⁾	RPG0R	RPG0R<3:0>	1110 = SDO3		
RPA15 ⁽³⁾	RPA15R	RPA15R<3:0>	1111 = SDO4 ⁽³⁾		

Note 1: This selection is not available on 64-pin USB devices.

2: This selection is only available on 100-pin General Purpose devices.

3: This selection is not available on 64-pin devices.

4: This selection is not available when USBID functionality is used on USB devices.

5: This selection is not available on devices without a CAN module.

6: This selection is not available on USB devices.

7: This selection is not available when VBUSON functionality is used on USB devices.

TABLE 11-6: PORTC REGISTER MAP FOR 64-PIN DEVICES ONLY

ess										Bits									
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6200	ANSELC	31:16	_	—	—	_	—	-			_	—	_		—		—	—	0000
0200	/	15:0	—	—	—	—	—	—	—	_	—	_	—	_	ANSELC3	ANSELC2	ANSELC1	—	000E
6210	TRISC	31:16		—	—	—	_	_	_		_		—	_	_	_	—	_	0000
02.0		15:0	TRISC15	TRISC14	TRISC13	TRISC12	—	—	—	_	—	_	—	_	—	—	—	—	F000
6220	PORTC	31:16	—	—	—	—	_	_	_	_	—	_	—	_	—	_	—		0000
0220	1 on to	15:0	RC15	RC14	RC13	RC12	—	—	—	—	—	—	—	—	—	_	—		xxxx
6230	LATC	31:16		—	—	—	—	—	—	—	—	—	—	—	—	_	—		0000
0200	Ento	15:0	LATC15	LATC14	LATC13	LATC12	—	—	—	—	—	—	—	—	—	_	—		xxxx
6240	ODCC	31:16		—	—	—	—	—	—	—	—	—	—	—	—	_	—		0000
02.10	0200	15:0	ODCC15	ODCC14	ODCC13	ODCC12	—	—	—	—	—	—	—	—	—	_	—		0000
6250	CNPUC	31:16		—	—	—	—	—	—	—	—	—	—	—	—	_	—		0000
0200		15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	—	—	—	—	—	—	—	—	—	_	—		0000
6260	CNPDC	31:16		—	—	—	—	_	_	_	—	—	—		—	_	—		0000
0200		15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	—	—	—	—	—	—	—	—	—	_	—		0000
6270	CNCONC	31:16				_					—	_	—		—		—		0000
0270	oncono	15:0	ON		SIDL						—	_	—		—		—		0000
6280	CNENC	31:16		—							—	_	—		—		—		0000
0200		15:0	CNIEC15	CNIEC14	CNIEC13	CNIEC12	—	_	_		—		—	_	—		—	_	0000
6200	CNSTATC	31:16	_	—	—	_	_				-	—	-		—		—	—	0000
0290	GNOTAIC	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12	_				-	_			_		—	_	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for Note 1: more information.

ess										Bits	5								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6500	ANSELF	31:16	_	-	—	—	_	—	—	_	-	—	—	—	—	—	-	-	0000
0000	ANOLLI	15:0	—	_	ANSELE13	ANSELE12	—	_	_	ANSELE8		—	_			ANSELE2	ANSELE1	ANSELE0	3107
6510	TRISF	31:16	—	_	—	—	—	—	_	—	_	—	—	_			_	_	0000
0010	TRIO	15:0	_	-	TRISF13	TRISF12	_	—	—	TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	31FF
6520	PORTF	31:16	_	-	—	—	_	—	—	—	-	—	—	_	—	—	_	_	0000
0020	1 OKII	15:0	_	-	RF13	RF12	_	—	—	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6530	LATE	31:16	_	-	—	—	_	—	_	—	-	—	—	—	—	—	_	_	0000
0000	LAII	15:0	_	-	LATF13	LATF12	_	—	_	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6540	ODCF	31:16	_	-	—	—	_	—	_	—	-	—	—	—	—	—	_	_	0000
0340	ODCI	15:0	_		ODCF13	ODCF12	-	_	—	ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000
6550	CNPUF	31:16	_		_	_	-	_	—	_		_	_	_	_	_			0000
0330	CINFUI	15:0	_		CNPUF13	CNPUF12	-	_	—	CNPUF8	CNPUF7	CNPUF6	CNPUF5	CNPUF4	CNPDF3	CNPUF2	CNPUF1	CNPUF0	0000
6560	CNPDF	31:16	_		_	_	-	_	—	_		_	_	_	_	_			0000
0300	CINF DI	15:0	_		CNPDF13	CNPDF12	-	_	—	CNPDF8	CNPDF7	CNPDF6	CNPDF5	CNPDF4	CNPDF3	CNPDF2	CNPDF1	CNPDF0	0000
6570	CNCONF	31:16	_	_	—	—	—	_	_	—	_	—	_	_	—	_	-	-	0000
0370	CINCOIN	15:0	ON		SIDL	_	-	_	—	_		_	_	_	_	_			0000
6580	CNENF	31:16	_		_	_	-	_	—	_		_	_	_	_	_			0000
0380	CINLINI	15:0	_		CNIEF13	CNIEF12	-	_	—	CNIEF8	CNIEF7	CNIEF6	CNIEF5	CNIEF4	CNIEF3	CNIEF2	CNIEF1	CNIEF0	0000
		31:16	_	_	—	—	—	_	—	_		_	_	—	_	—			0000
6590	CNSTATF	15:0	_	_	CN STATF13	CN STATF12	_	_	_	CN STATF8	CN STATF7	CN STATF6	CN STATF5	CN STATF4	CN STATF3	CN STATF2	CN STATF1	CN STATF0	0000

TABLE 11-11: PORTF REGISTER MAP FOR PIC32MX130F128L, PIC32MX150F256L, AND PIC32MX170F512L DEVICES ONLY

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	—	—			_	_	_
23:16	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_	—	—	—	—	_	—
15:8	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	SPISGNEXT	_	—	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR
7.0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
7:0	AUDEN ⁽¹⁾				AUDMONO ^(1,2)		AUDMOD)<1:0>(1,2)

REGISTER 17-2: SPIxCON2: SPI CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

ı'
ļ

- bit 15 SPISGNEXT: Sign Extend Read Data from the RX FIFO bit
 - 1 = Data from RX FIFO is sign extended
 - 0 = Data from RX FIFO is not sign extened

bit 14-13 Unimplemented: Read as '0'

- bit 12 FRMERREN: Enable Interrupt Events via FRMERR bit 1 = Frame Error overflow generates error events 0 = Frame Error does not generate error events bit 11 SPIROVEN: Enable Interrupt Events via SPIROV bit 1 = Receive overflow generates error events 0 = Receive overflow does not generate error events bit 10 SPITUREN: Enable Interrupt Events via SPITUR bit 1 = Transmit Underrun Generates Error Events 0 = Transmit Underrun Does Not Generates Error Events bit 9 IGNROV: Ignore Receive Overflow bit (for Audio Data Transmissions) 1 = A ROV is not a critical error; during ROV data in the fifo is not overwritten by receive data 0 = A ROV is a critical error which stop SPI operation bit 8 IGNTUR: Ignore Transmit Underrun bit (for Audio Data Transmissions) 1 = A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty 0 = A TUR is a critical error which stop SPI operation AUDEN: Enable Audio CODEC Support bit⁽¹⁾ bit 7 1 = Audio protocol enabled 0 = Audio protocol disabled bit 6-5 Unimplemented: Read as '0' AUDMONO: Transmit Audio Data Format bit^(1,2) bit 3 1 = Audio data is mono (Each data word is transmitted on both left and right channels) 0 = Audio data is stereo bit 2 Unimplemented: Read as '0' AUDMOD<1:0>: Audio Protocol Mode bit^(1,2) bit 1-0 11 = PCM/DSP mode 10 = Right Justified mode 01 = Left Justified mode $00 = I^2 S \mod I$
- **Note 1:** This bit can only be written when the ON bit = 0.
 - **2:** This bit is only valid for AUDEN = 1.

U-0

U-0

R/W-0

SMPI<3:0>

U-0

R/W-0

CSCNA

R/W-0

Bit

25/17/9/1

U-0

U-0

U-0

R/W-0

BUFM

Bit

24/16/8/0

U-0

U-0

U-0

R/W-0

ALTS

REGISTE	ER 22-2. A	DICONZ. AI					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	
31.24							

U-0

R/W-0

R/W-0

DECISTED 22 2. AD1CON2: ADC CONTROL REGISTER 2

U-0

R/W-0

U-0

_

VCFG<2:0>

Legend:

23:16

15:8

7:0

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

U-0

R/W-0

OFFCAL

R/W-0

bit 31-16 Unimplemented: Read as '0'

U-0

R/W-0

R-0

BUFS

bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

	VREFH	VREFL
000	AVDD	AVss
001	External VREF+ pin	AVss
010	AVDD	External VREF- pin
011	External VREF+ pin	External VREF- pin
1xx	AVDD	AVss

bit 12 **OFFCAL:** Input Offset Calibration Mode Select bit

- 1 = Enable Offset Calibration mode
 - Positive and negative inputs of the sample and hold amplifier are connected to VREFL
- 0 = Disable Offset Calibration mode

The inputs to the sample and hold amplifier are controlled by AD1CHS or AD1CSSL

bit 11 Unimplemented: Read as '0'

- bit 10 CSCNA: Input Scan Select bit
 - 1 = Scan inputs
 - 0 = Do not scan inputs

bit 9-8 Unimplemented: Read as '0'

- bit 7 BUFS: Buffer Fill Status bit
 - Only valid when BUFM = 1.
 - 1 = ADC is currently filling buffer 0x8-0xF, user should access data in 0x0-0x7
 - 0 = ADC is currently filling buffer 0x0-0x7, user should access data in 0x8-0xF

bit 6 Unimplemented: Read as '0'

bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits

- 1111 = Interrupts at the completion of conversion for each 16^{th} sample/convert sequence 1110 = Interrupts at the completion of conversion for each 15^{th} sample/convert sequence

0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence 0000 = Interrupts at the completion of conversion for each sample/convert sequence

- bit 1 BUFM: ADC Result Buffer Mode Select bit
 - 1 = Buffer configured as two 8-word buffers, ADC1BUF7-ADC1BUF0, ADC1BUFF-ADCBUF8
 - 0 = Buffer configured as one 16-word buffer ADC1BUFF-ADC1BUF0
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses Sample A input multiplexer settings for first sample, then alternates between Sample B and Sample A input multiplexer settings for all subsequent samples
 - 0 = Always use Sample A input multiplexer settings

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	CSSL31 ⁽²⁾	CSSL30 ⁽¹⁾	CSSL29 ⁽¹⁾	CSSL28 ⁽¹⁾	CSSL27	CSSL26	CSSL25	CSSL24
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	CSSL23	CSSL21	CSSL21	CSSL20	CSSL19	CSSL18	CSSL17	CSSL16
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0

REGISTER 22-5: AD1CSSL: ADC INPUT SCAN SELECT REGISTER

Legend:

0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 CSSL<31:0>: ADC Input Pin Scan Selection bits

- 1 = Select ANx for input scan; CSSLx = ANx, where 'x' = 0-31
- 0 = Skip ANx for input scan; CSSLx = ANx, where 'x' = 0-31
- Note 1: For devices with 64 pins, CSSL28 selects IVREF (Band Gap) for scan; CSSL29 selects CTMU temperature diode for scan; and CSSL30 selects CTMU input for scan
 - 2: On devices with less than 32 analog inputs, all CSSLx bits can be selected; however, inputs selected for scan without a corresponding input on the device will convert to VREFL.

	REGISTER 22-0. ADTOUGE2. ADD INT OT GOAN DELEGT REGISTER 2							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
23:16	_	—	_	_	—	CSSL50 ⁽¹⁾	CSSL49 ⁽¹⁾	CSSL48 ⁽¹⁾
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	CSSL47	CSSL46	CSSL45	CSSL44	CSSL43	CSSL42	CSSL41	CSSL40
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CSSL39	CSSL38	CSSL37	CSSL36	CSSL35	CSSL34	CSSL33	CSSL32

REGISTER 22-6: AD1CSSL2: ADC INPUT SCAN SELECT REGISTER 2

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-19 Unimplemented: Read as '0'

- bit 18-0 CSSL<50:32>: ADC Input Pin Scan Selection bits
 - 1 = Select ANx for input scan; CSSLx = ANx, where 'x' = 32-50
 - 0 =Skip ANx for input scan; CSSLx = ANx, where 'x' = 32-50
- Note 1: For devices with 100 or more pins, CSSL48 selects IVREF (Band Gap) for scan; CSSL49 selects CTMU temperature diode for scan; and CSSL50 selects CTMU input for scan

Note: The ANx inputs in this register only support devices with 100 or more pins.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	FLTEN7	MSEL7<1:0>			FSEL7<4:0>				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	FLTEN6	MSEL6<1:0>		FSEL6<4:0>					
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	FLTEN5	MSEL	5<1:0>		F	SEL5<4:0>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	FLTEN4	MSEL	4<1:0>	FSEL4<4:0>					

REGISTER 23-11: C1FLTCON1: CAN FILTER CONTROL REGISTER 1

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN7: Filter 7 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 30-29	MSEL7<1:0>: Filter 7 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL7<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN6: Filter 6 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 22-21	MSEL6<1:0>: Filter 6 Mask Select bits 11 = Acceptance Mask 3 selected

- - 10 = Acceptance Mask 2 selected
 - 01 = Acceptance Mask 1 selected
 - 00 = Acceptance Mask 0 selected

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 23-12: C1FLTCON2: CAN FILTER CONTROL REGISTER 2 (CONTINUED) bit 20-16 FSEL10<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 FLTEN9: Filter 9 Enable bit bit 15 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL9<1:0>: Filter 9 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL9<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN8: Filter 8 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL8<1:0>: Filter 8 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 4-0 FSEL8<4:0>: FIFO Selection bits 11111 = Reserved 10000 = Reserved 01111 = Message matching filter is stored in FIFO buffer 15 00000 = Message matching filter is stored in FIFO buffer 0 The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'. Note:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
31:24	R/W-0	R/W-0											
31.24	C1FIFOBA<31:24>												
23:16	R/W-0	R/W-0											
23.10	C1FIFOBA<23:16>												
15:8	R/W-0	R/W-0											
10.0	C1FIFOBA<15:8>												
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0 ⁽¹⁾	R-0 ⁽¹⁾					
7:0				C1FIFO	BA<7:0>								

REGISTER 23-15: C1FIFOBA: CAN MESSAGE BUFFER BASE ADDRESS REGISTER

Legend:

Logonal			
R = Readable bit	R = Readable bit W = Writable bit		read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 C1FIFOBA<31:0>: CAN FIFO Base Address bits

These bits define the base address of all message buffers. Individual message buffers are located based on the size of the previous message buffers. This address is a physical address. Bits <1:0> are read-only and read as '0', forcing the messages to be 32-bit word-aligned in device RAM.

Note 1: This bit is unimplemented and will always read '0', which forces word-alignment of messages.

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (C1CON<23:21>) = 100).

25.1 Control Registers

TABLE 25-1: COMPARATOR VOLTAGE REFERENCE REGISTER MAP

ess		Ð								Bits									Ś
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000		31:16	—	_	_	_	_	—	—	-		_	_	_	-	_	_	_	0000
9000	9800 CVRCON		ON	_	_	—			—	_	_	CVROE	CVRR	CVRSS		CVR<	3:0>		0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The register in this table has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

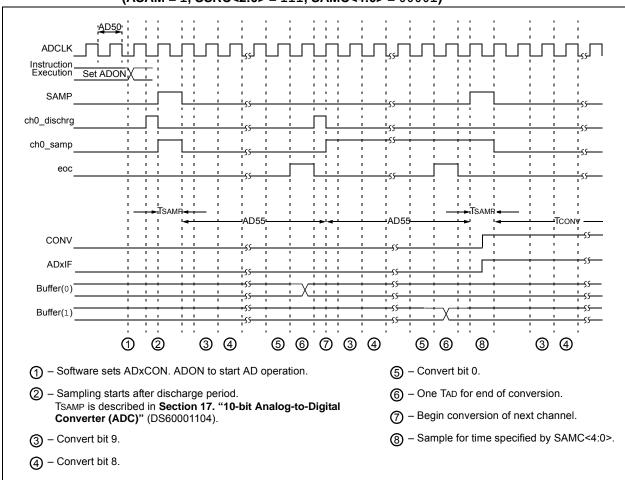

26.1 Control Registers

TABLE 26-1: CTMU REGISTER MAP

ess		6								Bits									s
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
1 200	CTMUCON	31:16	EDG1MOD	EDG1POL		EDG1S	EL<3:0>		EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL		EDG25	SEL<3:0>				0000
A200	CINUCON	15:0	ON	-	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG			ITRIM<5:0> IRNG<1:0>						

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

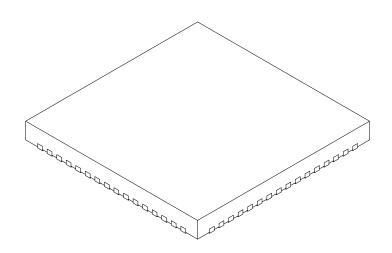

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET, and INV Registers" for more information.

FIGURE 31-19: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Ν	ILLIMETER	S				
Dimension	Limits	MIN	NOM	MAX				
Number of Pins	Ν		64					
Pitch	е		0.50 BSC					
Overall Height	Α	0.80	0.90	1.00				
Standoff	A1	0.00	0.02	0.05				
Contact Thickness	A3		0.20 REF					
Overall Width	Е		9.00 BSC					
Exposed Pad Width	E2	5.30	5.40	5.50				
Overall Length	D		9.00 BSC					
Exposed Pad Length	D2	5.30	5.40	5.50				
Contact Width	b	0.20	0.25	0.30				
Contact Length	L	0.30	0.40	0.50				
Contact-to-Exposed Pad	K	0.20	-	-				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2